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 Breast cancer is a significant contributor to female mortality, emphasizing the 

importance of early detection. Predicting breast cancer accurately remains a 

complex challenge within medical data analysis. Machine learning (ML) 

algorithms offer valuable assistance in decision-making and diagnosis using 

medical data. Numerous research studies highlight the effectiveness of ML 

techniques in improving breast cancer prediction. Feature selection plays a 

pivotal role in data preprocessing, eliminating irrelevant and redundant 

features to minimize feature count and improve classification accuracy. This 

study focuses on optimizing breast cancer diagnostics through feature 

selection methods, specifically genetic algorithms (GA) and particle swarm 

optimization (PSO). The research involves a comparative analysis of these 

methods and the application of a diverse set of ML classification techniques, 

including logistic regression (LR), support vector machine (SVM), decision 

tree (DT), and ensemble methods like random forest (RF), AdaBoost, and 

gradient boosting (GB), using a breast cancer dataset. The models' 

performance is subsequently evaluated using various performance metrics. 

The experimental findings illustrate that PSO achieved the highest average 

accuracy, reaching 99.6% when applied to AdaBoost, while GA attained an 

accuracy rate of 99.5% when employed with both AdaBoost and RF.  
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1. INTRODUCTION  

In 2020, the number of diagnosed breast cancer cases surpassed those of lung cancer, establishing it 

as the most prevalent form of cancer. Female breast cancer has witnessed 2.3 million new cases reported, 

alongside an escalation in the mortality rate [1]. This cancer type has profoundly affected women's lives, and 

its mortality rate can be mitigated through enhanced awareness, early detection, and diagnosis [2]. In modern 

healthcare, the substantial volume of diverse disease data generated plays a crucial role in facilitating analysis 

and predictive tasks. 

Machine learning (ML) assumes a significant role within healthcare systems [3], greatly assisting 

doctors and pathologists in making precise predictions. This not only aids in averting additional medical 

expenses but also ensures the provision of appropriate treatment, with the potential to save lives through early 

detection [4]. Nevertheless, utilizing ML methods for breast cancer prediction presents a significant challenge 

in clinical data analysis [3]. Identifying the most effective features to differentiate patients from healthy 

individuals remains a key obstacle in the development of ML techniques for early breast cancer prediction. 

https://creativecommons.org/licenses/by-sa/4.0/
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Numerous studies have been conducted to detect and forecast breast cancer diagnoses. For instance, 

Minnoor and Baths [5] employed the random forest (RF) algorithm for training and underwent hyperparameter 

tuning to attain efficient and accurate breast cancer diagnosis. Furthermore, the performance of these RF 

models was compared against four other supervised learning techniques. The findings conclusively establish 

RF as the superior method for diagnosing breast cancer. Massari et al. [6] introduced an ontological model 

based on the decision tree (DT) method, showcasing its reliability in predicting breast cancer. By extracting 

discriminative rules from the DT algorithm, this model effectively distinguishes between malignant and benign 

breast cancer cases. These rules are seamlessly integrated into an ontological reasoner using the semantic web 

rule language (SWRL). The achieved prediction accuracy for this ontological model is notably high, standing 

at 97.10%. Similarly, in another study by Nemade and Fegade [4], a variety of ML classification techniques 

were applied to a breast cancer dataset and assessed using various performance metrics. The findings revealed 

that, among all models, both the DT and XGBoost classifiers achieved the highest accuracy of 97%, with the 

XGBoost classifier achieving the maximum area under the curve (AUC) score of 99.90%. 

Several studies have investigated the effectiveness of diverse ML approaches. Kabiraj et al. [7] 

introduced a predictive system for breast cancer risk using both RF and XGBoost methods. According to Kaul 

and Sharma [8], four different ML algorithms were utilized, including DT classifiers, RF, K-nearest neighbors 

(KNN), and support vector machine (SVM). Among these, the SVM exhibited the highest classification 

accuracy, reaching 97% for diagnosing breast cancer in women. Additionally, Naji et al. [9] found that the 

SVM and RF algorithms achieved accuracy rates exceeding 96% when identifying malignant tumors. 

Numerous researchers have delved into the significance of feature selection in enhancing the 

performance of various supervised ML methods. Dhanya et al. [10] employed an ensemble model with F-test 

feature selection to predict breast cancer. This research combines several supervised ML algorithms, including 

SVM, naive Bayes, and KNN, and integrates feature selection methods such as variance threshold and F-test 

to enhance the ensemble model's accuracy in breast cancer prediction. According to Alnowami et al. [11], a 

wrapper feature selection method is utilized to explore biomarkers for early breast cancer detection. By 

integrating three classification algorithms (SVM, RF, and DT) into a sequential backward selection model, the 

study identifies an optimal set of biomarkers for breast cancer prediction, with the SVM model being the 

primary contributor. Additionally, Birchha and Nigam [12] employed a back-propagation neural network 

(BPNN) as a ML model, utilizing the breast cancer Wisconsin original dataset (WBC). They also incorporated 

principal component analysis and dimension reduction techniques to enhance the performance of the model. 

Based on the literature review provided in this section, and several other studies [13]‒[15], the 

researchers emphasize the risks and challenges of breast cancer and the significance of feature selection in 

identifying the most impactful features to enhance the performance of various supervised ML methods for 

early breast cancer prediction. The particle swarm optimization (PSO) and genetic algorithms (GA) are 

metaheuristic techniques that have demonstrated success in solving optimization problems, especially in the 

realm of feature selection. These methods are widely utilized for their ability to efficiently identify informative 

subsets of features, thereby enhancing the performance of ML techniques. This article assesses the importance 

of feature selection, specifically focusing on PSO and GA, in enhancing the performance of different 

supervised ML methods for forecasting breast cancer and compares these methods with other feature selection 

techniques. Additionally, the study evaluates the predictive power of the ML techniques using both the original 

dataset and feature-selected dataset. We outline the contributions of this study as follows: i) investigating the 

effectiveness of feature selection techniques utilizing PSO and GA for breast cancer prediction and contrasting 

them with alternative feature selection methods; ii) utilizing various ML techniques and evaluating their 

performance to develop an optimal predictive model; iii) applying multiple feature selection techniques, such 

as PSO, GA, recursive feature elimination (RFE), and SelectFromModel, to each ML technique, and evaluating 

their performance based on precision, recall, F1-score, accuracy, AUC, and the percentage of features that have 

been removed or reduced from the initial set. 

The following sections of the paper are arranged as follows: section 2 outlines the methodology, 

presenting the proposed approach for breast cancer prediction and detailing the research procedure. Section 3 

offers a detailed discussion of the results obtained from various ML techniques, including an analysis using 

different performance metrics. Finally, section 4 encapsulates the paper, presenting its conclusions and offering 

insights into future perspectives.  

 

 

2. MATERIALS AND METHODS 

In this section, we will discuss the materials and methods employed to obtain our results. This section 

is subdivided into five subsections, covering aspects such as dataset description, the proposed methodology, 

feature selection techniques, algorithms employed for comparison, and performance metrics. Each subsection 

provides detailed insights into the specific methods and processes used. 
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2.1.  Methodology 

This section outlines the steps and research methodology applied to enhance breast cancer diagnosis 

through feature selection methods. Initially, The experimental process started with acquiring the chosen dataset 

from the UCI ML repository. Subsequently, data cleaning and preprocessing are performed to ensure that only 

relevant data is retained. Furthermore, we normalize the dataset and randomly split it into a training set (70% 

of the dataset) and a testing set (30% of the dataset). Afterwards, various ML techniques, including logistic 

regression (LR), AdaBoost, RF, SVM, gradient boosting (GB), and DT are trained on the training set and 

assessed on the original dataset using different metrics. To further improve outcomes, each feature selection 

method-PSO, GA, RFE, and SelectFromModel—was employed to identify significant features of breast 

cancer. Lastly, each ML model is trained on four feature-selected datasets, and their effectiveness is assessed 

and compared using various performance metrics such as accuracy, F1 score, recall, precision, and AUC. 

Additionally, a reduction rate is calculated to gauge the impact of feature selection on the dataset. Figure 1 

illustrates the flowchart for the study.  

 

 

 
 

Figure 1. Proposed flow diagram for optimizing breast cancer diagnosis 

 

 

2.2.  Dataset description 

A comparative and scientific examination was conducted on the Wisconsin diagnostic breast cancer 

(WDBC) datasets, which are openly accessible from the UCI ML repository. This dataset, initially provided 
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by the University of Wisconsin, includes 569 instances, comprising 212 categorized as malignant and 357 as 

benign. Each instance has 32 distinct characteristics, providing a comprehensive foundation for analysis and 

comparison. 

 

2.3.  Feature selection techniques 

Feature selection represents a valuable step in data modeling, aimed at eliminating redundant, 

unimportant, and noisy data. The current study employs various feature selection techniques, which have been 

assessed and compared. These techniques enhance the model's performance by focusing on the most relevant 

data, ultimately improving the accuracy and efficiency of the analysis. 

 

2.3.1. Particle swarm optimization-based feature selection 

The PSO-based feature selection represents an evolutionary algorithm that relies on a population of 

particles, a concept introduced by Eberhart and Kennedy [16]. This approach draws inspiration from the 

collective movement of natural swarms in search of food. PSO employs both individual particle memory, 

tracking their personal best, and a global memory of the swarm to determine the most optimal motion [17]. 

In our PSO process utilized in this study, we follow several crucial stages: 

− Particle representation: each particle denotes a possible solution and is defined by its position vector within 

the search space. Each element of the vector corresponds to a possible value of a feature. 

− Initialization: the swarm is initialized with a group of particles; each assigned a random position within the 

search space. Additionally, each particle is given a random velocity. 

− Fitness evaluation: the fitness of each particle is assessed according to its accuracy, favoring those particles 

that exhibit higher accuracy while utilizing fewer predictors. 

− Particle movement: each particle adjusts its position and velocity based on its own best-known position 

(local best) and the global best-known position among all particles in the swarm.  

− Updating best positions: the local best position and global best position are updated based on the fitness of 

particles. 

− Termination conditions: the process ends when a specified number of iterations (100 in this study) is 

reached. Additionally, termination can occur if there's no improvement in the fitness function for a certain 

number of iterations. 

 

2.3.2. Genetic algorithm-based feature selection 

The GA-based feature selection draws inspiration from the principles of biological evolution, where 

the fittest individuals are chosen to generate the subsequent generation's offspring. In GA, this concept is 

applied by using genetic operators like crossover and mutation, with crossovers primarily recombining genetic 

material from the current population to discover new solutions. Mutation operators introduce novelty by 

altering existing data. GAs have proven to be highly effective in solving optimization problems, including 

feature selection challenges, and researchers have proposed various GA variants to tackle these specific 

problems, emphasizing the adaptability and utility of the GA approach [18]‒[21].  

The GA process used in this study involves several key stages: 

− Individual encoding: chromosomes are represented as binary vectors, where each element denotes the 

presence or absence of a predictor in the dataset. 

− Starting population: a binary matrix is formed with randomly chosen individuals, where rows represent 

potential solutions and columns correspond to available predictors. 

− Fitness function: individuals' fitness is assessed based on accuracy, favoring those with higher accuracy 

and fewer predictors. 

− Leveraging genetic operators for the formation of the next generation: 

Selection: chromosome pairs for crossover are selected using the roulette wheel selection technique, with 

higher fitness individuals having a greater likelihood of being chosen. 

Crossover: selected parent chromosomes exchange elements to create the next generation, with a 

probability parameter set at 0.8. 

Mutation: random alterations of gene values in chromosomes promote exploration of the solution space and 

avoid convergence to local optima, with a uniform mutation probability set at 0.01. 

− Termination conditions: the process ends either after a maximum number of generations (set to 100) or 

when there's no improvement in the fitness function for two consecutive generations. 

 

2.3.3. SelectFromModel 

SelectFromModel is a feature selection technique employed to extract vital and pertinent features. It 

eliminates features with importance values below a specified threshold. This method is compatible with 

estimators that possess significant features or coefficients [22].  
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2.3.4. Recursive feature elimination 

The RFE enhances the effectiveness of ML models by systematically reducing feature sizes during 

model training. The RFE is a comprehensive approach that collaborates with learning algorithms like SVM and 

lasso. It achieves a systematic reduction of features by iteratively removing attributes with low weights [23].  

 

2.4.  Algorithms used for study 

This section pertains to the ML methodologies employed in this study for the development of a 

predictive model for breast cancer. The algorithms selected for this study include SVM, LR, DT, GB, RF, and 

AdaBoost. Each algorithm was chosen based on its proven effectiveness in previous research and its suitability 

for this dataset. 

 

2.4.1. Support vector machine 

The SVM is a broadly adopted method for classification and regression, relying on support vector 

algorithms. Operating as a supervised learning method, SVM identifies a limited set of crucial representative 

samples from all categories and constructs a linear discriminant function aimed at achieving maximum 

separation. SVM effectively separates different groups into discrete categories through the utilization of  

multi-dimensional hyperplanes [24].  

 

2.4.2. Logistic regression 

The LR analysis serves as a fundamental and effective linear algorithm used for assessing 

multidimensional data and forecasting clinical outcomes, operating as a probabilistic predictive classification 

model. LR represents a supervised learning method specifically designed for tackling categorization 

challenges. It is capable of working with both continuous and discrete data, although it doesn't provide 

continuous output values [25]. LR relies on the sigmoid function to address classification problems. 

 

2.4.3. Decision tree 

The DT method, classified under supervised learning, is a versatile tool used for classification 

problems and can also handle regression tasks. It consists of inner nodes that describe branching structures, a 

dataset indicating the algorithm's verdict, and leaf nodes that represent outcomes. In this system, decision nodes 

are employed for making choices and have multiple branches, while leaf nodes provide the final decision 

outcome with no further branches. Its name is due to its tree-like structure, with a root node as the starting 

point, branching into sub-trees based on yes or no responses to questions [26].  

 

2.4.4. Gradient boosting 

The GB is an advanced prediction technique that sequentially tackles an infinite-dimensional convex 

optimization problem to create a model expressed as a linear combination of elementary predictors, often DT. 

This method initially constructs a model and subsequently enhances it by allowing the optimization of any 

differentiable loss function. It leverages a gradient-descent algorithm to minimize the loss associated with new 

trees. This technique applies to predictive modeling for both regression and classification tasks [27].  

 

2.4.5. Random forest 

The RF is a popular ensemble technique used for pattern recognition, comprising a collection of DT. 

Notably, it employs semi-random feature selection, making it capable of handling a large number of 

characteristics and identifying the most important ones. This approach, also referred to as bagging or bootstrap 

aggregation, combines the outputs from individual trees to provide a consolidated output. In contrast to a single 

DT, which exhibits low bias and high variance, the RF leverages a wealth of data to reduce variance, ultimately 

yielding improved results [28].  

 

2.4.6. AdaBoost 

AdaBoost stands as an exemplar of boosting ensemble learning techniques, as indicated [29]. Its 

methodology involves an iterative process that trains a sequence of weak learners, adjusting the sample weights 

based on regression error rates. This process focuses the subsequent learner's attention on the samples that 

performed poorly in previous iterations. Eventually, the learners receive weights corresponding to their 

regression error rates, and the final output is determined by taking a weighted average of the predictions [30].  

 

2.5.  Performance measures 

The classification evaluation metrics employed include accuracy, precision, recall, F1-score, and 

ROC-AUC. These measures are derived from the elements of the confusion matrix, which conveys information 

about predicted and actual values. The performance metrics are expressed using (1)-(5).  
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Accuracy is a metric used to assess the percentage of accurate predictions, calculated by dividing the 

number of correct predictions by the total number of predictions. The formula for accuracy is provided as (1): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (1) 

 

In this context, TP stands for true positives, TN represents true negatives, FP corresponds to false positives, 

and FN indicates false negatives.  

Precision is a metric used to assess the quality of the ML model specifically in terms of positive 

predictions. It is calculated by dividing the number of true positive predictions by the total number of positive 

predictions. The formula for precision is as (2): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (2) 

 

Recall is a metric that quantifies the ML model's capability to identify all pertinent instances in the 

provided dataset. It is computed by dividing the number of TP predictions by the sum of TP and FN predictions. 

The formula for recall is presented as (3): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (3) 

 

The F1-score, also known as the F-measure, serves as a metric for the weighted average that combines 

the concepts of recall and precision. It offers an accurate assessment of a model's predictive ability in scenarios 

involving both balanced and imbalanced datasets. The formula for calculating the F1-score is as (4): 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  (4) 

 

Receiver operating characteristic (ROC)-AUC, which combines the ROC curve and AUC, serves as 

a measure of the extent of separation in ML model. It quantifies the model's ability to differentiate between 

distinct classes. The calculation involves dividing the TP rates by the FP rates. The formulas for this calculation 

are presented as (5): 

 

𝑅𝑂𝐶 − 𝐴𝑈𝐶 =
𝑇𝑃𝑅

𝐹𝑃𝑅
  (5) 

 
In this context, TPR represents the true positive rate, while FPR corresponds to the false positive rate. The 

reduction rate of features from the initial feature set determines the proportion of features that have been 

eliminated or reduced from the original set by subtracting the number of selected features from the initial total 

features and then dividing this difference by the initial number of features. 

 

 
3. RESULTS AND DISCUSSION 

In this section, we assess the performance of various feature selection methods using multiple 

classifiers, presenting results in terms of accuracy, precision, recall, F1 score, AUC, and the reduction rate of 

features from the original set. Each feature selection method is executed five times during each experiment, 

and we compare the approaches based on the averages of these runs. All these procedures are conducted using 

Python on a system equipped with an Intel Core i7 CPU and 16 GB of RAM. 

 
3.1.  The performance of machine learning models 

The initial experiment aims to assess the performance of each algorithm using all attributes available 

in the dataset for the classification task. Table 1 presents classification results for multiple ML methods without 

employing feature selection. These results offer insights into the performance of each method in terms of 

accuracy, precision, recall, F1 score, and AUC. As shown in Table 1, the both AdaBoost and SVM emerge as 

the top performers across multiple metrics when compared to other ML models. AdaBoost achieves an 

accuracy of 96.60%, with precision, recall, F1-score, and AUC of 96.20%, 97.00%, 96.59%, and 96.63% 

respectively. Similarly, SVM achieves slightly higher accuracy at 96.70% and precision at 97.00%, with recall, 

F1-score, and AUC of 96.50%, 96.72%, and 96.75% respectively. 
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Table 1. Classification result without feature selection 
Method Accuracy Precision Recall F1-score AUC 

LR 95.60 95.80 95.42 95.61 95.61 
AdaBoost 96.60 96.20 97.00 96.59 96.63 

SVM 96.70 97.00 96.50 96.72 96.75 

DT 95.50 98.20 93.22 95.62 95.68 
GB 96.40 97.60 95.36 96.45 96.46 

RF 96.30 96.20 96.40 96.30 96.30 

 

 

3.2.  Feature selection performance across machine learning models 

The second experiment offers a comprehensive assessment of various feature selection methods 

combined with different ML algorithms. Table 2 presents classification results for various feature selection 

techniques, including RFE, SelectFromModel, PSO, and GA. These methods are evaluated alongside popular 

ML algorithms such as LR, AdaBoost classifier, SVM, DT, GB, and RF. The metrics, including accuracy, 

precision, recall, F1 score, AUC, and reduction rate.  

 

 

Table 2. Performance comparison of ML models with various feature selection methods 
Model FS-Method Accuracy Precision Recall F1-score AUC Reduction_rate 

LR GA 99.00 100.0 98.00 98.99 99.00 77.41 

PSO 98.50 100.0 97.00 98.48 98.50 70.32 
RFE 96.20 96.45 96.00 96.60 96.20 51.61 

SelectFromModel 96.30 95.67 96.00 96.59 96.30 45.80 

AdaBoost GA 99.50 99.01 100.0 99.50 99.50 52.25 
PSO 99.60 99.21 100.0 99.6 99.60 60.64 

RFE 97.70 98.02 97.20 97.69 97.70 51.61 

SelectFromModel 97.80 98.21 97.40 97.79 97.80 57.41 
SVM GA 99.00 100.0 98.0 98.99 99.00 70.96 

PSO 98.90 100.0 97.80 98.89 98.90 70.96 

RFE 97.50 97.61 97.40 97.12 97.50 51.61 
SelectFromModel 96.60 96.10 97.20 96.99 96.60 54.83 

DT GA 99.10 99.20 99.00 99.10 99.10 64.51 

PSO 98.10 97.25 99.00 98.12 98.10 69.03 
RFE 96.10 96.11 96.20 95.43 96.10 51.61 

SelectFromModel 95.90 96.21 95.60 95.99 95.90 89.03 

GB GA 99.10 100.0 98.20 99.09 99.10 74.83 
PSO 99.20 99.40 99.00 99.20 99.20 74.19 

RFE 97.50 97.05 98.00 97.90 97.50 51.61 

SelectFromModel 96.50 95.90 97.20 96.52 96.50 83.22 
RF GA 99.50 100.0 99.00 99.50 99.50 58.06 

PSO 98.50 100.0 97.00 98.48 98.50 60.00 

RFE 96.10 96.96 95.20 96.50 96.10 51.61 
SelectFromModel 96.00 97.75 94.20 97.07 96.00 75.48 

 

 

In Table 2, when feature selection based PSO was employed alongside AdaBoost, it achieved 

outstanding performance metrics, including an average accuracy of 99.60%, with high precision, recall,  

F1 score, and AUC of 99.21%, 100.0%, 99.6%, and 99.60% respectively. Similarly, feature selection-based 

GA exhibited only a marginal decrease of 0.1% in accuracy compared to PSO. Notably, GA demonstrated 

remarkable results, achieving an accuracy rate of 99.5% when applied to both AdaBoost and RF. Specifically, 

in AdaBoost, GA achieved precision, recall, F1 score, and AUC of 99.01%, 100.0%, 99.50%, and 99.50% 

respectively, while in RF, it achieved precision, recall, F1 score, and AUC of 100.0%, 99.00%, 99.50%, and 

99.50% respectively. When employing gradient descent, PSO achieved an accuracy of 99.20%, while GA 

attained an accuracy of 99.10%. Notably, for the ML models RL, SVM, and DT, the feature selection-based 

GA obtains accuracies of 99.0%, 99.0%, and 99.10%, respectively. 

Moreover, Table 2 illustrates the superior performance of feature selection methods based on PSO 

and GA compared to RFE and SelectFromModel across various ML models. For instance, in AdaBoost, GA 

achieves an accuracy of 99.50%, while PSO achieves an even higher accuracy of 99.60%. In contrast, RFE and 

SelectFromModel achieve lower accuracies of 97.70% and 97.80%, respectively. The reduction rate indicates 

the percentage of features decreased through feature selection. According to Table 2, all feature selection 

methods significantly reduce dimensionality by opting for only a fraction of the original features, usually less 

than 50%. PSO and GA typically demonstrate proficiency in feature reduction. For instance, in LR, the 

reduction rates stand at 77.41% for GA, 70.32% for PSO, 51.61% for RFE, and 45.80% for SelectFromModel. 
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Figures 2(a) to 2(f) illustrate ROC curves representing different ML classification techniques applied 

to the breast cancer dataset. As revealed in Figure 2, AdaBoost, when combined with either PSO or GA, 

achieved the top AUC score of 100%, outperforming RFE and SelectFromModel which achieved scores of 

98% each. Additionally, RF reached a 100% AUC score when paired with GA but slightly lower at 99% when 

using PSO. In contrast, RFE and SelectFromModel achieved lower scores of 96% each. Moreover, SVM and 

GB both achieved AUC scores of 99 using GA and PSO, while RFE and SelectFromModel obtained slightly 

lower scores of 98 and 97, respectively. Similarly, LR and DT both achieved AUC scores of 99 with GA, 98 

with PSO, and 96 when utilizing RFE and SelectFromModel. 

 

 

  
(a) 

 

(b) 

  
(c) 

 

(d) 

  
(e) (f) 

 

Figure 2. ROC curves for breast cancer dataset using different models: (a) LR model, (b) SVM model,  

(c) DT model, (d) GB model, (e) RF model, and (f) AdaBoost classifier 

 

 

Figure 3 provides a detailed comparison of accuracy among four feature selection methods-GA, PSO, 

RFE, and SelectFromModel-across various ML models. The results demonstrate a consistent trend where GA 
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and PSO consistently outperform RFE and SelectFromModel in terms of accuracy across all classifiers. For 

instance, the feature selection based PSO achieved an accuracy of 99.60% in the AdaBoost classifier, securing 

the top rank with a slight margin compared to GA, which achieved 99.5%. Similarly, in GB, PSO led with an 

accuracy of 99.20%, followed closely by GA with 99.10%. Conversely, in LR, SVM, RF, and DT, GA-based 

feature selection dominated with accuracies of 99.00, 99.00, 99.5, and 99.10, respectively, while PSO-based 

methods ranked second with accuracies of 98.50, 98.90, 98.50, and 98.10.  

 

 

 
 

Figure 3. Accuracy achieved by various feature selection methods with different classifier 

 

 

Table 3 illustrates the comparison between our proposed method and previous studies in breast cancer 

diagnosis, focusing on accuracy, precision, recall, F-measure, and AUC. It demonstrates that our method 

significantly surpasses others in these metrics on the WDBC dataset. For instance, when using PSO-based 

feature selection with AdaBoost, an accuracy of 99.60% was achieved, whereas GA-based feature selection 

attained 99.50% accuracy when applied to AdaBoost or RF. It's worth noting that in the research conducted by 

Minnoor and Baths [5], they employed the RF model and obtained an accuracy of 99.30%, which is marginally 

lower (0.3% difference) than our approach. Similarly, in the study by Lahoura et al. [31], they utilized the 

artificial neural network (ANN) model and achieved an accuracy of 98.68%.  

 

 

Table 3. Comparative analysis of breast cancer diagnosis studies by various authors 
Authors Year Dataset collection 

(samples) 

Models Accuracy Precision Recall F1-score AUC 

Lahoura et al. [31] 2021 569 ANN 98.68 90.54 91.30 81.29 - 
Kadhim and Kamil [32] 2023 569 GB 97.36 100 97.87 - 0.99 

Nemade and Fegade [4] 2023 569 XGBoost 97.00 - - - 99.00 

Minnoor and Baths [5] 2023 569 RF 99.30 99.00 100.0 99.00 99.00 
Birchha and Nigam [12] 2023 699 Averaged perceptron 98.40 - 100 - - 

Naji et al. [9] 2021 569 SVM 97.20 - - - 96.6 

Our work 2024 569 Adaboost+PSO 99.60 99.21 100.0 99.60 99.60 
   Adaboost+GA 99.50 99.01 100.0 99.50 99.50 

   RF+GA 99.50 100.0 99.00 99.50 99.50 

 

 

4. CONCLUSION 

Breast cancer remains a significant cause of women's mortality, but early detection offers a cure.  

ML-based computer-aided diagnosis (CAD) systems with high accuracy can provide a rapid and cost-effective 

solution for early recognition. In summary, this research offers a thorough examination of various feature 

selection methods and their impact on classification performance in breast cancer diagnosis employing various 

ML classifiers. The results indicate that GA and PSO consistently outperform other feature selection methods, 

particularly RFE and SelectFromModel, demonstrating their effectiveness in enhancing accuracy across 

classifiers and reducing the number of feature selections. Both the PSO and GA feature selection methods 

demonstrate effectiveness in identifying the most relevant features within a training dataset for predicting 

breast cancer. The study demonstrates PSO's remarkable average accuracy of 99.6% when applied to AdaBoost 

and GA's 99.5% accuracy with both AdaBoost and RF. This emphasizes the utility of these methods, especially 

in medical contexts, for predicting breast cancer and aiding in clinical decision-making and risk analysis related 
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to breast cancer. However, a limitation of this study is the absence of testing the ML models on diverse datasets. 

Future research should consider evaluating the performance of PSO and GA on different datasets to validate 

the study's findings. Additionally, exploring deep learning algorithms specifically designed for image analysis 

holds promise for further investigation in this area. 
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