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ABSTRACT

Eyesight, an invaluable gift profoundly impacts our daily lives. In a rapidly
evolving healthcare landscape, the preservation and enhancement of ocular
health stand as critical objectives. This research endeavors to analyze the two
retinal fundus multi-disease image datasets (RFMiD) one containing 3200 im-
ages and the other containing 860 fundus images. The primary objective of this
study is to scrutinize these datasets, discern variations in the frequency of labeled
diseases within and across them, and explore common combinations of labels.
These findings hold important implications for the field of retinal image analy-
sis, as they provide valuable insights into the distribution and co-occurrence of
defects.
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1. INTRODUCTION
In recent years medical image analysis domain has made notable progress with significant break-

throughs, revolutionizing the way healthcare professionals diagnose and manage various diseases. Among the
areas of medical imaging, retinal disease analysis holds significant promise for improving the early detection,
diagnosis, and treatment of a wide range of ocular conditions. Retinal diseases, including but not limited to
age-related macular degeneration (AMD) [1], diabetic retinopathy (DR) [2], glaucoma [3], and retinal vein
occlusion (RVO) [4], represent a substantial burden on global healthcare systems due to their prevalence and
potential for vision impairment. In an era marked by the proliferation of data and its transformative potential
across various domains, the analysis of datasets has become a cornerstone of research and decision-making pro-
cesses. One such invaluable dataset, the retinal fundus multi-disease image datasets (RFMiD) [5], presents a
unique opportunity to delve into the intricate details of retinal health and related diseases through multi-disease
retinal fundus images [6]. RFMiD, comprising a diverse range of labels or attributes capturing essential infor-
mation about retinal conditions, plays a pivotal role in understanding ocular health, disease progression, and
treatment. As organizations and researchers increasingly harness the power of RFMID, the need for systematic
approaches to analyze and compare these datasets has grown in importance. RFMiD [7] can vary significantly
in terms of size, source, and labeling conventions, making it essential to establish robust methodologies for un-
derstanding their composition and characteristics. Such an understanding is crucial for optimizing diagnostic
algorithms, treatment strategies, and furthering our knowledge of retinal diseases.
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In this research endeavor, we delve into the analysis of multiple disease image datasets for the retina.
Our primary objective is to gain comprehensive insights into the prevalence, associations, and patterns of
retinal diseases across these datasets. To achieve this goal, we employ a data-driven approach, leveraging
state-of-the-art data analysis tools and techniques. This research endeavors to address this need by presenting a
comprehensive comparative analysis of two distinct RFMiD within the broader context of ophthalmic research.
The primary objective is to unravel the label distribution and combinations within each dataset, shedding light
on the relative importance of individual labels, such as disease types and the frequency in which they occur
and the relationships between them. Notably, dataset A comprises 3,200 samples, while dataset B contains 860
samples, allowing for a detailed exploration of retinal health across a significant volume of data. Furthermore,
this analysis aims to identify common label combinations that exist across the two datasets, revealing shared
patterns and potentially cross-applicable insights in the field of ophthalmology. The analysis begins with the
validation of data integrity, ensuring that label names are consistent between the two RFMiD. Subsequently,
the study proceeds to calculate and report label frequencies and percentages within each dataset, providing a
foundational understanding of label importance in the context of retinal health. Beyond individual labels, the
research delves into the analysis of label combinations, exploring co-occurrence patterns of varying lengths and
their relevance to disease diagnosis and prognosis. The results of this study would offer valuable insights for
researchers, ophthalmologists, data scientists, and practitioners seeking to extract actionable knowledge from
RFMiD. The generation of the dataset is depicted in Figure 1. By elucidating the distribution of labels and their
combinations within the realm of retinal diseases, this research contributes to the growing body of knowledge
in ophthalmic diagnosis, treatment, and patient care. In the following sections, we detail the methodology
employed, present the findings, and discuss the implications of this comparative analysis, underscoring its
significance for the broader field of ophthalmic research and data-driven healthcare.

Figure 1. Creation of RFMiD approved from ophthalmologists in order to design artificial intelligence (AI)
based disease diagnosis system [5]

Existing work on retinal fundal: the analysis of medical image datasets, particularly those related to
ophthalmology, has gained significant attention in recent years due to its potential in aiding disease diagnosis,
patient care, and medical research. In this section, we review the relevant literature that underscores the im-
portance of comparative analysis of retinal image datasets. As well as the methodologies employed in similar
studies in Table 1.

Challenges and opportunities: despite the promising advancements in the field, challenges persist
in standardizing data collection, labeling, and analysis across ophthalmic datasets. Differences in imaging
equipment, image quality, and labeling conventions necessitate careful comparative analyses to account for
dataset-specific variations. Our research addresses these challenges by validating data consistency and explor-
ing label distribution across two distinct RFMiD. In conclusion, the literature underscores the significance of
comparative analysis in the context of ophthalmic image datasets. By leveraging the rich information within
RFMiD and similar datasets, researchers and healthcare professionals can advance our understanding of retinal
diseases and enhance patient care.
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Table 1. Existing studies done on retinal fundal
Topic Description
Optical coherence tomography Optical coherence tomography [8] has emerged as one of the for runners in the tech-

nology used for retinal disease diagnosis as it provides high-resolution, cross-sectional
images of retina therby enabling the detection of structural changes at a microsopic level.

AI [9] and machine learning for diag-
nosis [10]

Recent literature review has proved that AI and machine learning are highly dependable
in automating the retinal disease diagnosis. Machine learning algorithms helps to analyze
the retinal images with high accuracy thereby aiding in early detection of diseases such
as DR, glucoma [11] and many other retinal diseases.

Utilization of ophthalmic image
datasets [12]

Medical imaging [13], specifically ophthalmic imaging, has undergone a trans formative
shift with the advent of digital technologies. High-resolution retinal fundus images, as
exemplified by the RFMiD, provide a wealth of information for diagnosing retinal dis-
eases, including DR, glaucoma, and AMD. Researchers and healthcare practitioners have
harnessed these datasets to develop automated diagnostic systems [14], identify disease
biomarkers [15], and assess treatment outcomes.

Comparative analysis in ophthalmic
research [16]

Comparative analysis of retinal image datasets has become essential for understanding
the variations in disease manifestations across diverse patient populations. Previous stud-
ies have successfully compared datasets of varying sizes and origins to elucidate the im-
pact of demographic factors, such as age and gender, on disease prevalence and severity.
Such analyses have led to tailored treatment strategies and improved patient care.

Label distribution and co-occurrence
patterns [17]

Exploring label distribution and co-occurrence patterns within ophthalmic image datasets
has emerged as a crucial research area. Our study builds upon this foundation by focusing
on label combinations within the RFMiD.

Background of proposed work: the dataset used represents an insightful resource in the diagnosis of
ocular diseases. RFMiD comprises retinal fundus images, capturing a range of eye conditions and diseases.
These images are instrumental in the early detection, diagnosis, and monitoring of eye-related ailments, includ-
ing DR, AMD, and glaucoma. The significance of RFMiD lies in its potential to revolutionize ophthalmological
diagnostics and improve patient care. The dataset provides a diverse and comprehensive collection of retinal
images, enabling researchers and healthcare professionals to develop machine learning and computer vision
models for disease classification and severity assessment. However, the analysis of RFMiD involves multi-
faceted challenges, including image preprocessing, feature extraction [18], and disease classification [19]. The
code logic developed for this research is to facilitate the exploration and analysis of the RFMiD, addressing the
following objectives as mentioned in Table 2. By addressing these objectives, this code aims to contribute to
the effective utilization of the RFMiD for medical research and diagnostics. It empowers researchers to assess
dataset variations, understand disease distribution, and lay the groundwork for the development of advanced
machine learning models for automated disease detection and analysis in retinal fundus images.

Table 2. Exploring retinal disease data: methodology, variations, and visualization techniques
Retinal disease dataset- study approach Description
Data reading and preprocessing Compare the two RFMiD comprising of 3200 and 860 images respectively to check for

the Label[Disease Name] consistency in both the datasets.
Label frequency analysis Perform frequency analysis to determine the occurance of the diseases and its percentage

within each RFMiD respectively. This analysis will provide insights into the prevalance
of specific diseases among the patients with ocular diseases.

Label combination analysis Building on the insights from label frequency analysis, the research explores label com-
binations within the datasets, encompassing Identifying label combinations that occur
within the data samples of each dataset. Quantifying the frequency of each label combi-
nation to comprehend its prevalence. Analyzing label combinations of varying lengths,
such as pairs or triplets, to unveil co-occurrence patterns.

Data analysis The comparative analysis of label frequencies and combinations was conducted for both
RFMiD that includes creating graphical representations to illustrate label frequencies and
co-occurrence patterns

2. METHOD
This section provides an comprehensive overview of the methodology utilized in our study, encom-

passing the research design, data set acquisition methods and data analysis techniques employed to achieve
our research objectives. We present a detailed account of our approach, ensuring transparency and clarity in
explaining how we conducted our study.

Artificial intelligence-enabled profiling of overlapping retinal disease ... (Sridhevi Sundararajan)
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2.1. Setup and variables considered
2.1.1. Python environment

The code logic written for this study was developed in Python code using Python 3.10 version. The
code written for this research study depends on essential libraries namely Pandas and Numpy for data manip-
ulation and numerical operations respectively. The use of color fundus photos to visualize retinal circulation
provides a valuable non-invasive method for examining the microcirculation within the human retina, allow-
ing for a unique opportunity to assess systemic health. Thorough clinical analysis not only helps provide a
detailed study about eye-ailments but also helps to detect certain chronic conditions namely diabetes stroke
[20], hypertension, arteriosclerosis [21], cardiovascular diseases, neurodegenerative disorders, as well as renal
and fatty liver diseases [22]. Hence screening of the eye together with timely consultation and treatment help
in preventing not only the loss of vision but also helps in preventing any damage to other parts of the body.
Some of the previous studies have come with datasets related to only a few diseases threatening the vision.
However a need for multi disease dataset is felt in order to maintain a general retinal screening system. The
data utilized in this study consists of two distinct datasets obtained from the RFMiD. These datasets, denoted
as dataset A and dataset B, were subjected to a series of data preprocessing and analysis steps to fulfill the re-
search objectives. The Table 3 describes the specifications of the datasets used in this research [7]. The RFMiD
[7] and RFMiD2 [5] publicly accessible datasets include 3200 and 860 retinal images, respectively. Within the
3200 retinal images, 45 were identified as abnormal, signifying the presence of 45 distinct disease types in this
dataset. Similarly, among the 860 retinal images, 49 were identified as abnormal.

Table 3. Retinal fundus data specification [5]
Subject area Medical data in the field of ophthalmology
More specific subject area Multiple disease classification of retinal fundus image
Category of data Comma-seperated value files, images
Data acquisition TOPCON TRC-NW300
Format of data Tagging and annotating JPEG and PNG image files to create .CSV files
Variables under study The majority of the patients received mydriasis through a single drop of tropicamide at a

concentration of 0.5%. Non-mydriatic procedures were employed for certain participants.
Characteristics of the experiment Fundus images were captured while the patient was in an upright position, with a distance

of 40.7mm (TOPCON TRC-NW300) and 42mm (CARL ZEISS FF450) between the cam-
era lenses and the eye under examination, employing a non-invasive fundus camera.

Location of data source State of Art Eye Care Hospital known as Shri Ganpati Netralaya, situated in Jalna, Maha-
rashtra, India, and the Center of Excellence in Signal and Image Processing, affiliated with
SGGS Institute of Engineering and Technology, located in Nanded, Maharashtra, India.

2.2. Dataset processing
Based on these two data sets available we have arrived at an algorithm that gives an insight as men-

tioned in Figure 2. The analysis consists of several key steps. First, we compare the labels (disease attributes)
between the two datasets. This involves extracting the label columns from both datasets, sorting them alphabet-
ically for consistency, and identifying identical labels present in both datasets. Next, we calculate the frequency
of labels within each dataset by summing up the values in their respective label columns. We also compute the
percentage of each label within each dataset by dividing the label frequency by the total number of records and
multiplying by 100. Additionally, the analysis involves determining label combinations within each dataset. To
achieve this, the algorithm examines the label combinations in the dataset by iterating through the records and
identifying labels with a value of 1 (indicating label presence). Combinations of these selected labels are gen-
erated using Python’s itertools library, ranging from pairs to the total number of selected labels. The frequency
of each label combination is calculated and stored for both datasets. The next step involves creating a table
that records label combinations and their corresponding frequencies, sorted in descending order to identify
the most common combinations. Finally, a table of common label combinations is generated by merging the
combination label frequency tables for both datasets based on the label combinations with values greater than
0. This comprehensive approach provides insights into label variations and combinations within the datasets.
CSV files that are described in the Table 4 are generated for the data processing methods. Overall 5 CSVs are
generated based on the code logic applied using the datasets RFMiD and RFMiD2. The name of the CSVs
generated depict the nature of the context present in them.

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2713–2724
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Figure 2. Flowchart showcasing the methodology to determine the profiling of retinal disease distribution and
overlapping patterns in multi-disease retinal fundus images for ocular patient

Table 4. Description of CSV files and their parameters
CSV file name Parameters considered Significance of the CSV
label-frequency-table.csv Label, frequency RFMiD,

percentage RFMiD, frequency
RFMiD2, percentage RFMiD2

This table allows you to quickly compare label distributions
between the two datasets. It reveals which labels are more
prevalent and provides insights into the composition of each
dataset.

RFMID-frequency-
table.csv

Label-combination, RFMiD It helps identify patterns and associations between labels in
RFMiD dataset. Researchers and analysts can use this table
to understand which combinations of attributes commonly
appear together in the RFMiD dataset.

RFMID2-frequency-
table.csv

Label-combination, RFMiD2 It helps identify patterns and associations between labels in
RFMiD2 dataset. Researchers and analysts can use this table
to understand which combinations of attributes commonly
appear together in the RFMiD2 dataset.

labelcombination-table.csv Label-combination, RFMiD,-
RFMiD2

It provides a side-by-side comparison of label combinations
between the two datasets. Researchers can use this table to
identify commonalities and differences in label associations.

common-labeltable.csv Label-combination, RFMiD,-
RFMiD2

It highlights label combinations that are shared between the
two datasets, which can be valuable for identifying consistent
patterns across different versions or subsets of the data.

3. RESULTS AND DISCUSSION
Using the algorithm and the code that has been developed to study the datasets the results section

describes the analysis of the study performed. Table 5 describes the abbreviations used across the study to
describe the labels.

3.1. Label names consistency
Ensuring label name consistency is a important aspect of this study as it signifies that the two datasets

utilized share a uniform set of labels. This consistency plays a crucial role for ensuring data compatibility across
different datasets and facilitates accurate analysis. Without consistent label names, comparing and combining
data from various sources becomes challenging, hindering the reliability and interpretability of the analysis
results.

Artificial intelligence-enabled profiling of overlapping retinal disease ... (Sridhevi Sundararajan)
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Table 5. Ophthalmology abbreviations description
Abbreviation Full form
AION Anterior ischemic optic neuropathy
AH Asteroid hyalosis
ARMD Age-related macular degeneration
BRVO Branch retinal vein occlusion
DN Drusens
DR Diabetes retinopathy
ERM Epiretinal membrane
EDN Exudation
HR Hemorrhagic retinopathy
HPED Hemorrhagic pigment epithelial detachment
MCA Macroaneurysm
MH Macular hemorrhage
MYA Myopia
ODC Optic disc cupping
ODE Optic disc edema
OCT Optical coherence tomography
TSLN Tortuous superficial large vessels

3.2. Label frequency analysis
The frequency analysis of the labels derived from the algorithm provides valuable information about

the distribution of the labels in terms of their occurrences as well as their percentage in both the datasets.Notably,
some labels exhibit consistent occurrence across both segments, such as ”DR” and ”EDN [23],” while others
display notable disparities in frequency. The percentages provided offer a clear insight into the proportion of
each label within its corresponding segment. This analysis sheds light on the distribution of labels within the
dataset, serving as valuable information for further exploration or decision-making processes. In the datasets
that are used in our study namely RFMiD and RFMiD2 the occurrence of DR is highest having a value of 632
in RFMiD and HR [24] is highest having a value of 86 in RFMiD2 respectively. Based on the comprehensive
analysis, it is evident that DR is notably prevalent in both datasets. This finding underscores the importance
of delving deeper into retinal research. Nevertheless, it is imperative to acknowledge the requirement for more
balanced dataset distributions as an essential step for future investigations in the field of retinal health. The
Figures 3 to 6 gives an overview about the frequency and percentages of the diseases for RFMiD and RFMiD2
datasets respectively.

Figure 3. Scatter plot depicting the frequency distribution for RFMiD dataset

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2713–2724
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Figure 4. Scatter plot depicting the frequency distribution for RFMiD2 dataset

Figure 5. Bar chart depicting the percentage distribution for RFMiD dataset

Figure 6. Bar chart depicting the percentage distribution for RFMiD2 dataset
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3.3. Label combination analysis
The dataset reveals a diverse array of label combinations, reflecting the categorization of various

entities. RFMiD and RFMiD2 values span from 0 to 83 and 0 to 9, respectively, with some combinations
standing out with notably higher values, indicating their prominence. Among these combinations ODC and
TSLN emerge as the most prevalent, boasting RFMiD and RFMiD2 values of 83 and 4, respectively. Other
common pairings include (’MH’, [25] ’ODC’ [26]), (’MH’, ’TSLN’ [27]), (’DR’, ’ODC’), (’DR’, ’LS’), and
(’DR’, ’TSLN’). Certain labels such as ’ODC’, ’TSLN’, ’MH’, and ’DR’ appear frequently across various
combinations, indicating their significance, while others like ’CB’, ’ARMD’, ’AION’, and ’BRVO’ [28] are
less prevalent. The dataset demonstrates significant variability in RFMiD and RFMiD2 values across different
combinations, reflecting diverse levels of importance or relevance. Combinations involving ’ODC’, ’TSLN’,
’MH’, and ’DR’ tend to exhibit higher values, suggesting their increased commonality or significance. Notably,
combinations with multiple labels, particularly involving ’ODC’, ’TSLN’, and ’MH’, often possess elevated
RFMiD2 values, potentially indicating specialized subcategories within broader combinations. Trends within
the dataset indicate that combinations featuring ’ODC’, ’TSLN’, ’MH’, and ’DR’ tend to have higher RFMiD
and RFMiD2 values, implying their greater prevalence or importance. Moreover, certain combinations with
multiple labels, especially those involving ’ODC’, ’TSLN’, and ’MH’, exhibit notable RFMID2 values, sug-
gesting potential subcategories or specialized groupings.

− Frequent combinations: frequent combinations, which serve as the backbone of the dataset, showcase
patterns and relationships occurring with notable regularity. The dataset reveals several frequent combi-
nations that shed light on prevalent patterns and relationships among the variables. For instance, ’ODC’
and ’TSLN’ emerge as one of the most frequent combinations, appearing with a high RFMiD of 83, in-
dicating a strong association between these two factors. Similarly, the combination of ’MH’ and ’ODC’
holds significant prominence with an RFMiD of 77, suggesting a common occurrence of these variables
together. Additionally, ’MH’ and ’TSLN’ exhibit a robust association, reflected in their RFMiD of 76.
Moreover, ’DR’ and ’ODC’ form another notable frequent combination with an RFMiD of 72, indicating
a recurring relationship between these variables. Lastly, ’DR’ and ’LS’ stand out with an RFMiD of 58,
highlighting their consistent co-occurrence within the dataset. These frequent combinations underscore
key associations and recurring patterns, providing valuable insights for further analysis and decision-
making processes. Frequent combinations, as indicated by their higher RFMiD2 values and frequent
appearance within the dataset, serve as key indicators of common patterns or categories. Among these,
combinations such as (’ODC’, ’TSLN’), (’MH’, ’ODC’), and (’MH’, ’TSLN’) stand out prominently.
These combinations, with RFMiD2 values of 4 and 3 respectively, signify recurrent associations be-
tween specific labels. For instance, the combination (’ODC’, ’TSLN’) appears consistently, suggesting
a notable relationship or co-occurrence between entities labeled ’ODC’ and ’TSLN’. Similarly, (’MH’,
’ODC’) and (’MH’, ’TSLN’) highlight recurring connections involving the label ’MH’ alongside ’ODC’
and ’TSLN’ respectively. Interestingly, (’MYA’ [29], ’ODC’) emerges as one of the most prevalent
combinations with an RFMiD2 value of 9, indicating a particularly strong association between the labels
’MYA’ and ’ODC’. This combination suggests a significant pattern within the dataset, possibly represent-
ing a distinct category or relationship of high importance. Also in addition, (’MH’, ’MYA’) also appears
frequently with an RFMiD2 value of 3, further underscoring the recurrent association between ’MH’ and
’MYA’ labels. These frequent combinations collectively provide valuable insights into prevalent patterns
or relationships within the dataset, guiding further analysis and interpretation.

− Rare combinations: among the various combinations analyzed, one particularly stands out as exceedingly
rare in RFMiD dataset is the pairing of ’EDN’ and ’HR’ [30], which does not appear to occur at all or
has a frequency count of 0. Similar other label combination namely (’MYA’, ’TSLN’), (’CWS’, ’HR’),
(’CWS’, ’EDN’), (’CME’, ’HR’), (’CWS’, ’EDN’, ’HR’) also have their combinations value at 0 thereby
indicating that there are no combinations of these disease present in the current patient diagnosis. A
notable point in the analysis is that there are no rare combinations that was identified in RFMiD2 dataset
thereby indicating that no lable combinations had a value that accounted to 0 in RFMiD2. Also another
notable analysis that was found in this study was the label combination (’EDN’, ’HR’), (’MYA’, ’TSLN’),
and (’CWS’, ’HR’), exhibit RFMiD2 values of 34, 18, and 18, respectively. This differs from the RFMiD
dataset where these label combinations had their value to be 0. This is an interesting scope of study where
the research can be enhanced as to find out what are the other factors that are accounted leading to this
behavioural pattern where in one dataset the label combinations are found to be rare and in another found
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in mid-range value.
− Isolated conditions: an isolated combination observed within the RFMiD dataset is ’ERM’ and ’ODE’,

which appears only once, denoted by a frequency count of 1. Similiarly (’ODE’, ’TSLN’) also have an
value of 1 indicating an isolated behaviour of the label combination. (’BRVO’, ’DR’, ’TSLN’), (’EDN’,
’MH’, ’TSLN’), (’DN’ [31], ’MH’, ’ODC’), (’AH’, ’LS’), (’LS’, ’ST’), (’CRS’, ’MYA’, ’ODC’), (’BRVO’,
’LS’, ’ST’), (’ARMD’, ’EDN’, ’MYA’), (’DR’, ’ST’) are some of the label combinations in RFMiD
dataset that have an count of 1. Similarly isolated combinations, in RFMiD2 dataset characterized by
their low values and infrequent occurrence within the dataset, often denote unique or niche categories
that stand apart from more common patterns. Examples such as (’ERM’, ’ODP’), (’EDN’, ’MYA’), and
(’CRS’, ’ODP’) exhibit values of 1, signifying their rarity and isolated nature. These combinations may
represent specialized associations or uncommon co-occurrences within the dataset. The isolated combi-
nations can be extended in the future to find out what are the factors causing these diseases to occur in
less number thereby helping to take precautionary patient care.

− Complex combinations: complex label combinations indicate the presence of more 3 or more dis-
ease prevalent in the patient. While anlaysis the RFMiD and RFMiD2 dataset several label combina-
tions within the dataset involve multiple retinal conditions, such as (ARMD, EDN, MYA), (ARMD,
EDN, TSLN), (ARMD, MH, ODC), (ARMD, AH, ODC, TSLN), (AH, ARMD, ODC, TSLN), (ARMD,
BRVO, MYA) and (AION, EDN, ODE). The disease combinations of 3 and gives an interesting future
research scope to find out what are the factors attributing this phenomenon. A further study on a larger
dataset will help preventive and timely diagnosis for the patients. The Figures 7 and 8 respectively gives
an overview about the top 10 occurrences of label combination for both the datasets.

Figure 7. Scatter plot depicting the top 10 label combination occurrences of RFMiD

Figure 8. Scatter plot depicting the top 10 label combination occurrences of RFMiD2

Artificial intelligence-enabled profiling of overlapping retinal disease ... (Sridhevi Sundararajan)
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3.4. Common label combination analysis
Recognizing shared label combinations across both datasets holds paramount significance, indicating

common patterns and behaviors among labels across datasets. These recurrent combinations provide valuable
insights for deeper investigations, facilitating a comprehensive understanding of their consistent occurrences.
Furthermore, conducting comprehensive combination studies enables seamless cross-dataset analyses and con-
tributes to the smooth integration and alignment of datasets, thereby enhancing their overall utility. The analysis
underscores the prevalence of common label combinations, illuminating frequently occurring pairs. Notably,
ODC and TSLN emerge prominently in both the RFMiD and RFMiD2 datasets, with respective frequencies of
83 and 4. Furthermore, the combination (MYA, ODC) is evident across the two datasets, occurring 35 and 9
times, respectively. Moreover, exploring the relationships between these shared label combinations can uncover
nuanced insights into the underlying dynamics of the datasets. For instance, examining the co-occurrences of
labels such as (’MH’, ’ODC’) and (’MH’, ’TSLN’) may reveal interrelated patterns in the dataset, potentially
indicating specific associations or dependencies between these categories. Additionally, identifying recurring
label combinations can inform targeted strategies for data integration and analysis. By focusing on these com-
monly occurring pairs or triples, analysts can prioritize efforts to harmonize datasets and align their structures
effectively, thereby facilitating more robust comparative analyses and yielding deeper insights into the shared
characteristics or trends across datasets. In essence, leveraging the knowledge of shared label combinations
not only enriches our understanding of individual datasets but also empowers us to extract meaningful insights
that transcend individual domains, paving the way for more holistic and impactful data-driven decision-making
processes. The Figure 9 representation throws a brief overview about the label combinations common to both
the datasets.

Figure 9. Scatter plot depicting label combinations common to both datasets

4. CONCLUSION
This research focused on the analysis of two significant datasets comprising retinal disease data, re-

ferred to as ”RFMiD” and ”RFMiD2.” The goal was to gain insights into the characteristics of retinal diseases,
including their prevalence, associations, and common patterns. The analysis yielded several noteworthy find-
ings and implications within the domain of retinal disease research. In summary, this research contributes to
the understanding of retinal diseases by providing insights into disease prevalence, associations, and common
patterns. The identification of shared disease profiles between RFMiD and RFMiD2 highlights opportunities
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for cross-dataset validation and the development of more effective treatment and management strategies for
retinal diseases. Future research in this domain may involve clinical validation of findings and the integration
of additional medical data sources to enhance diagnostic accuracy and patient care. These insights hold signif-
icant potential for improving the diagnosis and treatment of retinal diseases, ultimately benefiting patients and
healthcare providers.
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