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 Rhinosinusitis, characterized by inflammation of the mucosa or mucous 

membrane within the paranasal sinuses, anatomical cavities situated in the 

facial bones, is the focus of this investigation. This study employs computed 

tomography (CT)-scan images comprising sagittal slices of the paranasal 

sinuses, acquired through a CT device featuring a Philips Ingenuity CT model 

MRC880 tube type, identified by tube serial number 163889, with a pixel 

value resolution of 0.24 mm. The primary objective of this research is to 

automatically identify and delineate rhizosinusitis-affected areas. This 

involves the application of multi-threshold values during the segmentation 

process, utilizing the improved adaptive multi-threshold (IAMT) 

segmentation method. The research dataset encompasses 380 slices of CT-

scans derived from 10 patients displaying indications of rhinosinusitis. 

Analysis of the test results reveals that the smallest observed rhinosinusitis 

size in this study is 0.05 cm2 on the right side, while the largest size measures 

1.81 cm2, yielding an accuracy rate of 96.66%. The magnitude of 

rhinosinusitis sizes serves as an indicative measure of the extent of 

inflammation within the paranasal sinus region, thereby suggesting a potential 

need for more intensive treatment interventions for the affected patients. 
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1. INTRODUCTION 

Rhinosinusitis, characterized by inflammation of the mucous membrane or mucosa within the 

paranasal sinuses and nasal passages, represents a clinical condition with distinct manifestations [1], [2]. 

Predominantly, the ethmoid and maxillary sinuses are frequently affected, with a comparatively lower 

incidence observed in cases of sphenoid and frontal sinusitis [3], [4]. Etiologically, rhinosinusitis may arise 

due to allergic responses or microbial infections, inclusive of bacterial and viral agents, precipitating an 

impediment in the physiological flow of mucus from the sinuses to the nasal cavity [5], [6]. Rhinosinusitis has 

the potential to give rise to a spectrum of complications, including mucocele, pre-septal cellulitis, orbital 

cellulitis, subperiosteal abscess, orbital abscess, osteomyelitis, meningitis, brain abscess, subdural empyema, 

and venous sinus thrombosis. Untreated sinusitis may culminate in a persistent loss of olfactory function. 

Pathological conditions affecting the paranasal sinuses are frequently discerned through the utilization of 

computed tomography (CT) imaging techniques, necessitating precise and vigilant monitoring [7]. In the 

clinical domain, CT proves superior in the meticulous analysis and diagnosis of paranasal sinus conditions 

compared to traditional x-ray modalities. 

https://creativecommons.org/licenses/by-sa/4.0/
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The manipulation of medical images has profoundly influenced healthcare practitioners in their 

diagnostic endeavors and therapeutic interventions. Presently established image processing methodologies 

have proven markedly advantageous, assuming a pivotal role in the identification process [8]. Among the 

various image processing procedures, the segmentation process stands out as particularly noteworthy. 

Fundamentally, the quintessential facet of image processing resides in the image segmentation procedure, 

integral for object recognition and the application of visual image processing technology [9]. The primary 

objective of image segmentation is the extraction of the region of interest (ROI), achieved through either an 

automated or semi-automated process, with direct relevance to the objects slated for analysis [10]. The process 

entails the delineation of object regions within an image, distinct from the background, thereby facilitating the 

analysis and partitioning of the object into non-overlapping regions characterized by homogeneity in attributes 

such as color, texture, and intensity [11]. The outcome of the image segmentation process manifests as a binary 

image with dual grayscale values: black, denoted by zero (0), and white, represented by one (1). The image 

segmentation process introduces a discernible level of complexity in image analysis, attributable to the 

heterogeneous characteristics exhibited by distinct objects [12]. Various methodologies are deployed in the 

image segmentation process, encompassing thresholding, histogram methods, region-growing, shape-based, 

active contour, and statistical (clustering) approaches. Predominantly, the thresholding method finds 

widespread application in image segmentation procedures [13]. Thresholding serves as an image segmentation 

technique that leverages the grayscale variation within an image. In this segmentation process, a threshold or 

threshold value is requisite for the analyzed image [14]. Pixel intensity values in the image that fall below the 

established threshold are designated a value of 0 (black), while pixel intensity values surpassing the threshold 

are assigned a value of 1 (white) through the thresholding method, yielding a binary image. The application of 

segmentation processes via thresholding has found practical use in the medical domain for identification 

purposes, particularly in disease detection. Consequently, it can be expounded that the image segmentation 

process is instrumental in discerning organ pixels within CT-scan images. 

Numerous investigations in the image processing of paranasal sinus CT-scan outcomes related to 

rhinosinusitis have been conducted. These studies encompass advanced techniques such as the segmentation 

of CT images of paranasal sinuses using the convolutional neural network (CNN) algorithm for efficient and 

objective measurement of sinus opacification [15]. However, the proposed method faces limitations in 

determining the volume segmentation of individual paranasal sinus areas. Another notable approach is the 

automatic segmentation method of the maxillary sinus based on the visual geometry group (VGG) network, 

achieving a high segmentation efficiency of 94.40%. Yet, this research primarily focuses on discerning the 

presence or absence of maxillary sinuses in CT images. In the realm of 3D reconstruction and automatic 

segmentation, the use of the level set method (LSM) as a segmentation technique has been applied to the 

maxillary sinus and inferior concha from CT images. The segmentation coefficients obtained are impressive, 

with 96.3% for the inferior turbinate and 95.1% for the maxillary sinus [16]. However, this study exclusively 

calculates the volume of the maxillary sinus and inferior turbinate, omitting the assessment of mucous volume 

in the impacted area. Moreover, diagnosis through multi-view radiographs is limited to determining the 

presence of sinusitis in each sinus area, lacking the capability to quantify the extent of the rhinosinusitis-

affected area [17]. Recent advancements include the application of semi-supervised deep learning semantic 

segmentation for paranasal sinus CT images in the axial view. This involves dividing the convolutional layer 

into two subtasks: the depthwise convolution layer, which filters input, and the pointwise convolution layer 

with a 1×1 filter that amalgamates filtered values to generate new features [18]. This study advocates for the 

development of adaptive threshold segmentation for segmenting and automatically identifying rhinosinusitis 

in sagittal view CT-scan images of paranasal sinuses. The findings demonstrate that this method can accurately 

identify and determine the surface area of rhizosinusitis, rendering it a recommended model for medical 

professionals to evaluate the severity of rhizosinusitis in subsequent treatment management. 

 

 

2. METHOD 

The data for this study comprises secondary data obtained from sagittal-view CT-scan results of 

paranasal sinuses in patients suffering from rhinosinusitis. Clinically, CT provides a more accurate analysis 

and diagnosis of paranasal sinuses than conventional x-rays. CT is considered a modality for depicting the 

anatomy of paranasal sinuses and proves highly useful in subsequent planning and follow-up actions [19]. 

Patients underwent scanning using a CT-scan device in the Department of Radiology at RSUP M. Djamil 

Padang, Padang City, West Sumatra, Indonesia. The tested dataset includes 380 images from 10 different 

patients. The processed CT-scan images are sagittal slice images in JPEG format, acquired using a CT device 

with a tube model CT-scan Philips Ingenuity CT, type MRC880, and tube serial number 163889. The 

configuration of the CT-scan results from the Philips Ingenuity CT for sagittal-view paranasal sinuses can be 

observed in Figure 1. Figure 1(a) represents an image of the maxillary sinus area, while Figure 1(b) displays 
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the maxillary sinus with rhinosinusitis. Subsequently, an adaptive multi-thresholding development model was 

applied for the automatic identification of rhinosinusitis in the paranasal sinuses, as depicted in Figure 2. 

 

 

 
(a) (b) 

 

Figure 1. Paranasal sinus CT-scan sagittal view (a) paranasal sinus CT-scan of patients with rhinosinusitis 

and (b) rhinosinusitis 

 

 

 
 

Figure 2. Research framework 

 

 

Figure 2 illustrates the framework of the automatic research model for identifying rhinosinusitis 

through the processing of images from sagittal-view CT-scan results of paranasal sinuses. This model is 

 

 
 

 

 

Rhinosinusitis 

(b) 

 Image Input

RGB to Gray

CLAHE

Cropping Image

IAMT 

Segmentation

Devide Image

Clear Borders

Filtering

Binary Overlay ImageRegion Properties

Identification 

Rhinosinusitis
Area

Combine Image



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 1, February 2025: 119-129 

122 

developed with multiple stages of image processing aimed at producing accurate and precise outputs. The 

processing stages encompass the conversion of red, green, and blue (RGB) images to grayscale, image 

cropping, image enhancement, segmentation operations, and extraction.  

 

2.1.  Image enhancement  

Contrast limited adaptive histogram equalization (CLAHE) is a method for enhancing image quality, 

particularly in medical images, designed to ameliorate low contrast in the images. Adaptive histogram 

equalization (AHE) can introduce noise artifacts in smooth regions of the image due to excessively enhancing 

contrast in those areas [20]. The method employed to eliminate noise artifacts is CLAHE. The CLAHE method 

calculates the intensity histogram of the image by dividing the input image into non-overlapping sub-blocks 

[21]. A clip limit in the CLAHE method is set to cut off specific values in the histogram, smoothing the image 

by eliminating noise in the histogram and resulting in high-contrast levels [22]. The clip limit value is 

determined using a formula derived from the Rayleigh distribution process, presented in (1) [23]. 

 

𝑐𝑙 = 𝑐𝑙min + [2(𝛼2)𝑖𝑛 (
1

1−𝐷𝑃(𝑓)
)] (1) 

 

In this detailed analysis, clmin is defined as the minimum value that a pixel can attain within the image 

processing framework, serving as a critical threshold for the contrast enhancement procedure. The term DP(f) 

signifies a non-negative real scalar, which plays a pivotal role in calculating the distribution parameter, 

essential for adjusting the image's contrast based on localized regions. Furthermore, cl refers to the clip limit 

value, a predefined threshold that prevents over-amplification of contrast in the AHE process, ensuring that the 

enhancement remains within visually acceptable bounds. This process, known as CLAHE, is graphically 

illustrated in Figure 3 [24]. 

 

 

 
 

Figure 3. The illustration process of CLAHE 

 

 

2.2.  Cropping images 

Cropping images can be employed to display the most crucial regions of an image, resulting in an 

improved composition for enhanced object visibility [25]. Image cropping can be executed using various 

methods, both manual and automatic, in the field of image processing [26]. The determination of the detected 

object area from the image is achieved using a binary thresholding algorithm. Binary thresholding is an image 

processing technique used to convert grayscale images into binary images [27]. This technique relies on the 

utilization of a threshold value to segregate image pixels into two categories: in the first category, pixels are 

assigned a value of 0 (black) if the pixel intensity is less than or equal to the threshold value, while in the 

second category, pixels are assigned a value of 1 (white) if the pixel intensity is greater than the threshold value 

[28]. The formula used to convert grayscale images into binary images using the thresholding algorithm is 

depicted in (2) [29]. 

 

𝑎𝑔(𝑥, 𝑦) = {
0, 𝑖𝑓 𝑛𝑝(𝑥, 𝑦) < 𝑁𝐴

1, 𝑖𝑓 𝑛𝑝(𝑥, 𝑦) ≥ 𝑁𝐴
} (2) 

 

In this analytical framework, np(x,y) is identified as the input pixel value, which is the original 

intensity value of a pixel located at coordinates (x,y) in a grayscale image. The term ag(x,y) represents the 

pixel value obtained subsequent to the application of the thresholding process, effectively transforming the 

grayscale pixel into a binary state based on a specified threshold. NA signifies the threshold value, a critical 

parameter that determines the cutoff point at which pixel values are classified as either black or white, thereby 
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converting the entire grayscale image into a binary format. This binary conversion process, facilitated by the 

thresholding algorithm, is vividly illustrated in Figure 4, showcasing the transformation from nuanced 

grayscale images to stark binary contrasts, which is particularly useful in various image processing and 

computer vision tasks for simplifying analysis and enhancing feature detection. 

 

 

 
 

Figure 4. The illustration process of binary image 

 

 

After the application of binary thresholding to segment objects within an image, the process of object 

detection identifies specific items of interest by delineating their coordinate boundaries. This precise 

identification allows for the automatic cropping of the image to focus exclusively on the detected object, a 

procedure that meticulously extracts the ROI without altering the inherent pixel values of the object itself. This 

preservation of pixel integrity is crucial, particularly in fields such as medical imaging, where the accurate 

representation of details can be vital for disease diagnosis and analysis. By maintaining the original pixel values 

within the cropped area, the image remains a reliable source for further diagnostic procedures or analytical 

processes, ensuring that the quality and informational content necessary for identifying and assessing medical 

conditions are not compromised. 

 

2.3.  Improved adaptive multi threshold segmentation 

Segmentation is utilized for pixel-level classification in an image to assign appropriate categories to 

each pixel [30]. Image segmentation is performed to decompose an image into segments, grouping images in 

the process based on pixel characteristics. Image segmentation entails separating the background and 

foreground of an image based on shape or color similarities [31]. The image segmentation process is conducted 

to alleviate image complexity. In this study, the segmentation process employs an enhanced adaptive 

thresholding method known as improved adaptive multi-threshold (IAMT). Standard deviation intensity serves 

as a statistical measure describing the extent to which pixel intensities in the image are distributed or vary from 

the average pixel intensity value. Standard deviation indicates the level of variation or dispersion in pixel 

intensity data. The formula for calculating mean intensity is presented in (3), and the formula for calculating 

standard deviation intensity is expressed in (4).  

 

𝜇 =
∑ ℎ[𝑖]255

𝑖=0

𝑛
 (3) 

 

𝜎 = √
∑ (𝑖−𝜇)2∗ℎ[𝑖]255

𝑖=0

𝑛
 (4) 

 

Where μ represents mean intensity, h[i] denotes the image histogram, n signifies the total number of pixels, 

and σ corresponds to standard deviation intensity. Standard deviation intensity elucidates how extensively 

pixels in the image are dispersed around the mean value. A larger standard deviation value implies a greater 

variation in pixel intensities in the image. Conversely, a smaller standard deviation indicates that pixel 

intensities tend to exhibit less variation or consistency. Employing standard deviation assists in accommodating 

the existing intensity variations in the image, facilitating the adjustment of the threshold to the characteristic 

pixel intensity of the image. After computing the mean intensity and standard deviation intensity, the 

subsequent step involves determining the value of the intensity control factor interval. In this study, the value 

of the intensity control factor interval is automatically computed as half of the standard deviation intensity 

value. The formula for calculating the value of the intensity control factor interval is presented in (5). 

 

𝑘 =
𝜎

2
 (5) 

 

Where 𝑘 is the intensity control factor interval. Calculating the intensity control factor interval value as half of 

the standard deviation ensures an even distribution of intensity ranges among the threshold limits, aligning 
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with the desired number of threshold limits. An interval that is too large or too small can lead to suboptimal 

segmentation or the loss of crucial information in the image. σ represents standard deviation intensity. The 

results of calculating mean intensity and the intensity control factor interval are utilized to determine the 

optimal multi-threshold values in developing the IAMT segmentation. In multi-threshold development, more 

than two threshold values are employed to divide the pixel intensity range into several segments or levels. The 

formulas for IAMT are presented in (6) to (8). 

 

𝑇1 = 𝜇(𝑥) − (
1

2
) ∗ 𝑘 (6) 

 

𝑇2 = 𝜇(𝑥) + (
1

2
) ∗ 𝑘 (7) 

 

𝑔(𝑥) = {

0, 𝑓(𝑖, 𝑗) < 𝑇1

1, 𝑇1 ≤ 𝑓(𝑖, 𝑗) < 𝑇2

0, 𝑓(𝑖, 𝑗) ≥ 𝑇2

 (8) 

 

T1 is the first threshold value, T2 is the second threshold value, μ is the mean intensity used as a 

reference or midpoint to distinguish pixels considered as objects and background in the image. Pixels with 

intensities below the mean intensity are labeled as background, while pixels with intensities above the mean 

intensity are considered as objects. 𝑘 is the interval value used to divide the pixel intensity range into segments 

that correspond to the specified number of threshold limits. The intensity control factor interval is the distance 

between each threshold limit used to separate intensity levels. 𝑓(𝑖, 𝑗) is the input grayscale image, 𝑔(𝑥) is the 

binary output image. If the pixel value T1 is greater than the input grayscale image or if the pixel value T2 is 

less than or equal to the input grayscale image, the pixel value will be changed to 0. The pixel value will be 

changed to 1 if the pixel value of the grayscale is greater than or equal to T1 and the pixel value of the grayscale 

is less than T2.  

 

2.4.  Extraction 

The goal of image extraction is to reduce the dimensions of image data and extract essential features 

that can be used in identification [32]. The initial step in image extraction in this study is to divide the image. 

Divide image is a method to split the image into several parts or separate specific portions of the image. Divide 

image is performed to separate the image into 4 equal parts based on the multi-threshold results, where part 1 

is the bottom right part of the image, part 2 is the bottom left part of the image, part 3 is the top right part of 

the image, and part 4 is the top left part of the image. After dividing the image, the next step involves cleaning 

the border area using morphological operations on parts 3 and 4, while parts 1 and 2 are assigned a value of 0 

(black) as they are not the target area. After cleaning the border area, objects that are not the target are removed 

from parts 3 and 4 using filtering methods. The object identification process is the final stage of this research 

model, involving the labeling of each object and utilizing the region properties function (regionprops). 

Regionprops is employed to measure a set of properties for each labeled region in the label matrix. Regionprops 

can only detect objects with a white color as the foreground, having pixels with a value of 1, while the 

background is represented by pixels with a value of 0 for the black color. Major axis length represents the 

farthest distance from the centroid to the outermost pixel, while the minor axis length represents the closest 

distance from the centroid to the outermost pixel, thus obtaining the value. The representation of regions using 

the elliptical shape approach is presented in Figure 5. 

 

 

 
 

Figure 5. Region that representation using an elliptical shape approach 
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3. RESULTS AND DISCUSSION 

The test data for this research comprises 38 sagittal-view CT-scan images of the paranasal sinuses 

from a single patient with rhinosinusitis. Out of these 38 images, 7 slices were selected, indicating 

rhinosinusitis, specifically slices 15 to 21, based on the CT-scan. The input images are in JPG format, sized 

666×512, converted from DICOM-format images obtained from the CT-scan. The shape of the input image is 

presented in Figure 6. Figure 6 depicts the RGB image resulting from the sagittal-view CT-scan of the paranasal 

sinuses, serving as input images for rhinosinusitis identification. The RGB input image is converted into a 

grayscale image, followed by the image quality enhancement process using the CLAHE method, aiming to 

eliminate noise artifacts and enhance image intensity. The enhanced image process is displayed in Figure 7, 

where Figure 7(a) represents the grayscale image, and Figure 7(b) represents the image after the enhancement 

process. 

 

 

 

 

 
(a) 

 
(b) 

    

Figure 6. Input image  Figure 7. Enhancement process (a) grayscale image result and 

(b) CLAHE result 

 

 

Figure 7 represents the image resulting from the enhancement process using the CLAHE method, 

aimed at achieving better image quality. Changes in image quality can be observed in the altered pixel values, 

and the pixel value changes for image quality enhancement are presented in Table 1. Table 1 illustrates the 

changes in pixel intensity values between the grayscale image and the image enhanced using the CLAHE 

method. Following the enhancement process, cropping is performed to obtain an image with a better 

composition for a closer view of the object. The subsequent step involves reducing the image complexity to 

separate the background from the foreground using the IAMT segmentation method to automatically obtain 

multi-threshold values using (6) and (7). This process results in a binary image. If the pixel value T1 is greater 

than the input grayscale image or if the pixel value T2 is less than or equal to the input grayscale image, the 

pixel value will be changed to 0. The pixel value will be changed to 1 if the grayscale pixel value is greater 

than T1 and less than T2. The results of the IAMT segmentation process are presented in Table 2. The research 

results that we obtained during this research are better compared to the results of previous research that were 

compared from the mean-square error (MSE) [18] and peak signal-to-noise ratio (PSNR) [22] values. Table 2 

shows a comparison of the results of the MSE and PNSR test values of the current research with previous 

research. 

 

 

Table 1. Intensity value 
Grayscale image  Image enhancement with CLAHE 

1 42 89 124 153 200  7 43 88 132 159 200 

18 70 106 138 175 234  23 67 110 146 179 228 
42 88 121 154 208 255  42 86 129 160 206 255 

72 103 135 174 238 255  68 106 143 178 231 255 

91 118 154 206 253 255  90 126 161 205 248 255 
107 135 173 240 255 255  111 144 177 233 255 255 

119 149 201 255 255 255  127 157 201 255 255 255 

131 169 232 255 253 255  141 174 227 255 248 255 
146 189 255 255 255 255  154 192 255 255 255 255 

153 218 255 255 255 255  161 215 255 255 255 255 

169 248 255 255 255 255  175 240 255 255 255 255 
187 254 255 255 255 255  191 251 255 255 255 255 
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Table 2. The result of segmentation image using IAMT 

Slice Image of 

Cropping 

Results 

Adaptive Threshold Improved Adaptive Multi Threshold 

Image Result MSE 

Value 

PSNR 

Value 

Image Result MSE Value PSNR 

Value 

T1/T2 

Slice 

15 

 

 

57871.35 0.50617 

 

13844.696 6.718 6.718 

Slice 

16 

 

 

57683.43 0.52029 

 

15065.490 6.351 6.351 

Slice 

17 

 

 

57372.48 0.544 

 

15518.50 6.22 6.22 

Slice 
18 

 

 

57272.13 0.55137 

 

15880.40 6.12 6.12 

Slice 

19 

 

 

57222.97 0.56 

 

16996.93 5.83 5.83 

Slice 
20 

 

 

57058.09 0.57 

 

18516.8 5.46 5.46 

Slice 

21 

 

 

57022.39 0.57 

 

19644.23 5.2 5.2 

 

 

Table 2 illustrates the outcomes of the IAMT segmentation method development process, yielding a 

binary image. Each input image automatically acquires distinct multi-threshold values, precisely with 2 

threshold values. Subsequently, an object extraction process is conducted to automatically eliminate 

unnecessary objects in rhinosinusitis identification. The subsequent step involves calculating the rhinosinusitis 
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area from the extracted image by counting the intensity of pixels with a value of 1 (white), where each pixel 

corresponds to 0.24 mm. Pixels identified as rhinosinusitis have their values changed to red. The results of 

rhinosinusitis identification, extraction, and area calculation are displayed in Table 3. 

Table 3 presents the outcomes of rhinosinusitis identification and area calculation, achieved with an 

exceptionally high accuracy of 96.66%. The accuracy level is computed by dividing the number of images 

identified with rhinosinusitis by the total number of test images and multiplying the result by 100%. The 

accuracy calculation for rhinosinusitis identification employs the formula displayed in (9). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % =
∑ 𝑅ℎ𝑖𝑛𝑜𝑠𝑖𝑛𝑢𝑠𝑖𝑡𝑖𝑠

∑ 𝐷𝑎𝑡𝑎 𝑇𝑒𝑠𝑡𝑖𝑛𝑔
𝑥100% (9) 

 

The smallest rhinosinusitis size in this study is 0.05 cm2 on the right side, while the largest size is 

1.81 cm2. A greater rhinosinusitis size indicates a more severe identification of rhinosinusitis. The segmentation 

method proposed in this study can automatically identify rhinosinusitis objects and provide precise and 

accurate information on the rhinosinusitis area. This research introduces innovation in the image segmentation 

process in paranasal sinus CT-scans, making a significant contribution as an alternative solution in 

rhinosinusitis diagnosis. Additionally, the study ensures precision in decision-making for the treatment process 

of rhinosinusitis patients. 
 

 

Table 3. The result of identification, extraction, and rhinosinusitis area 

Slice 
Result of rhinosinusitis 

extraction 
Rhinosinusitis identification 

Pixel area Rhinosinusitis area (cm2) 

Left Right Left Right 

Slice 15 

  

297 20 0.71 0.05 

Slice 16 

  

315 157 0.76 0.38 

Slice 17 

  

249 322 0.60 0.77 

Slice 18 

  

215 419 0.52 1.01 

Slice 19 

  

281 390 0.67 0.94 

Slice 20 

  

651 292 1.56 0.70 

Slice 21 

  

753 230 1.81 0.55 
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4. CONCLUSION 

The development of the IAMT segmentation method for detecting rhinosinusitis provides precise and 

accurate identification with an accuracy rate of 96.66%. The advancement of segmentation methods in this 

research can maximize the performance of rhinosinusitis identification processes and deliver information about 

the rhinosinusitis area. The results of the proposed segmentation method development also contribute new 

insights into automatically calculating multi-threshold values in each patient's test image. Overall, this research 

makes a significant contribution to the medical field in making informed decisions for the subsequent treatment 

of rhinosinusitis.  
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