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 Brain tumors are a disease that is quite dangerous and requires severe 

treatment. One thing that is quite important is the process of diagnosing the 

brain tumor. This diagnosis process requires intense attention, and differences 

in interpretation may arise. Machine learning has been used in several fields, 

including disease diagnosis. This paper proposes an intelligent diagnostic tool 

for brain tumors using ResNet101v2. ResNet101V2 is used to classify 

meningioma, glioma, pituitary, and normal from magnetic resonance imaging 

(MRI) images. This research includes data collection, data preprocessing, 

ResNet101v2 design and evaluation. We investigate three models of 

ResNet101v2 for brain tumor classification. The best model achieves an 

accuracy of 96.2%. 
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1. INTRODUCTION 

The brain is a vital organ and acts as the center of intelligence, interpreter of the senses, control of 

body movements, and behavior controller. This organ has hundreds of billions of interconnected cells through 

trillions of connections. Brain tumor is deadly because of its aggressive nature, heterogeneous characteristics, 

and low survival rate. Therefore, this brain tumor needs to be identified as early as possible. This identification 

can then be followed up with therapy appropriate to the type of brain tumor. This encourages the need to 

develop methods for classifying brain tumors. Classification of brain tumors is conducted by considering their 

location, texture, shape, and aggressiveness [1]–[5]. 

Brain cancer treatment depends on how accurate the diagnosis of the tumor is. A definitive diagnosis of 

a brain tumor can be made by histopathological examination via biopsy. Another supporting examination is a 

computed tomography (CT) scan or magnetic resonance imaging (MRI) of the head Lateralization of interictal 

temporal lobe hypoperfusion in lesional and non-lesional temporal lobe epilepsy using arterial spin [6]–[9]. 

Manual human diagnosis requires years of special training and good stamina and concentration. Therefore, an 

intelligent brain tumor classification system is needed [10]–[12]. Machine learning or artificial intelligence has 

been applied to several applications [13]–[17]. Brain tumor MRI image classification has been carried out using 

convolutional neural networks (CNN) [18]–[22]. This study proposes a classification system of brain tumors using 

ResNet101V2 from MRI images [23]–[25].  
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This paper is then written in the following structure. First, section 2 describes the research method in 

detail. Then, the results and discussion are described in section 3, including the performance of the 

ResNet101V2 model. Section 4 concludes the paper. 

 

 

2. RESEARCH METHOD  

Figure 1 shows a system of the brain tumor classifier of MRI images using ResNet101V2. The system 

consists of data collection and processing, and the ResNet101V2 model is used as the classifier. Data 

preparation includes data labeling and cleaning. 

 

 

 
 

Figure 1. Brain tumor classifier of MRI images using ResNet101V2 

 

 

2.1.  Data collection and processing 

The data used in this research is MRI images with a resolution of 512×512. The data distribution of the 

dataset is listed in Table 1. The data used in this research is from Sardjito General Hospital, Figshare, SARTAJ, and 

Br35H datasets [26], [27]. Data from Sardjito General Hospital was collected from ten patients diagnosed with 

various types of brain tumors. The data from Sardjito General Hospital consists of 18 meningiomas from three 

patients, six pituitaries from one patient, and 28 gliomas from five patients [28], [29]. Figshare, SARTAJ, and Br35H 

datasets comprise 1645 meningioma, 1621 glioma, 1757 pituitary, and 2000 normal. 

 

 

Table 1. Data collection 
Class Training data Validation data Test data 

Meningioma 1765 207 105 

Pituitary 1615 190 96 

Normal 1700 200 100 

Glioma 1949 229 115 
Total 7029 826 416 

 

 

2.2.  ResNet101V2 

This research used Python programming with several libraries such as Pandas, NumPy, and 

TensorFlow [30]–[32]. We present three ResNet101V2 models in this paper. Table 2 lists the hyperparameter 

of the Resnet101v2 models. 

 

 

Table 2. The hyperparameter of Resnet101v2 models 

No Name 
Rotation 

range 

Width shift 

range 

Shear 

range 

Zoom 

range 
Learning rate 

Trainable 

layer 

1 Model#1 40 0.20 0.20 0.20 0.001 0 

2 Model#2 30 0.15 0.15 0.15 Piecewise constant scheduling 0 
3 Model#3 30 0.15 0.15 0.15 Piecewise constant scheduling 10 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Model#1 

Figure 2 shows the accuracy of model#1 on training and validation data. Model#1 has a training 

accuracy of 92.2%, validation accuracy of 92.4%, and test accuracy of 91.1%. Figures 3 and 4 show the receiver 

operating characteristic (ROC) and the confusion matrix of model#1 [33]–[35]. The meningioma class has the 

lowest accuracy, with an accuracy of 83.8%. 

 

3.2.  Model#2 

Figure 5 shows the training and validation accuracy of model#2. Model#2 has a training accuracy of 

94.8%, validation accuracy of 93.2%, and test accuracy of 91.4%. Figures 6 and 7 show the ROC and the 

confusion matrix of model#2. The meningioma class has the lowest accuracy, with an accuracy of 81.9%, and 
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has the smallest area under the curve based on the precision-recall (PR) curve. Fluctuations decrease where the 

loss and accuracy values slope and will move towards a concurrent condition. The difference in loss values 

between training data and validation data increases, but the difference between validation and test data 

decreases. Model#2 has unsatisfactory results because it is still below the research threshold of 95.0% but has 

resolved the problems in model#1. 

 
 

  
 

Figure 2. Accuracy of model#1 [37] 

 

Figure 3. ROC of model#1 

 

 

  
 

Figure 4. Confusion matrix of model#1 

 

Figure 5. Accuracy of model#2 

 

 

  
 

Figure 6. ROC of model#2 

 

Figure 7. Confusion matrix of model#2 
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3.3.  Model#3 

Figure 8 shows the training and validation accuracy of model#3. Model#3 has a training accuracy of 

98.4%, validation accuracy of 96.9%, and test accuracy of 96.2. Figures 9 and 10 show the ROC and the 

confusion matrix of model#3. Table 3 compares the performance of the three models of ResNet101v2. 
 

 

  
 

Figure 8. Accuracy of model#3 

 

Figure 9. ROC of model#3 
 

 

 
 

Figure 10. Confusion matrix of model#3 

 

 

Table 3. Performance of ResNet101V2 models 

Model type Training time (s) 
Accuracy (%) 

Train Validation Test 

Model#1 4086 92.2 92.4 92.3 

Model#2 4045 94.8 93.2 91.4 
Model#3 4687 98.4 96.9 96.2 

 

 

4. CONCLUSION 

This paper presented our proposed brain tumor classification system from MRI images using 

ResNet101v2. Our work includes data collection, processing, model training, and evaluation. ResNet101V2 

has been successfully applied as a tool for classifying brain tumors based on the results of MRI images. The 

experimental results show that our best model achieved a training accuracy of 98.4%, validation accuracy of 

96.9%, and test accuracy of 96.2%. 
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