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 Falls pose a significant threat to unintentional injuries, particularly impacting 

the independence of older individuals. Existing detection methods suffer from 

drawbacks, including inaccuracies, wearer discomfort, complex setup, 

resource-intensive computation, and limitations in detecting falls outside a 

specific setting. In response, our innovative fall detection system integrates 

with a pneumatic solution, analyzing fundamental human activities like 

running, walking, and sitting, both indoors and outdoors. This approach 

combines wearable sensors with a vision-based solution, utilizing a smart belt 

with embedded accelerometer and gyroscope, alongside wall-installed 

cameras in a smart house. The system triggers an airbag and sends an 

emergency alarm upon fall detection. To achieve this, we propose FallMixer 

a lightweight deep learning model, combined with ‘you only look once’ 

version 8 (YOLOv8) algorithm, fine-tuned on a collected video dataset to 

enable real-time detection. We found that the models result in competitive 

performance, as demonstrated on SisFall, UCI human activity recognition 

(HAR), and mobile health (MHEALTH) datasets with a remarkable mean 

average precision. Subsequently, we assess the hardware performance of our 

solution on edge devices. 
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1. INTRODUCTION 

Human activity recognition (HAR) has emerged as a crucial area of research within ambient and 

context-aware computing [1], [2]. It has a substantial impact in different fields, such as intelligent surveillance 

systems [3], healthcare [4], [5], human-computer interaction [6], and eldercare assistance [7]. While HAR has 

broad applications, one crucial area where it plays a vital role is in fall detection for elderly persons. The 

detection of falls holds paramount importance, particularly for those aged 65 and above, as it represents a 

significant public health concern and stands as the leading cause of injury-related fatalities within this 

demographic. The implementation of real-time fall detection devices holds immense value, offering a means 

to promptly summon assistance and thereby preventing injuries. Additionally, such devices contribute to an 

enhanced quality of life for seniors and provide caregivers with greater help. HAR frameworks enable the 

detection, classification, and understanding of specific body movement or activity through data collected from 

diverse sensors. In literature researchers detect the activities through two main methods: vision-based, which 

analyzes video or image data captured by cameras, and wearable sensor-based, which leverages data from  

non-intrusive, embedded sensors in smart devices like smartphones and smartwatches. 

https://creativecommons.org/licenses/by-sa/4.0/
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However, building models that generalize well across various activities and sensors remains a 

challenging task. Human activity signals and images can significantly vary among individuals and even for the 

same individual performing an activity at separate times. Additionally, different activities may exhibit similar 

signal patterns, further complicating activity classification. Traditionally, researchers have used handcrafted 

feature extraction methods combined with supervised machine learning techniques like k-nearest neighbors 

(KNN) [8], support vector machines (SVM) [9], decision trees (DT) [10], and ensemble approaches for 

classification [11]. Nevertheless, these approaches require domain expertise, rigorous data pre-processing, and 

might lack flexibility due to the difficulty of establishing spatial and temporal relationships among handcrafted 

features. Recent deep learning techniques have gained popularity, especially in areas like natural language 

processing [12], image recognition and classification [13]. Precisely multilayer perceptron (MLP) mixers [14], 

a novel architecture that has attracted considerable interest in natural language processing and computer vision. 

In contrast to the popular transformer [15], that relies on self-attention mechanisms, MLP-mixers use MLPs 

for processing input data. This alternative approach provides several advantages, such as simplicity and 

computational efficiency, leading to faster training times and reduced memory consumption, which is suitable 

for internet of things (IoT) and edge devices. Given these promising characteristics, we investigate the 

deployment of this class of network for time series data, and their suitability for tasks involving long-range 

dependencies. 

We present a system design aimed at ensuring the safety of elderly individuals within their homes and 

minimizing the risk of injury in the event of a fall outdoors. To detect movements, we employ two types of 

sensors: accelerometers and gyroscopes. These sensors help interpret body motions and identify potential falls. 

In addition, we use cameras strategically installed on the walls. To accomplish this objective, we introduce 

FallMixer, a deep neural network designed to exploit sensory data and extract temporal features from it. For 

real-time fall detection, we utilized YOLOv8, a state-of-the-art object detection system. Where for training and 

testing we employed three datasets from wearable sensors, alongside a collected video dataset featuring 

instances of falls. To implement this solution, we propose embedding the system into a smart belt or smart 

jacket. This wearable device will help to detect pre-fall actions using the capabilities of FallMixer. In the event 

of a potential fall, the system can trigger the protection mechanism, such as deploying an airbag, to safeguard 

sensitive bones and minimize the risk of injury. The integration of visual detection further contributes to 

reducing false positives and negatives, ensuring the arrival of the alert to the medical personnel. 

In this research, our contribution lies in presenting a resilient approach for fall detection for elderly 

people within a household, leveraging deep learning algorithms. In contrast to prior studies that concentrate on 

single-modality detection, our novel approach adopts a dual-sensor strategy to augment detection capabilities. 

Our proposed algorithm exhibits the ability to identify a diverse range of actions, surpassing the performance 

of existing methodologies, particularly in fall detection. Additionally, we explore the practicality of 

implementing our approach on edge devices, highlighting its potential for real-world applications. 

The remainder of the paper unfolds in a structured manner. Section 2 provides an overview of 

methodologies proposed by other researchers in the field. The specifics of our proposed method are outlined 

in section 3. Section 4 presents the experimental setup, detailing the configuration and parameters used for 

evaluation. Results and discussions are comprehensively covered in section 5, and last, we conclude the paper. 

 

 

2. RELATED WORKS  

Several noteworthy studies have contributed to advancing the accuracy and efficiency of detecting 

falls and related activities. Sengül et al. [16] explored deep learning-based fall detection using smartwatches, 

with a primary emphasis on healthcare applications. Their method involved collecting gyroscope and 

accelerometer using a smartwatch, augmented by an interpolation technique. This approach highlighted 

efficacy in accurately identifying instances of falling. This augmentation technique has advanced the accuracy 

of bidirectional long short-term memory (Bi-LSTM) algorithm to reach 99%, collected data have submitted 

the creation of 38 features. In another work [17], a fall detection system, using optimized convolutional neural 

networks (CNN) and wearable IoT sensor data, was developed. Data from 14 individuals and six sensors were 

processed to extract distinctive features, which were then reduced using multilinear principal component 

analysis. An 8-layer, AlexNet-based CNN significantly advanced fall detection. Another approach, presented 

by Lee et al. [18], uses foot plantar pressure and acceleration data. Their innovative system effectively 

distinguished between various activities of daily living (ADL tasks) and diverse types of falls. By utilizing DTs 

and a threshold technique, the method achieved a 95% accuracy rate in recognizing fall activities at an average 

speed of 317 milliseconds. Luo et al. [19] introduced a binary convolutional network tailored for real-time 

HAR. Their focus on improving fall detection using wearable sensor data, particularly for mobile devices, led 

them to incorporate dilated convolutions to effectively capture features from time series data.  
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Wearables, being battery-operated with limited noninvasive applicability, have led other researchers 

to adopt a visual approach for fall detection. They investigate human posture estimation using various types of 

cameras. Interestingly, most of these studies use various types of CNN or YOLO algorithms for real-time 

detection. Hasan et al. [20] use a two-layer long short-term memory (LSTM) on video data, utilizing the 

OpenPose algorithm for 2D body pose estimation, and employing sequential frames for fall identification.  

Feng et al. [21] addressed challenges in complex environments for pedestrian detection, by integrating 

YOLOv3, Deep-Sort for object tracking, and VGG-16 with an attention-LSTM network for fall detection. This 

showcased adaptability in intricate scenarios. Fei et al. [22] approached fall detection by using the  

Flow-position Net model, combining optical flow and human pose data. Notably, their system demonstrated 

good accuracy on two open datasets URFD and Le2i, highlighting it is potential for reliable fall detection. 

Research by Kan et al. [23], the YOLO network undergoes modifications and enhancements in conjunction 

with other modules to attain a commendable mean average precision (mAP) and guides the development of a 

lightweight fall detection network.  

The preceding methodologies have primarily concentrated on fall detection through various sensor 

modalities but have not prioritized the anticipation of a fall event, initiating a warning signal in advance of a 

fall occurrence holds the potential for lifesaving interventions. Furthermore, a refined approach entails 

distinguishing between indoor and outdoor fall detection, enhancing the system’s resilience by considering the 

distinctive environmental attributes of each setting. Considering these considerations, we put forth our 

approach, which centers on the detection of falls through the integrated use of both wearable sensors and 

surveillance cameras. 

 

 

3. METHOD 

In this section, we present our approach for activity detection, with a specific focus on identifying 

falls. Leveraging wearable sensors seamlessly integrated into smartphones, our system promptly recognizes 

fall patterns, triggering an alert to initiate a protective mechanism. This mechanism takes the form of a belt 

airbag designed to safeguard vulnerable bones. Introducing FallMixer, a neural network, we evaluate its 

performance through implementation on a smartphone. The analysis could also be done on cloud servers to 

further enhance detection capabilities. We incorporate surveillance cameras tailored for smart home scenarios. 

Then employing YOLO [24], we train the model using a collected dataset, enabling it to effectively track and 

detect falls with precision. This comprehensive system not only leverages wearable technology but also 

integrates sophisticated camera-based surveillance, ensuring a robust and reliable approach to fall detection 

and protection. Figure 1 presents the details of the solution. 

 

 

 
 

Figure 1. Fall detection system in smart home using camera and wearable sensors 

 

 

3.1.  FallMixer architecture 

The proposed architecture presented in Figure 2 is inspired from the paper [25] we named it 

“FallMixer” it is designed to address the challenge of efficiently processing time series data, using lightweight 

operations. The model utilizes a combination of convolutional and mixer layers to extract relevant features and 

facilitate information flow. Architecture’s input: it is a one-dimensional time series data, which is reshaped to 
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make it compatible with convolutional layers. Like the original architecture we also used the patch embedding 

layer, specifically we applied a 2D convolution operation with a patch size equal to the kernel size, to capture 

local information from the input sequence. The output is then passed through a Gaussian error linear unit 

(GELU) activation function followed by batch normalization to introduce non-linearity and stabilize training. 

The core of the architecture is the FallMixer layer composed of a series of depthwise convolutional layers. 

Each FallMixer consists of three main components. 

Convolution layer that uses a depthwise convolution with a kernel size of two to identify spatial 

relationships between neighboring patches and to capture dependencies within local patches of the input 

sequence. Skip connection that keeps data from earlier layers in the model. This promotes information flow 

and reduces the vanishing gradient, which facilitates the model’s ability to pick up pertinent representations. 

Pointwise convolution that takes the output of the skip connection and passes it through a 1×1 convolutional 

layer to aggregate information and increases the model’s capacity to capture more complex patterns in the data. 

A global average pooling layer and a dense layer are used in the architecture’s output. 

 

 

 
 

Figure 2. The architecture of FallMixer used for activity recognition 

 

 

3.2.  Real time fall detection algorithm 

In this study, we utilize the YOLOv8 network, the latest iteration in the YOLO family of algorithms. 

The YOLOv8 model comprises four main network components: the neck-end for feature fusion, the backbone 

network for extracting image features, the input for data enhancement, and the decoupled header output, which 

separates the classification from the detection header. With numerous improvements built on the YOLOv5 

framework, YOLOv8 surpasses YOLOv5 in terms of speed and accuracy. Additionally, it provides a unified 

framework for training models that manage tasks such as image classification, object recognition, and instance 

segmentation. 

 

 

4. EXPERIMENT SETUP 

This section offers a comprehensive overview of the datasets and configurations utilized in the 

experiments conducted in this study. To evaluate our models across various settings, we selected four datasets, 

three publicly available and one collected by our team. Each dataset is distinguished by unique traits and 

environments. We provide detailed insights into the dataset partitioning training configurations employed in 

our study, aiming for reproducibility across all analyses. 

 

4.1.  Datasets description 
UCI HAR [26] dataset was gathered using an iPhone 6s placed in the front pocket of the participants. 

A total of 24 participants, including 10 women and 14 men, with diverse ages, weights, and heights, engaged 

in six activities across 15 trials under consistent environmental conditions. The activities performed were 

walking, jogging, sitting, standing, stairs down, and stairs up. Each accelerometer and gyroscope axis in the 

dataset contains 1,304,950 samples. The data was collected at a sampling rate of 50 Hz, resulting in a 

cumulative recording time of 435 minutes (about 7 and a half hours). Mobile health (MHEALTH) [27] dataset 

10 participants perform static and dynamic activities, captured using various sensors, including three 
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accelerometer sensors, an electrocardiogram sensor, two gyroscope sensors, and three magnetometer sensors. 

The position of all these sensors is on the left ankle, the chest, and the right wrist. MHEALTH encompasses 

twelve varied actions such as sitting, cycling, and climbing stairs. 

SisFall [28] selected for testing our model, the SisFall dataset sets itself apart from other publicly 

available datasets. It involves data from fifteen healthy, independent elderly individuals and outshines 

competitors with its inclusion of more participants, diverse activity types, and a larger number of recordings. 

Comprising 2,706 activities of daily living and 1,798 falls, this dataset addresses the scarcity of datasets 

realistically simulating activities and falls by elderly individuals in the domain of elderly fall detection research. 

Specifically, it introduces up to thirty-four activities (falls and activities of daily living) performed by thirty-

eight participants equipped with a wearable device fixed to their waist. The information for those three datasets 

is organized in Table 1 to facilitate a straightforward comparison. 

Video dataset in our visual approach, we collected a dataset sourced from YouTube and Kaggle, 

comprising various scenarios depicting individuals experiencing falls. It is important to highlight that this 

dataset is limited. To mitigate this limitation, we applied data augmentation techniques to expand the dataset’s 

diversity. The dataset was categorized into two distinct classes: fall and not fall. 

 

 

Table 1. Datasets recording details 
Variable Sensors Activities Frequency (Hz) Samples 

UCI HAR 2 6 50 10,299 

MHEALTH 3 12 50 120 

SisFall 2 2 200 4,505 used 

 

 

4.2.  Data partitioning 

We approached dataset partitioning uniformly. Only the UCI dataset had a pre-defined split into 

training and test sets, and we maintained consistent test partitions for comparative analysis. Our preprocessing 

methodology exclusively involved the use of raw signals post-down sampling, distinguishing our approach 

from the rest of studies on UCI HAR. These studies often either applied their own preprocessing techniques to 

raw data or utilized provided hand-crafted features. Hand-crafted features were employed for the SisFall 

dataset, and we adopted the same setup for the MHEALTH dataset. Multiple data transformations were applied 

to enhance the quality of the image dataset. Across all datasets, we adhered to a standardized split of 30% for 

testing and 70% for training. 

 

 

5. RESULTS AND DISCUSSION 

5.1.  Evaluation measures 

We provide a concise overview of the evaluation criteria employed in this study. Precision: is 

presented as the proportion of correctly predicted positive observations relative to the total predicted positive 

observations. It is calculated using the terms true positive (TP) and false positive (FP). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1) 

 

Recall (sensitivity): recall, also referred to as sensitivity, is the ratio of correctly identified positive observations 

to the total number of observations in the corresponding actual class. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

 

F1 score: it serves as a harmonic mean of both ’precision’ and ’recall.’ Consequently, it incorporates 

information about false positives and false negatives to yield a more comprehensive assessment. While not as 

straightforward as accuracy, F1 is often more informative, especially in scenarios where there is an imbalance 

in class distribution. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (3) 

 

We also employ mAP, a metric that offers a more comprehensive assessment than accuracy alone for evaluating 

a model’s precision and recall trade-off in object detection tasks. 
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5.2.  Classification results 

Training configuration in our learning environment, we set up the training process for the FallMixer 

model, which is tailored for a classification task. We trained the model using the Adam optimizer, setting the 

learning rate to 0.001, and employed the categorical cross-entropy loss function. To mitigate overfitting, we 

incorporated early stopping with a patience of 500 epochs. Additionally, a callback was implemented to save 

the optimal model based on validation accuracy. The training process extends up to a maximum of 1,000 

epochs, utilizing a batch size of 512. This setup ensures the model’s efficient learning and helps us achieve 

accurate classification results, making it suitable for handling sequential data. During the experiments, we 

thoroughly evaluated the FallMixer model with varying configurations, exploring different numbers of filters 

and depths while keeping the kernel size and patch size constant. This systematic analysis enabled us to identify 

the optimal settings for the number of filters and depth, maximizing the model’s feature capturing capabilities 

and achieving accurate classifications. By maintaining constant kernel and patch size, we ensured a fair 

comparison and focused on understanding the impact of other hyperparameters on performance. In subjecting 

our work to a comparative analysis with various approaches, all adhering to the same data splitting 

configuration, a notable observation becomes known, FallMixer emerges as particularly noteworthy for 

attaining superior accuracy. Table 2 highlights the performance of different architectures, and amidst them. 

The compared methodologies in the table employed methods like fusion of LSTM and CNN architectures or 

ensemble methods. However, consistently, FallMixer exhibits enhanced performance in terms of accuracy. 

This outcome not only underscores the efficacy of our approach. This significance is further exemplified in the 

context of the MHEALTH dataset, as illustrated in Table 3. Here, the utilization of only an accelerometer with 

FallMixer demonstrates commendable activity detection capabilities, and underscoring the versatility and 

effectiveness of FallMixer, particularly in scenarios involving diverse combinations of wearable sensors. 

 

 

Table 2. Previous works on UCI HAR 
Architecture Accuracy 

MobileHART [29] 97.67% 

FallMixer  97.56% 

ViT [29] 93.66% 

CNN LSTM [30] 92.79%±0.34 

 

 

Table 3. Previous works on MHEALTH dataset 
Architecture FallMixer EkVN [31] MEMM [32] 

Accuracy  97.71% 67%  90.91% 

 

 

Fall detection results: Following the comprehensive testing of FallMixer across various activities, our 

focus shifted to evaluating its performance using the SisFall dataset with a specific emphasis on the detection 

of a singular activity, namely falls in daily living. The results show that it can detect the fall with an accuracy 

close to 99%. The confusion matrix is presented in Table 4. 

 

 

Table 4. Confusion matrix of SisFall dataset 
 Predicted fall Predicted ADL 

True fall  556 0 

True ADL 0 345 

 

 

5.3.  Hardware performance 

We chose the Tensorflow Lite model maker library for its user-friendly interface in mobile model 

development, seamless integration with TensorFlow templates, and the ability to create efficient, lightweight 

TFLite models suitable for mobile deployment. We moved our experimental models to an iPhone 11 Pro Max 

with a Hexa-core CPU, 4 GB RAM, and an Apple A13 Bionic Chipset (7 nm+) with a 4-core graphics Apple 

GPU. Over 1,000 inferences were performed using four CPU threads, the inferences were exclusively 

conducted on the device’s CPU, and multiple measures were taken during the process. 

Analysis: the outcomes of the experiments are detailed in Table 5. It highlights a substantial decrease 

in the average inference time for FallMixer in comparison to ViT and HART, suggesting its superior efficiency 

in making predictions on the device. While our Model exhibits a higher memory footprint than HART but a 

lower one than ViT, it features the smallest model size, indicating a reduced need for storage space. This proves 
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advantageous, particularly for devices with limited storage capacity. However, the optimal architecture choice 

depends on specific application requirements, considering factors like available memory and the desired 

balance between speed and model complexity. 

 

 

Table 5. Inferential duration and memory usage throughout 1000 inferences on the device 
Network Average inference time (ms) Memory (MB) Model size (MB) 

ViT [29] 8.213±1.518 32.07 15.22 

HART [29] 5.376±1.104 12.74 5.9 

Our model 2.46 (mean) 25.5 3 

 

 

5.4.  Fall detection using cameras 

By utilizing YOLO’s detection capabilities and fine-tuning it on our dataset, the obtained precision is 

equal to 97.2%, the recall is 82.6% and the mAP is equal to 89.6%. Human falls are shown in Figure 3. In the 

image, we observe successful fall detection, with the bounding box effectively encompassing the individual. 

This outcome is encouraging, particularly given the use of a modest dataset, and a limited training time. 

 

 

 
 

Figure 2. Indoor and outdoor fall detection using surveillance cameras and YOLO algorithm 

 

 

5.5.  Discussion 

This study introduces a novel approach to fall detection by integrating wearable sensors with 

accelerometers and gyroscopes, along with visual sensors utilizing cameras. By combining these two 

modalities, the proposed algorithms achieved remarkable accuracy rates on various datasets, surpassing 

previous methods. Notably, FallMixer attained 97.56% accuracy on the UCI HAR dataset, 97.71% on 

MHEALTH, and 99% on Sisfall dataset, while Yolov8 demonstrated 97.2% precision on a custom fall video 

dataset. This advancement outperforms traditional techniques like LSTM and convolution, as well as 

transformer-based algorithms, showcasing the potential for attention-free architectures in extracting temporal 

properties from sensor data. Despite these promising results, further research is essential to optimize the 

integration of visual and wearable sensor data, address implementation challenges such as incorporating airbag 

protection for bones and explore deployment options in both device and cloud environments. These findings 

suggest exciting prospects for enhancing detection accuracy and reliability using hybrid sensing, particularly 

in smart homes and daily living activity monitoring for older adults. 

 

 

6. CONCLUSION 

This investigation has focused on the development of a fall detection system tailored to the specific 

needs of senior citizens, capable of being deployed in both indoor and outdoor settings. The proposed network 

can detect movements, particularly falls, by utilizing sensors built into smartphones or other IoT devices. The 

use of a video-based approach enhanced the detection of the fall, while also providing the ability to monitor 

and analyze various other movements, promoting a more active lifestyle. The proposed FallMixer model 

showcases a significant level of reliability and accuracy in recognizing basic movements like walking and 

sitting. It achieves an accuracy of 97.71% on MHEALTH and 97.67% on UCI HAR. Moreover, it reaches a 

99% accuracy in detecting falls in the Sisfall dataset, utilizing information from accelerometer and gyroscope 

sensors. The incorporation of YOLOv8 finetuned aids in achieving a precision of 97.2% for detecting two 

classes, namely Fall and NoFall, on a collected video dataset. In the future, we are thinking about improving 

the system by adding a belt with an airbag that is intended to shield important bones in the event of a fall.  
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Real-time detection could be performed using a Raspberry Pi with a camera, and the sensors could be integrated 

into a smartwatch. This allows the suggested system to be reliably deployed in a smart home context, reducing 

worries among older residents while also improving their safety and well-being. 
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