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 Abnormal behavior exhibited by individuals with particular intentions is 

common, and when such behavior occurs in public places, it can cause 

physical and mental harm to others. Considering the rise in the automated 

approach for anomaly detection in videos, accuracy becomes essential. Most 

existing models follow a deep learning architecture, which faces challenges 

due to variations in motion. This research work develops a deep learning-

based hybrid architecture with temporal and spatial features. The hybrid 

temporal spatial network (HTSNet) consists of two customized architectures: 

a graph neural network (GNN) and a convolutional neural network (CNN). 

HTSNet combined with a novel classifier to extract features and classify 

normal and abnormal behavior. The performance of HTSNet is rigorously 

evaluated using the University of California, San Diego-Pedestrian 1 (UCSD 

Ped1) dataset, a benchmark in computer vision research for anomaly detection 

in video surveillance. The effectiveness of HTSNet is demonstrated through a 

comparative analysis with current state-of-the-art methods, using the area 

under the curve (AUC) metric as a standard measure of performance. This 

paper contributes to the advancement of video surveillance technology, 

providing a robust framework for enhancing public safety and security in an 

increasingly digital world.  
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1. INTRODUCTION 

The widespread adoption of video capture equipment has led to the generation of a significant volume 

of video data. The security of the residents and their possessions is contingent upon the integrity of this data. 

The identification of atypical crowd behavior is of utmost importance, particularly in scenarios involving large 

congregations of people. Anomaly detection is a crucial component for enhancing social security and 

safeguarding individuals. The utilization of video surveillance systems for public safety is prevalent [1]. 

The study presents two distinct approaches, namely a direct technique and an indirect method, for 

crowd detection. The direct approach is a detection technique that employs either segmentation or human 

detection to accurately identify and differentiate between individuals within a given scene. The map-based 

indirect approach begins by identifying visual features and subsequently employs mapping techniques to 

establish associations between these attributes and the population [2]. The implementation of these 

methodologies will result in an enhancement of pedestrian safety and a deeper comprehension of crowd 

behavior. The machine learning system has been specifically designed to evaluate the normality or abnormality 

https://creativecommons.org/licenses/by-sa/4.0/
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of various crowd scenarios, such as anxiety, clashes, and stampedes. The label distribution approach has been 

employed by the authors to address the issue of mixed behavior. The term "mixed behavior" is used to describe 

the simultaneous manifestation of multiple behaviors. This phenomenon results in a singular concentration on 

a specific task, accompanied by a lack of interest in engaging in other activities. The convergence of behavioral 

patterns can be observed when there is a simultaneous presence of fearful or confused behavior alongside 

aggressive behavior [3], [4]. 

The proposed approach involves the integration of motion information images (MII) with 

convolutional neural networks (CNN). The variational aberrant behavior detection (VABD) is a probabilistic 

method. The objective of this approach is to promptly identify abnormal crowd behavior in video clips. The 

anomaly analysis method described in [5] is based on an improved version of the k-means algorithm. A  

pre-trained 2D-CNN was developed for motion input, along with a simplified 2D-CNN. The objective was to 

achieve the highest recognition accuracy while minimizing the computational requirements. Mehmood [6] 

included a comprehensive evaluation of the progress made in the field of crowd analysis using physical 

approaches. The identified approaches can be categorized into three distinct categories: complex crowd motion 

systems, fluid dynamics, and interaction forces. Hu et al. [7] focused on evaluating a framework that had 

limited monitoring capabilities for detecting and identifying abnormal behavior detection and localization 

(ABDL) in crowded environments. 

Zhang et al. [8] introduced a valuable embedding technique known as bag-of-event-models (BoEM) 

to characterize video clips that display both normal and abnormal behavior. The researchers employed a 

methodology to generate synthetic anomalous events that faithfully replicate specific instances of anomalous 

incidents. Chandrakala et al. [9] proposed an approach for scene perception that integrates principles from 

psychology theory with the representation of fluid dynamics. This study investigates a technique for extracting 

actions from continuous unconstrained videos. The proposed approach consists of three key components: 

temporal action route searching, spatial-temporal action compensation, and spatial location estimation. Deep 

learning has demonstrated notable advancements, specifically in the domains of facial recognition and target 

tracking, among various other fields [10]. CNNs and long short-term memory networks (LSTMs) are two 

prominent types of neural networks utilized in the field of deep learning. CNN employs a combination of 

forward and reverse propagation algorithms to iteratively modify the thresholds and weights in the training 

process. The achievement of this task is accomplished by supplying the model with input labels and outputting 

video images. 

Li et al. [11] utilized cascaded classifiers to gradually distinguish between typical and abnormal 

pedestrian behavior. The identification of abnormal regions was successfully achieved by employing cascaded 

CNNs and cascaded autoencoders. Therefore, to extract aspects of pedestrian activity, the utilization of optical 

flow data from an input image and dual-stream CNNs was implemented. The challenge of handling information 

transfer over extended input sequences poses a significant obstacle for conventional recurrent neural networks 

[12]. The LSTM network was specifically developed to address this particular problem. The model for 

detecting abnormal behavior was developed using LSTM, incorporating time-domain and geographical data 

acquired through autoencoders [13]. A deep learning network was constructed by combining an LSTM and 

spatial-temporal CNN to effectively identify and classify pedestrian behaviors. The network was subsequently 

employed to detect abnormal pedestrian behavior. 

Direkoglu [14] presents a framework for anomaly detection based on deep neural networks. This 

framework utilizes weak supervision and is trained using only video-level labels. The self-reasoning-based 

training technique involves utilizing binary clustering of spatio-temporal video data to construct pseudo labels. 

This feature aids in mitigating the noise present in the labels of films that exhibit anomalous characteristics. To 

enhance the accuracy of anomaly detection, our proposed formulation advocates for the integration of the core 

network and clustering, enabling them to work collaboratively. 

The dual-stream variational auto-encoder (DSVAE) [15] is a proposed model for voice activity 

detection (VAD), consisting of two stacked variational auto-encoders (VAE) models. The first model consists 

of two shallow generative models: the fully connected variational auto-encoder (FCVAE) and the skip 

connected variational auto-encoders (SCVAE). The FCVAE model aims to learn the overall features of the 

model while excluding specific undesirable aspects. The spatial and temporal properties of the picture frames 

are accurately extracted by the SCVAE. To minimize information loss, the skip-connected variational 

autoencoder (SCVAE) establishes a connection between the encoder and decoder features. This connection 

helps maintain the flow of information throughout the model. 

The motivation for this paper is grounded in reliable video surveillance systems in an era where public 

safety and security are paramount. With the exponential increase in the amount of video data generated daily, 

traditional manual monitoring methods are no longer feasible, necessitating the development of automated 

systems capable of effectively identifying anomalous events. The challenge lies in the inherent complexity of 

video data, which includes diverse and often subtle variations in behavior and environment. The ability to 



Int J Artif Intell  ISSN: 2252-8938  

 

Enhancing video anomaly detection for human suspicious behavior through deep hybrid … (Kusuma Sriram) 

4123 

accurately distinguish between normal variations and genuine anomalies is crucial in a range of applications, 

from urban surveillance to traffic control and from retail environments to home security. By enhancing anomaly 

detection algorithms, this research aims to contribute to safer and more secure environments, while also 

addressing the significant computational and accuracy challenges posed by the vast and growing volumes of 

video data. This advancement is not just a technological pursuit; it is a step towards creating more responsive 

and intelligent monitoring systems that can play a crucial role in ensuring public safety and security in an 

increasingly digital world. 

− Hybrid temporal spatial network (HTSNet) architecture: based hybrid architecture combining temporal and 

spatial feature analysis (TSFA), leveraging the strengths of graph neural networks (GNN) and CNN for 

enhanced motion variation analysis. 

− Customized GNN and CNN utilization: the tailored GNN effectively isolates anomalous patterns, while the 

customized CNN improves spatial-temporal feature extraction, leading to more precise anomaly detection. 

Incorporation of a novel classifier within HTSNet significantly boosts the accuracy in differentiating normal 

from abnormal behaviors. 

− Benchmarking and evaluation: the model’s effectiveness is validated through rigorous testing on the 

University of California, San Diego – Pedestrian 1 (UCSD Ped1) dataset, offering comparative insights 

against existing state-of-the-art methods. The study contributes to public safety advancements by enhancing 

the accuracy and reliability of video surveillance systems in detecting abnormal behaviors. The use of the 

area under the curve (AUC) metric for performance evaluation sets new benchmarks for future anomaly 

detection systems. 

 

 

2. PROPOSED METHODOLOGY 

The methodology proposed is deep HTSNet for anomaly detection is discussed in detail in this section 

of the study, where anomalous pattern detection is dealt with a simple problem of classification, a video is split 

into various lengths of video segments 𝑃 having constant length. Further, a classifier is trained for the usual 

class as well as extraction of the characteristic vector from every video segment and every video segment 

receives an anomaly value. The characteristic vector is denoted by 𝑍 of the video segment, where the  

𝑘 − 𝑡ℎ video segment has the characteristic vector 𝑍𝑘. However, the attributes are represented graphically  

𝐻 = (𝑋, 𝐺, 𝑍) for similar features and 𝑉 = (𝑋, 𝐺, 𝑍) for consistency being temporal. Here, the vertex set is 

denoted as 𝑋, 𝐺 is used to denote the frontier set, and the vertex attribute is represented as 𝑍. The video segment 

is denoted as 𝑋, the feature resemblance as well as the consistency temporally is denoted as 𝐺, and the feature 

having d-dimension for the 𝑃 video segments is denoted as 𝑍 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃×𝑓 . The exponential function that 

is used here is normalized because the adjacency is shown as non-negative for the confinement of similarity 

inside ranges 0 and 1. Simultaneously, the adjacent matrix for features is shown by 𝐶𝐻 that depicts similar 

features quantitatively for video segments. However, the time duration of the video is expressed by the adjacent 

matrix having a consistency that is temporal which is shown as 𝐶𝑉 . Therefore, 𝐶𝐻 and 𝐶𝑉 are both described 

as given in (1) and (2). 

 

𝐶(𝑘,𝑙)
𝐻 = exp (𝑍𝑘 . 𝑍𝑙 − 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑍𝑘. 𝑍)) (1) 

 

𝐶(𝑘,𝑙)
𝑉 = exp (−‖𝑘 − 𝑙‖) (2) 

 

In Figure 1, we see that the video segments depict similar features. They are linked through the smaller 

frontier, whereas the deep-colored vertexes depict the video segments that have increased anomaly values. 

Lastly, the vertexes that are close are also marked using the same label of anomaly through the Laplacian 

graphical operator. Specifically, the unit matrix is expressed using 𝐾𝑝 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃×𝑃 . While the matrix 

adjacency along with edges is shown as 𝐶̂. This is formulated as given in (3). Here, the degree of the matrix is 

expressed as 𝐹̃. This is defined as given (5). Therefore, the graphical representation of the similarity in features 

results in the following formulation at the model level as shown in (6).  

 

𝐶̂ = 𝐹̃
−1

2⁄ 𝐶𝐹̃
−1

2⁄  (3) 

 

𝐶 = 𝐶 + 𝐾𝑃 (4) 

 

𝐹̃(𝑘,𝑘) = ∑ 𝐶(𝑘,𝑙)𝑙  (5) 

 

𝐽 = 𝜑(𝑌𝑍𝐶̂) (6) 
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Figure 1. Proposed framework for the human anomaly pattern detection 

 

 

Considering in (6), the activation function is given as 𝜑, the trainable matrix variable is given as 𝑌, 
and the characteristics at the input level are given as 𝑍. Lastly, the model of similar characteristics resulting in 

the output is combined with the temporal consistent system at the pooling level and utilizes the activation 

function sigmoid. Therefore, the probability of prediction for every graphical vertex 𝑟𝑘 matches with the 

probability of anomaly of omitting noise for the 𝑘𝑡ℎ video segment as well as the last loss function 𝜔 that 

resulted in the summation of two types of loss that are given in (7).  

 

𝜔 = 𝜔𝐹 + 𝜔𝐾 (7) 

 

The values of 𝜔𝐹 and 𝜔𝐾 are obtained by evaluation of direct as well as indirect supervision 

respectively. Before noise elimination, a classifier is trained from where an approximate value for anomaly 

probability could be obtained for every video segment having a constant length. We are given the value of 

anomaly probability as 𝐴̃ = {𝑎̃𝑘}𝑘=1
𝑃 , the algorithms that are directly supervised are used for expressing loss of 

cross-entropy as given in (8). 

 

𝜔𝐹 = −(‖𝐽‖)−1 ∑ [𝑎̃𝑘𝑘 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐽 ln  𝑟𝑘 + (1 − 𝑎̃𝑘) ln (1 −  𝑟𝑘)] (8) 

 

In this equation, the video segments that have high confidence are represented as 𝐽. Ten images are 

cropped from every frame of the video that is used in the augmentation of data as well as the computation of 

the mean anomaly probability 𝑎̃𝑘  and the variance is predicted in the classifier. The uncertain predictions are 

measured using variance. The lesser the value of variance, the higher the confidence. Indirect supervision is a 

type of temporal approach that is utilized for future implementation of some labeled data instances, as only a 

portion of the entire video has a prediction of high confidence. The goal is to ease the prediction of the network 

for all the video segments for various training phases as given in (9). In the (9), the mean of weighted prediction 

for noise omitting is given as 𝑟𝑘̅ in every training phase. 

 

𝜔𝐾 = (𝑃)−1 ∑ |𝑟𝑘 − 𝑟𝑘̅|𝑃
𝑘=1  (9) 

 

2.1.  Anomaly pattern classification 

In previous studies, anomaly pattern classification was performed directly based on training as well 

as an entire video having anomalies being classified. Although, practically, if a huge count of normal behavior 

video segments can be separated from the videos having anomalies, the performance of anomaly pattern 

classification would be enhanced. In the proposed method, we split every video into 𝑃 video segments having 

a particular constant length. For every video segment, a corresponding anomaly value is obtained at the phase 

of anomaly pattern detection. Hence, a library of video segments is obtained that has 𝑃 elements of anomaly 

values as given in (10).  

 

𝑈 = {𝑢𝑘|𝑘 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜{1,2, … … , 𝑃} } (10) 

 

To omit the normal video segments, an approach is proposed that has a fixed threshold 𝑉. The video 

segments that are higher in comparison to the threshold are labeled and the ones lower than the threshold are 

considered as normal, the normal ones are deleted. Therefore, the video post interception is expressed as  

given in (11). 
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𝑈𝑐𝑑 = {𝑢𝑘  |𝑟𝑘 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑉, 𝑢𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑈} (11) 

 

In the (11), the anomaly value prediction is given as 𝑟𝑘 by the model for anomaly detection for the 

video segment 𝑢𝑘 . Considering the (11), we observe that during the increase in threshold, the count of video 

segments having anomalies that meet this requirement is less for an individual video with anomalies, which 

could result in inadequate information for training the model for classification and lastly leads to overfitting of 

the model. On the contrary, the lesser the threshold, the higher the video segments with anomalies that satisfy 

this requirement that exist in the same anomaly video, and the higher the possibility for normal video segments 

not being completely omitted. Therefore, selecting an appropriate threshold is essential. Theoretically, we could 

predict, assuming there is no overfitting, increased threshold leads to lesser noise in input information for the 

classification system and there is an increase in the rate of accuracy. 
Conversely, based on (11) if the anomaly pattern localization is made, many video segments would 

meet the threshold for selection. These separate video segments are combined as one video and further 

classified. This could result in temporal sequence data loss of the video at the time of extracting features, the 

localization approach is enhanced as given in (12). 

 

𝐾𝑝𝑓 = {𝑘|∀𝑘 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 {𝑙, 𝑙 + 1, … . , 𝑙 + 𝑚}, 𝑙 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 {1,2, … . , 𝑃 − 𝑚}} (12) 

 

In (12) signifies that the continuity limitation includes while localization of anomaly segments. This 

is true if, at least 𝑀 continuous video segments satisfy the (12), these consecutive video segments are put in 

the video segment set with anomalies and input into the anomaly pattern classification model for testing or 

training. Lastly, this section for selection in the proposed methodology is summarized as given in (13). Using 

this approach, we omit the noise in the video segments as well as the temporal features are conserved. 

 

𝑈𝑐𝑑
′ = {𝑢𝑘  |𝑟𝑘 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑉, 𝑘 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐾𝑝𝑓 , 𝑢𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑈} (13) 

 

 

3. PERFORMANCE EVALUATION 

A thorough assessment of the proposed deep HTSNet approach on the UCSD Ped1 datasets for 

anomaly identification is carried out in this section. A comprehensive study is conducted to show the robustness 

and efficacy of the technique by comparing estimated abnormal frames with ground truth labels. The system's 

performance is evaluated against current state-of-the-art methods by calculating the AUC by showcasing the 

anomaly scores. 

 

3.1.  Dataset details 

The UCSD Ped1 dataset, created by the University of California, San Diego, is a prominent resource 

in computer vision research, particularly for anomaly detection in video surveillance. It comprises  

low-resolution, grayscale videos focusing on pedestrian walkways, where anomalies are defined as non-typical 

pedestrian behaviors like skateboarding, biking, or deviating from walkways. These videos are annotated to 

mark anomalous events, aiding in the development and testing of surveillance algorithms.  

 

3.2.  Metric used for comparison 

The AUC metric, particularly as part of the receiver operating characteristic (ROC) analysis, serves 

as a critical tool for evaluating the performance of anomaly detection algorithms. AUC in video anomaly 

detection quantifies how well an algorithm can distinguish between normal and anomalous events. A higher 
AUC value indicates a higher likelihood that the model correctly identifies anomalies and normal activities. 

Due to the often complex and dynamic nature of video data, anomalies can vary widely in appearance and 

behavior, making the AUC a valuable measure for assessing the generalizability of an algorithm across different 

types of anomalies. 

 

3.3.  Results and Discussion 

The graph in Figure 2 presents the AUC performance metrics for various anomaly detection methods 

applied to the UCSD Ped1 dataset. The PS method leads with the highest AUC of 96.34%, indicating its 

superior ability to distinguish between normal and anomalous behavior within the video footage. Plug and play 

CNN also performs exceptionally well with a 95.7% AUC. In contrast, methods like motion influence map and 

Marchenko-Pastur principal component analysis (MPPCA) are at the lower end of the spectrum, with AUCs 

of 61.9% and 66.8% respectively, suggesting a lesser degree of accuracy in anomaly detection. The majority 

of methods cluster between the 70% to 95% range, reflecting a wide variance in effectiveness, with several 

methods like sparse reconstruction, appearance and motion DeepNet (AMDN), and GrowingGas 
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demonstrating high efficacy, all scoring above 90%. The graph visually encapsulates the performance range 

across the methods, highlighting the significant differences in their ability to model and detect anomalies within 

the dataset. Table 1 shows the AUC comparison for the UCSD ped 1 dataset. 

 

 

Table 1. AUC comparison for UCSD ped1 dataset 
Method AUC (%) 

MPPCA [16] 66.80 

SF [17] 67.50 

MPPCA+SF [17] 74.20 

Sparse reconstruction [18] 86.00 

ConvAE [19] 81.00 
ConvLSTM-AE [20] 81.50 

Motion influence map [21] 61.90 

Unmasking [22] 68.40 

Chong and Tay [23] 89.90 

AMDN [24] 92.10 
GrowingGas [25] 93.80 

Stacked RNN [26] 83.10 

Frame-pred [27] 81.10 

Plug and play CNN [28] 95.70 

Deep ordinal regression [29] 71.70 
Ramachandra et al. [30] 77.30 

Ramachandra and Jones [31] 86.00 

Georgescu et al. [32] 76.30 

ES [33] 94.20 

PS 96.34 

 
 

 
 

Figure 1. AUC curve for UCSD pred 1 dataset 

 

 

4. CONCLUSION 

In conclusion, the study successfully demonstrates the efficacy of the deep HTSNet for anomaly 

detection in video surveillance, marking a significant stride in automated anomaly detection technology. By 

innovatively segmenting video into constant-length segments and employing a graph-based feature analysis, 

deep HTSNet not only enhances the accuracy of detecting anomalies in complex and dynamic environments 
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but also significantly boosts computational efficiency. The method's robustness against noise and false positives 

is a notable advancement, addressing key challenges in the field. The comprehensive evaluation of the UCSD 

Ped1 dataset, where the method showcased superior performance over existing state-of-the-art techniques, 

particularly in terms of AUC, reaffirms its potential for practical implementation. This research paves the way 

for more responsive and intelligent surveillance systems, contributing to heightened public safety and security 

in our increasingly digital and urbanized world. 
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