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 Lane markers, or road markers, are the painted lines on a roadway that 

separate different lanes of traffic. Lane markers guide drivers and ensure 

orderly vehicle flow. They are essential for advanced driver assistance 

systems (ADAS), providing reference points for vehicle positioning on the 

road. These markers enable ADAS to give warnings, assistance, and 

automation features that enhance driver safety and convenience. However, 

unpredictable illumination, such as a foggy environment, can suppress marker 

visibility, impacting ADAS's performance. Deep learning-based methods are 

well-known for their superiority in handling various haze patterns. This paper 

presents a residual network (ResNet)-based deep learning model to improve 

road image clarity impacted by fog. The residual neural network dehaze model 

(RNN-D) utilises a joint loss function to produce haze-free images with 

improved lighting conditions and enhanced details. The model was trained, 

validated, and fine-tuned using hazy and corresponding non-hazy datasets to 

ensure that the model is quantitatively superior in the peak signal-to-noise 

ratio (PSNR) and the structural similarity index measure (SSIM). RNN-D 

achieved an average PSNR of 27.98 and SSIM of 0.8 on multiple open-

sourced datasets. The proposed algorithm's superior performance and visually 

appealing results make it a powerful tool for real-world image dehazing 

applications. 
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1. INTRODUCTION 

Natural atmospheric phenomena such as fog, haze, and smog impact the quality and visibility of road 

image features, especially on the lane marker information. Marker information is critical for accurate and 

precise classification of lane markers to improve the performance of the advanced driver assistance system 

(ADAS) [1]. As a result, developing effective and robust dehazing techniques has become critical to enhancing 

image quality in real-world scenarios. Traditional dehazing methods like contrast stretching [2], guided 

filtering [3], and dark channel priors (DCP) [4] are pioneering approaches towards image dehazing that 

accelerate the development of dehazing methods. However, these methods are rigid and only applicable to 

certain levels of fog, which are not practical for real-world scenarios with diverse haze patterns. These 

limitations have prompted the exploration of deep learning-based approaches, which have shown significant 

improvements in image dehazing [5], [6]. Residual neural networks (RNN) are one of the deep learning models 

popular for machine vision applications such as segmentation, object identification, and image classification. 

https://creativecommons.org/licenses/by-sa/4.0/
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Their ability to learn complex features with rapid training through skip connection makes them one of the 

competitive methodologies in recent dehazing techniques [7]. Leveraging the computational efficiency of 

residual network (ResNet), this paper proposes a ResNet-based dehazing methodology using atmospheric 

scattering estimation without explicit transmission map and atmospheric light estimation, which has been a 

prominent methodology in past studies. This approach demonstrates a significant improvement in peak  

signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) compared to state-of-the-art 

dehazing techniques on various haze patterns while maintaining the fine details of the original scene. The main 

contributions of this study are summarised as follows: i) novel ResNet-based dehazing methodology using the 

atmospheric scattering model (ASM) without the need to compute the transmission map and atmospheric light 

separately; and ii) validation and refinement of the loss function for enhancing the PSNR and SSIM of dehazed 

images. 

The remainder of this paper is organised as follows. In section 2, related work on image dehazing 

techniques is reviewed. Section 3 presents the proposed ResNet-based dehazing algorithm. Section 4 details 

the experimental setup and evaluation of the method. Finally, section 5 concludes the paper and discusses 

potential future work. 

 

 

2. RELATED WORK 

There are two primary approaches to image dehazing: classical and deep-learning-based. Classical 

methods, such as the DCP [4], detect low-intensity pixels in haze-free areas and employ a haze imaging model 

to estimate the thickness of the haze and recover high-quality haze-free images. However, one limitation of 

DCP is the presence of halo artefacts around high-contrast edges in dehazed images, which can negatively 

affect overall visual quality. To address this issue, a guided filter [3] was proposed that applies local linear 

models to filter an image based on the content of the guidance image, whether it is the input image itself or a 

different image. The guided filter effectively performs edge-preserving smoothing, particularly near the edges, 

thereby mitigating halo artefacts. Additionally, contrast stretching [8] and histogram equalisation [9] have been 

proposed for the contrast enhancement of images due to haze removal by DCP. Contrast stretching aims to 

enhance contrast by extending the range of intensity values. On the other hand, histogram equalisation focuses 

on reshaping intensity value distributions for a more uniform spread. However, it is essential to acknowledge 

that applying histogram equalisation can introduce the risk of exacerbating noise and artefacts, mainly when 

dealing with foggy images subjected to illumination. Meng et al. [10] presented a methodology that efficiently 

combines boundary constraints and contextual regularisation to address these challenges. This approach 

effectively harnesses the synergy between boundary information and contextual coherence to achieve improved 

results in image dehazing. Li and Zheng [11] discussed an edge-based approach to single-image haze removal 

using adaptive contrast enhancement. This method utilises an edge-preserving filter to enhance the image’s 

contrast while preserving edge information. The enhancement strength is adaptively adjusted based on the local 

contrast level to achieve improved results. Despite these efforts, traditional techniques often struggle to 

consistently generate high-quality haze-free images due to their limitations in dealing with diverse and 

challenging haze patterns. 

Recent advances in deep-learning-based approaches have led to significant improvements in image 

dehazing, making them a powerful alternative for various applications. DehazeNet [5] is a groundbreaking 

deep learning-based approach that estimates atmospheric light and haze transmission maps from hazy images. 

However, a potential disadvantage of DehazeNet is the need for a refinement process to enhance the accuracy 

of the transmission map, which could add computational complexity. Building on the success of DehazeNet, 

Ren et al. [12] proposed a multi-scale convolutional neural network (CNN) that captures features at various 

levels of detail. This strategy effectively captures local and global contextual information, but it may still suffer 

from some loss of fine details due to the fixed receptive field sizes of convolutional filters. Denoising 

convolutional neural networks (DnCNN)-enhance [13] utilises residual learning and batch normalisation to 

enhance image optimisation. While this method achieves state-of-the-art results for various image restoration 

tasks, it might require substantial computational resources for training due to its deep network architecture. 

All-in-one dehazing network (AOD-Net) [6] is a comprehensive dehazing network that directly learns the 

mapping from hazy to haze-free images in a single step. The advantage of AOD-Net is its ability to eliminate 

the explicit calculation of the transmission map and atmospheric light, simplifying the dehazing process. 

However, a limitation of AOD-Net might be its reliance on large-scale datasets for training, which could be 

challenging to acquire in some cases. GridDehazeNet [14] leverages a grid structure and multi-scale data for 

enhanced dehazing performance. While this approach effectively handles complex haze patterns, it may still 

struggle with thick or dense scenes. Gated fusion network (GFN) [15] and its adaptive fusion of multi-scale 

features through gating mechanisms effectively emphasise informative features for improved dehazing 

performance. However, one potential limitation of this method is that the gating mechanism might require 
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careful tuning and might not generalise optimally across all hazy scenes. Kim et al. [16] presented a spatially 

adaptive atmospheric point-spread function (APSF) technique for dehazing road scene images. While this 

approach is practical for road scenes, it might face challenges in dealing with more diverse and complex natural 

scenes. The advantages of the new methods, such as AOD-Net and GFN, over past methods like DehazeNet 

and multi-scale CNN lie in their ability to handle haze removal in a single step without explicitly estimating 

transmission maps and atmospheric light. This streamlined approach simplifies the dehazing process and 

reduces computational complexity. Additionally, these newer methods incorporate adaptive feature fusion and 

gating mechanisms, enabling them to capture informative features more effectively and improve dehazing 

performance. In the streamline of the CNN network, Meng et al. [17] proposed a two-stream CNN or single-

image dehazing. This network architecture comprises a spatial information feature stream and a high-level 

semantic feature stream. The spatial information feature stream preserves intricate details of the dehazed image, 

while the high-level semantic feature stream captures multi-scale structural features. An auxiliary module focused 

on spatial information is integrated between the feature streams. This module employs an attention mechanism to 

unify diverse information types, progressively restoring image clarity with semantic information. A parallel 

residual module enhances haze discrimination by dehazing feature differences across stages. The advancements 

in deep learning-based techniques have shown great promise in addressing complex haze patterns and 

significantly improving image dehazing results. However, it is essential to consider each method’s specific 

requirements and limitations when applying them in different real-world scenarios. 

ResNet [7] have gained popularity in various computer vision tasks, including image dehazing, due 

to their effective deep feature learning capabilities and ability to mitigate the vanishing gradient problem.  

Zhou et al. [18] proposed a ResNet-based model called a multi-scale residual network (MSRN) for single-image 

dehazing, which integrates multi-scale features from different network layers to capture haze distribution and 

scene details effectively. The model outperformed previous state-of-the-art methods in both quantitative and 

qualitative evaluations. Yi et al. [19] presented a dual residual network for single-image dehazing that combines 

separate residual networks to estimate transmission maps and atmospheric light. By utilising a joint loss function 

considering both transmission and atmospheric light estimations, DR-ResNet achieves improved dehazing 

performance. ResNet-based model known as the cascaded residual dense network (CRDN) [20] employs a 

cascaded structure to refine the dehazed result iteratively. These ResNet-based approaches showcase the 

versatility and effectiveness of residual learning in image dehazing tasks, adapting to different haze patterns and 

effectively removing haze while preserving scene details. In the realm of single-image dehazing, a prominent 

challenge in low-level computer vision, recent developments have introduced innovative approaches to address 

the complexities of the problem. Pyramid attention residual feature extraction network (PARFE-Net) [21] model 

combines a feature pyramid network to capture diverse image features across different scales and an  

attention-based resblock that strategically enhances crucial areas, improving output image quality. Research by 

Jiang et al. [22] is an end-to-end trainable, densely connected residual spatial and channel attention network that 

eliminates the need for explicit estimation of atmospheric parameters and employs a unique residual attention 

module to dynamically adjust feature weights, effectively focusing on regions of importance. Wang et al. [23] 

addresses domain shift issues between synthetic and real-world hazy images through the twofold multi-scale 

generative adversarial network (TMS-GAN) framework. This dual-stage training scheme comprises a  

haze-generation generative adversarial network (HgGAN) and a haze-removal generative adversarial network 

(HrGAN) working cooperatively to generate and remove haze, aided by structural advancements like a haze 

residual map and a multi-attention progressive fusion module (MAPFM) for effective feature fusion. These 

innovative approaches collectively push the boundaries of single-image dehazing, showcasing promising results 

and advancements over existing techniques. 

With the increasing dehazing methods integrated with robust base networks such as CNN and ResNet, 

the end-to-end architecture with increased accuracy and less computation still has a high potential to tackle 

various haze patterns. This technique is more practical in real-world scenarios, requiring minimal time to 

process the hazy image and output high-quality dehaze images to yield better results and contribute to 

autonomous vehicles and ADAS’s safety and efficiency. 

 

 

3. METHOD 

Hazy images often suffer colour deviation and low contrast due to selective absorption and light 

scattering, whose degradation is generally described by an ASM. In (1) represents the mathematical expression 

for the ASM. 
 

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)) (1) 

 

Where, I(x) represents the observed hazy image, 𝐽(𝑥) represents the scene radiance or “clean image” required 

to recover, 𝐴 represents the global atmospheric light, and 𝑡(𝑥) represents the transmission map. The 
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transmission map plays a crucial role in ASM. It determines how much light is attenuated and scattered when 

it travels through a hazy medium. In equation form, the transmission map can be expressed as (2): 

 

𝑡(𝑥) =  𝑒−𝛽𝑑(𝑥) (2) 

 

Where 𝛽 represents the scattering coefficient of the atmosphere, and 𝑑(𝑥) represents the distance between the 

object and the camera. The ASM is a fundamental concept used to understand hazy image formation and is 

commonly employed in image restoration and enhancement. The clean image 𝐽(𝑥) can be obtained from the 

hazy image 𝐼(𝑥) using the transmission map 𝑡(𝑥) and atmospheric light 𝐴 according to (3) [6]: 

 

𝐽(𝑥) =
1

𝑡(𝑥)
𝐼(𝑥) − 𝐴

1

𝑡(𝑥)
+ 𝐴 (3) 

 

The algorithm offers a significant advantage by minimising the reconstruction error 𝐾(𝑥) directly on 

the clean image 𝐽(𝑥), without the need for separate estimation of the transmission map t(x) and atmospheric 

light 𝐴. By combining the estimation of 𝑡(𝑥) and 𝐴, they effectively reduce the reconstruction error at the pixel 

level of the image. This was accomplished using (4): 

 

𝐽(𝑥) = 𝐾(𝑥)𝐼(𝑥) + 𝐾(𝑥) + 𝑏 (4) 

 

where 

 

𝐾(𝑥) =
1

𝑡(𝑥)
(𝐼(𝑥)−𝐴)+(𝐴−𝑏)

𝐼(𝑥)−1
 (5) 

 

𝑏 represents a constant bias term in the algorithm. This term plays a role in adjusting the reconstruction error, 

contributing to the overall accuracy of the dehazing process. The joint estimation process compensates for 

inaccuracies in other hyperparameters, such as gamma correction, enhancing overall image quality. 

The ResNet architecture was chosen due to its ability to train deep networks by alleviating the 

vanishing gradient problem. The network is trained using the Adam optimiser for ten epochs, with a learning 

rate 1e-4. The batch size is set to 8. The Adam optimiser, short for adaptive moment estimation, has become a 

preferred choice in deep learning due to it is distinct advantages. At it is core, Adam seamlessly combines the 

strengths of two popular extensions of stochastic gradient descent: momentum and root mean square 

propagation (RMSprop). While momentum leverages past gradients to smooth out the update process, 

RMSprop dynamically adjusts the learning rate based on recent gradient magnitudes. This blend results in  

per-parameter adaptive learning rates, making Adam particularly effective for problems with sparse gradients, 

which is standard in computer vision. Another pivotal feature of Adam is its bias-correction mechanism, which 

corrects the initial zero bias in its moving averages, ensuring a more accurate convergence.  

The ResNet architecture is based on its unique residual block structure. Each block consists of two 

convolutional layers, followed by batch normalisation and rectified linear unit (ReLU) activation. The first 

layer uses a 1×1 kernel with stride s, while the second layer uses a 3x3 kernel with a stride of 1. The output is 

augmented by an integral shortcut connection, which includes a 1×1 convolutional layer aligned with the 

block’s filter count and batch normalisation. This design allows the network to learn identity functions, 

preventing performance degradation when adding layers. The network starts with a 7×7 kernel, stride 2, and a 

2D convolutional layer, followed by batch normalisation and ReLU activation. A 3×3 kernel follows this, stride 

two max pooling. Subsequent stages consist of multiple residual blocks, increasing the filter count while 

reducing spatial dimensions. After each stage, the filter count doubles while the dimensions halve. The network 

reverses the spatial reduction using transpose convolutional layers for upsampling, followed by batch 

normalisation and ReLU activation. The number of filters in these layers decreases similarly to the initial 

stages. The final layer is a 3-filter convolutional layer that matches the input image channels with batch 

normalisation. A specific step for haze removal combines the output of the final layer with the original input, 

subtracting the estimated haze from the hazy image to restore clarity.  

The objective function for training the network is the mean squared error (MSE) between the dehazed 

output image and the corresponding ground-truth clear image. The output images are resized to match the size 

of the ground truth image before computing the MSE. The Adam optimisation algorithm is used to minimise 

the loss. MSE is commonly used for regression tasks due to it is simplicity, emphasis on more significant errors, 

and smooth gradient properties, which make it suitable for optimisation. In applications like image haze 

removal, the goal is to minimise the deviation between the dehazed output and the precise reference image. 

MSE naturally quantifies this deviation by calculating the average squared difference between the two. It is 
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penalisation of more significant errors ensures that the model aims for precision in haze removal, which is 

crucial for image clarity. The MSE equation is as (6): 

 

𝑀𝑆𝐸 =
∑ (𝑦𝑖

𝑛
𝑖=1 − 𝑦̂𝑖)2

𝑛
 (6) 

 

To address the issue of exploding gradients often encountered in deep networks, the paper 

implemented gradient clipping by limiting the L2 norm of the gradients to 0.1 after computation. After training 

for ten epochs, the residual neural network dehaze (RNN-D) processed hazy images and generated results from 

its final layer. The network consisted of 101 layers with 8,911,369 parameters and was customised to handle 

specific haze characteristics. Unlike generic architectures, the tailored layers effectively addressed the impact 

of haze on contrast, colour, and detail. By utilising residual blocks, the network learned intricate representations 

while preserving important input information through skip connections, which aided in recovering fine details. 

Upsampling using transpose convolutional layers retained crucial spatial information necessary to restore 

original textures and details obscured by haze. The architecture of the RNN-D is shown in Figure 1. 

 

 

 
 

Figure 1. ResNet-based dehazing architecture with k-estimation for improved image clarity 
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4. RESULTS AND DISCUSSION 

Access to high-quality training data is crucial for effective training models and achieving robust and 

accurate dehazing results [22]. This study utilises the NYU2 dataset to overcome this challenge for training 

purposes. The NYU2 dataset provides precise training data, allowing the model to learn effectively and produce 

enhanced results in image dehazing tasks [19], [24]. The training set consists of 27,256 images from the NYU2 

dataset, while the test set includes 3,170 non-overlapping images. These datasets cover diverse indoor scenes 

with varying levels of haze. However, it is essential to note that the NYU2 dataset primarily focuses on indoor 

scenes. When these models are tested on outdoor datasets, such as those containing roads, accuracy may 

decrease due to the domain shift between indoor and outdoor images. Outdoor images often exhibit different 

lighting conditions and atmospheric effects compared to the indoor dataset, impacting the model's performance. 

The training sets were expanded to include the RESIDE dataset to address this limitation and improve the 

model’s adaptability to a broader range of environments [25]. The RESIDE dataset provides a more diverse set 

of images for training, specifically the outdoor training set (OTS), which consists of 72,135 hazy and 

corresponding haze-free images. It was compared to eight state-of-the-art methods using 49 clean images 

augmented with synthetic haze to evaluate the method’s performance. To ensure a fair comparison, 1,400 

training images from the NYU2 dataset were excluded. The evaluation utilised two standard metrics: SSIM 

and PSNR [26]. 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10  
𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑀𝑎𝑥 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑃𝑖𝑥𝑒𝑙

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟
  (7) 

 

𝑆𝑆𝐼𝑀 (𝐷𝐻, 𝐺𝑇) =
(2𝜇𝐷𝐻𝜇𝐺𝑇+𝐾1)(2𝜎𝐷𝐻,𝐺𝑇+𝐾2)

(𝜇𝐷𝐻
2 +𝜇𝐺𝑇

2 + 𝐾1)(𝜎𝐷𝐻
2 +𝜎𝐺𝑇

2 + 𝐾2)
  (8) 

 

During the evaluation, three prior-based methods [4], [10], [27] and five learning-based methods [5], 

[6], [12], [15], [28] were considered for comparison. The first baseline approach, DCP, estimates a haze-free 

image using the local minimum statistics in the input image’s haze-relevant channel. Boundary-constrained 

context regularisation (BCCR) combines contextual information and gradients to estimate the transmission map. 

The nonlocal image dehazing (NLD) algorithm considers nonlocal self-similarity and texture details during 

dehazing. Among the learning-based methods, color attenuation prior (CAP) employs a linear model based on 

the assumption of colour consistency across different regions. DehazeNet and multi-scale convolutional neural 

network (MSCNN) are CNN-based methods that learn the mapping between hazy inputs and their transmission. 

AOD-Net integrates transmission and atmospheric light into a new variable for haze-free image estimation. GFN 

uses a fusion-based strategy that incorporates white balance (WB), contrast enhancement (CE), and gamma 

correction (GC) to derive confidence maps. These maps are then used to blend information and preserve regions 

with improved visibility, resulting in the final dehazed image. A comparative analysis of various dehazing 

techniques, including prior-based methods and learning-based methods, was conducted, and compared with 

RNN-D. The results showed that prior-based methods tend to overestimate the haze thickness, leading to darker, 

dehazed images with colour distortions in certain regions. Although CAP, DehazeNet, MSCNN, and AOD-Net 

produced results closer to the ground truth, residual haze remained in the dehazed images. On the other hand, 

the RNN-D approach and GFN produced dehazed images that closely resembled the ground truth and 

demonstrated superior performance. The qualitative analysis is shown in Figure 2. 

Based on the quantitative analysis in Table 1, RNN-D outperformed the other methods in PSNR 

values, indicating higher image quality. The method effectively reduces haze, resulting in a higher PSNR and 

the production of dehazed images that closely align with the ground truth. However, it is important to note that 

the approach may not consistently outperform other methods in terms of SSIM for all fog levels. This could be 

due to limitations in capturing structural information. SSIM measures structural similarity and considers 

luminance, contrast, and structure. RNN-D may be less effective in preserving structural information, leading 

to lower SSIM values at certain fog levels. Nevertheless, the approach generates visually appealing dehazed 

images with fewer colour distortions and demonstrates superior image quality based on PSNR values. This 

effectively reduces haze, producing high-quality dehazed images that closely match the ground truth. 

The performance of RNN-D was further evaluated on the RESIDE dataset, which includes indoor and 

outdoor images with four state-of-the-art image dehazing algorithms (DCP, AOD-Net, DehazeNet, and GFN). 

Figure 3 visually compares the algorithms for indoor and outdoor scenes. DCP exhibits significant colour 

distortion and loss of detail, while AOD-Net fails to obliterate haze and produces low-brightness images. 

DehazeNet tends to overcompensate for brightness relative to the ground truth. In contrast, RNN-D 

demonstrates remarkable accuracy in recovering details, particularly in row 4, where it successfully restores 

the towers in the depth of the image. The results obtained by the other algorithms are unsatisfactory in 

comparison, highlighting the superior performance of RNN-D in terms of realistic image details and colour 
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fidelity. Table 2 summarises the PSNR and SSIM for indoor and outdoor scenes. RNN-D demonstrates superior 

performance, achieving significantly higher PSNR values than the other methods. Specifically, it achieves 

PSNR values of 28.87 and 28.39 for indoor and outdoor scenes, respectively, surpassing the results of the other 

algorithms. In conclusion, RNN-D outperforms state-of-the-art dehazing algorithms quantitatively and 

qualitatively, restoring clear and natural images from hazy scenes.  
 
 

           
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) 

 

Figure 2. The dehazed results on the synthetic dataset (a) hazy input, (b) DCP [4], (c) BCCR [10],  

(d) NLD [27], (e) CAP [28], (f) MSCNN [12], (g) Dehaze Net [5], (h)AOD-Net [6], (i) GFN [15],  

(j) RNN-D, and (k) ground truths 
 

 

Table 1. Average PSNR and SSIM values of dehazed results on NYU2 dataset 
Evaluation PSNR/SSIM 

Papers DCP [4] BCCR 

[10] 

NLD [27] CAP [28] MSCNN 

[12] 

DehazeNet 

[5] 

AOD-Net 

[6] 

GFN(G) 

[15] 

Proposed 

Light 18.74/0.77 17.72/0.76 18.61/0.71 21.92/0.83 22.34/0.82 24.87/0.84 22.64/0.85 24.78/0.85 27.97/0.85 

Medium 18.68/0.77 17.54/0.75 18.47/0.70 21.40/0.82 21.21/0.80 23.37/0.83 21.33/0.84 23.68/0.84 27.96/0.78 

Heavy 18.67/0.77 17.43/0.75 18.21/0.70 20.21/0.80 20.51/0.79 21.98/0.82 20.24/0.81 22.32/0.83 27.98/0.80 

Random 18.58/0.77 17.35/0.75 18.28/0.71 19.99/0.78 20.01/0.78 20.97/0.80 19.36/0.78 22.41/0.81 28.00/0.77 

 
 

       
(a) (b) (c) (d) (e) (f) (g) 

 

Figure 3. Indoor and outdoor results in SOTS: (a) hazy input, (b) DCP [4], (c) AOD-Net [6],  

(d) DehazeNet [5], (e) GFN [16], (f) RNN-D, and (g) ground truth 
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Table 2. Quantitative comparisons of SOTS for different methods 
Methods Indoor Outdoor 

PSNR SSIM PSNR SSIM 

DCP [4] 16.62 0.82 19.13 0.81 

AOD-Net [6] 19.06 0.85 20.29 0.88 

DehazeNet [5] 21.14 0.85 22.46 0.85 

GFN [15] 22.30 0.88 21.55 0.84 
RNN-D 28.87 0.83 28.39 0.82 

 

 

Since the developed model performed well in the indoor and outdoor datasets, it was evaluated for its 

robustness in road datasets from the Frida and Frida 2 Datasets. These datasets contain a diverse range of road 

images with different haze levels, allowing for a comprehensive assessment of the method's effectiveness under 

various conditions and a comparison with traditional algorithms. The evaluation included qualitative and 

quantitative analysis using the SSIM and PSNR, following a similar approach in assessing the RESIDE and 

NYU2 datasets to ensure consistency and comparability. Qualitative highlighted the differences between the 

proposed method and previous approaches, focusing on the realistic representation of image details and colour 

accuracy in road images. Figure 4 shows the effectiveness of the proposed algorithm compared to earlier 

approaches on synthetic images from the FRIDA and FRIDA 2 datasets. Among the conventional methods, 

the DCP demonstrated the best performance in removing the four types of haze. The proposed method achieved 

results comparable to the DCP's, but some road colour distortion was observed in synthetic images. In the case 

of heterogeneous haze, the proposed method, along with the APSF and DCP, effectively dehazed the images 

and revealed buildings with more clarity than other methods. The patch map and homography-based local 

dehazing (PMHLD) method performed well overall but encountered difficulties in dense haze areas with 

cloudy environments. The CAP algorithm caused a decrease in saturation in achromatic areas with objects such 

as cars and roads. The APSF method, like the proposed technique, successfully removed all four types of haze 

without causing any colour change in objects within the road scene. The quantitative measurements presented 

in Table 3 provide quantitative evidence of the effectiveness of the RNN-D method compared to other methods. 

RNN-D achieved a PSNR score of 27.799 dB, an SSIM score of 0.584 on the FRIDA dataset, a PSNR score 

of 28.412 dB, and an SSIM score of 0.73 on the FRIDA2 dataset. 

 

 

           
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) 

 

Figure 4. Qualitative comparison of the FRIDA and FRIDA2 datasets: (a) hazy input, (b) DCP [4],  

(c) CAP [29], (d) DEFADE [30], (e) DehazeNet [5], (f) AOD-Net [6], (g) AMEF [31], (h) PMHLD [32],  

(i) APSF [33], (j) RNN-D, and (k) ground truths 
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Table 3. Quantitative comparisons on FRIDA and FRIDA2 datasets 
Dataset Metrics Hazy DCP 

[4] 
CAP 
[29] 

DEFADE 
[30] 

DehazeNet 
[5] 

AOD-
Net 

[6] 

AMEF 
[31] 

PMHLD 
[32] 

ASMF 
[33] 

RNN-
D 

FRIDA 

(76 

samples) 

SSIM 0.616 0.6 0.522 0.566 0.614 0.629 0.68 0.563 0.693 0.584 

PSNR 11.167 13.316 12.494 13.226 12.926 13.229 1.237 12.697 13.875 27.799 

FRIDA2 

(264 

samples) 

SSIM 0.737 0.642 0.334 0.756 0.662 0.44 0.787 0.656 0.803 0.73 

PSNR 10.472 11.638 8.826 12.048 11.8 9.749 12.713 11.695 12.549 28.412 

 

 

The availability of the original images in the synthetic dataset allows for more accurate comparisons 

of the haze removal achieved by each algorithm. However, analysing the algorithm using real road datasets is 

critical to identify its effectiveness. Thus, the algorithm was further evaluated on the cityscape road dataset to 

assess its robustness in dehazing actual road images with road markers. Table 4 presents a qualitative analysis 

of the model's performance on selected images from the dataset since there are no haze-free images for 

quantitative analysis. The dehazed images using the RNN-D algorithm significantly improve the visibility of 

road markers. This enhancement is attributed to the increased contrast differentiation between the road surface 

and the markers. The reduced contrast between these elements can lead to classification errors in foggy 

conditions. However, the RNN-D dehazing technique enhances the feature extraction capabilities specific to 

road markers, reducing the likelihood of misclassification. 

 

 

Table 4. Qualitative analysis of RNN-D effectiveness on cityscape real road dataset 
Image no Actual image Dehazed images Image no Actual image Dehazed images 

1 

  

7 

  
2 

  

8 

  
3 

  

9 

  
4 

  

10 

  
5 

  

11 

  
6 

  

12 

  
 

 

5. CONCLUSION 

In conclusion, the proposed ResNet-based dehazing algorithm, RNN-D, has demonstrated excellent 

performance on various datasets, including NYU2, RESIDE, FRIDA, and FRIDA2. It outperformed existing 

state-of-the-art dehazing algorithms in terms of objective metrics such as PSNR and SSIM, as well as subjective 

evaluations based on visual quality. The algorithm effectively recovers clear and natural images from hazy 

scenes, even under challenging conditions with varying degrees and types of haze. This makes it a promising 

solution for enhancing image quality in adverse weather situations. The quantitative analysis showed that the 

proposed algorithm outperformed existing techniques on multiple datasets, including SOTS: indoor, outdoor, 

NYU2, FRIDA, and FRIDA2. Additionally, the validation on real images demonstrated high contrast between 
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road markers and the road surface, which enhances feature extraction for road marker classification. This has 

significant implications for applications such as autonomous driving, where image quality and accuracy are 

crucial for safety and reliability. The proposed algorithm’s superior performance and visually appealing results 

make it a powerful tool for image-dehazing applications. Future work could discuss the technique for 

classifying road markers extracted from dehazed images, further enhancing the classification algorithm and 

reducing errors caused by foggy illumination. 
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