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 The deep learning of object detection has become a breakthrough in recent 

years. Many papers demonstrated that this method records significant 

reliability results. However, the question arises whether objects that were 

successfully detected are initially conditioned clear in daylight. The object 

being detected is in the form of a photographic product that has numerous 

problems. It can be distant or have low-contrast so that their signatures are 

challenging to recognize, especially detection of persons in surveillance 

systems for dark-environments. This paper contributes to proving the deep 

learning method capable of detecting night-person (NP) with high precision 

and recall in the dark without image enhancement, by using ordinary 

cameras which operate on day-night or visible-near infrared spectrum runs 

on embedded systems. For that, an infrared-cut filter mechanical shutter is 

designed to block for the day or deliver infrared light for the night. The NP 

signatures are illuminated by an external infrared light source, providing 

three-channel high-resolution images. The distance of a NP from the camera 

becomes a decisive successful detection. The external infrared light source 

makes objects under or overexposed affecting the object being recognized. 

The validation with thoroughly new data of the NP constantly provides high 

precision and recall. 
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1. INTRODUCTION 

Computer-assisted visual intelligence is the most active research topic nowadays. Vision from a 

camera is the only way an artificial intelligent device sees the world of the environment by the light. 

Although the other way, a synthetic aperture radar (SAR) [1]–[3] or light detection and ranging (LiDAR) 

[4]–[6] is able to imagine the world of the environment through radio or light backscattering, however not yet 

widely applicable. A camera is a passive sensor, that can see the objects from the reflection of the light that is 

illuminated surface in the visible (VIS) light spectrum 0.4-0.75 μm wavelength. In the light spectrum, the 

longer wavelength beside VIS is infrared light. The infrared wavelength spectrum covers from 0.75 to 1000 

microns (μm) and is divided into several bands i.e., near, mid, shot, long, and far infrared. With their 

wavelengths near-infrared (NIR) 0.75–1.4, short-wavelength infrared (SWIR) 1.4–3, mid-wave infrared 

(MWIR) 3–8, long-wave infrared (LWIR) 8–15, and far infrared (FIR) 15–1000 in micron [7]–[9]. 

A camera sensor also operates in the NIR band as a night-vision camera and in the LWIR band as a 

thermal-imaging camera when there is insufficient light or dark environment. These two types of sensors 

have different mechanisms and should not be confused [10], [11]. The NIR camera is an active sensor, which 

means the camera is equipped with an infrared light source to illuminate an area of interest and capture back 

https://creativecommons.org/licenses/by-sa/4.0/
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reflection of infrared energy, interpreted to generate an image. The NIR camera produces sharp-quality 

imagery, making objects VIS to the human eye when dark. Because equipped by an infrared light source 

usually an LED, it suffers within working range and cannot remove obstructions in front of an object [10], 

[12]. The NIR image has three channels like VIS RGB, but wider sensitivity. Rapid application in the vision 

industry made the NIR camera low-cost, making it an alternative to VIS imaging on a robust and practical 

identification system. 

The LWIR camera is a passive sensor. This means the object of interest has its own infrared energy 

to emit as electromagnetic waves to the environment. Some of that infrared energy is captured by the LWIR 

camera and interpreted to generate an image. The infrared energy source comes from the heat of the object's 

body, providing thermal information on the self-radiation of an object [13], [14]. These heat signatures are 

usually cold as black and hot as white displayed on the image. This camera covers wider distances and is not 

affected by smoke, haze, fog, dust, or oncoming headlights. For comparison, the human body's temperature at 

310 deg K (36.85 deg C) has the peak wavelength of black-body radiation at 9.35 μm from Wien's 

displacement law [15], [16]. The LWIR camera produces coarse quality imagery, heavy noise, and low 

resolution, details in visual of objects are lost, and only the outlines are conserved due to the lack of 

information (one channel gray-scale image) and sensitivity to temperature changes in the environment, makes 

it is vulnerable to warm cold air. This disadvantage makes it challenging for imaging identification systems. 

Results can be misclassified by the environmental information and suppress the detection accuracy [11]. 

With computer-assisted visual intelligence, automatic surveillance, and monitoring systems become 

a must-have installed in private and public areas, as a major concern to security and law enforcement of 

human and property [17]. This allows data acquired by surveillance cameras to be automatically processed 

without continuous attention from operators [18], [19]. Nowadays, automatic surveillance systems have 

reached a level of maturity, embedded with artificial intelligence features on practical applications. Although 

deep learning using convolutional neural networks (CNN) achieved significant breakthroughs in object 

detection [20], [21] most results are efforts on VIS images and avoid illumination difficulties i.e., lowlight to 

absolutely dark environments [22]. Most research on lowlight VIS images commonly addresses image 

enhancement problems that utilize massive resources or thermal imaging surveillance that demands 

expensive hardware [23]–[25]. Meanwhile, relatable object detection is given less attention.  

For a better understanding and further development of CNN object detection in the dark 

environment, this paper contributes to this field forward. First, present NIR image datasets of persons in the 

dark environment completed with ground truth annotation. This is crucial because available datasets that 

publicly specifically provide NIR images for object focus are occasional. Further challenges arise for data 

annotation because it is difficult to manage the volume of data. Second, presents an object-focused analysis 

of NIR images and their differences from VIS images for a better understanding. Finally, it presents the 

results of object detection using state-of-the-art algorithms and learned features. 

 

 

2. METHOD 

This research requires a dark room such as an indoor corridor or alley where outside light cannot 

penetrate. The dark room and camera sketch up as seen in Figure 1. The dark room is long enough and 

narrow enough to avoid stray infrared reflections or sources, and all the stuff inside the room is temporarily 

removed. In Figure 1, d is a distance variable between the night-person (NP) which acts as a thief with the 

camera. The camera setup consists of a base camera rotator, NIR camera itself, built-in infrared LED, built-in 

light sensor, passive infrared (PIR) sensor [26], [27] array, and additional 3-watt infrared flashlight used to 

strengthen the distance of observation. The infrared sources will illuminate objects in front of the camera 

with distance d as the analysis variable. Light-sensor is a light-dependent resistance (LDR) active signal 

when in dark or low-light conditions. Insert figure in Figure 1 is the construction of a PIR sensor array. PIR 

sensor observes infrared energy emissions as present in the human body. The PIR array sensor consists of 

five PIR sensors that are arranged with 15 deg angle observation. For better sensing, PIR is placed inside an 

aluminum tube, covered by aluminum foil. PIR array sensor brings the active signal to the rotator as a base of 

the camera body to maneuver, resulting in the presence of a person's body center inside the camera frame. 

A single board computer (SBC) Raspberry Pi 4 8 Gb RAM (RPi) is used for object detection 

processing and microcontroller for human detector and camera base rotator [28]–[30]. The hardware wiring 

diagram is seen in Figure 2. A camera package with a light sensor and built-in infrared LED bond to the 

camera serial interface (CSI) of RPi. The rotator is a 2-phase bipolar stepper motor (NEMA) with 0.9 deg per 

step driven by a 4-channel L298N motor driver. The 4-channel input (in1-in4) connects to 4 of RPi GPIO i.e., 

pin29-pin35. The rotor was initially set up at zero deg, the center of the camera base by lever-switch pin11 of 

RPi GPIO. The rotator will turn clockwise (cw) or counterclockwise (ccw) according to the PIR array signal. 

The PIR array is HC-SR505 mini type connected to pin36-pin40 of RPi GPIO.  
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Figure 1. Research setup 
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Figure 2. Hardware wiring diagram 

 

 

The camera uses a 5 MP (ov5647) with an infrared-cut filter feature. The infrared-cut filter operates 

with a mechanical shutter to block infrared light for the day or deliver infrared light for the night or in low 

light conditions. This provides a true color high-quality image regardless of day or night. The infrared-cut 

filter mounts between lens and image-sensors as shown in Figure 3. The infrared -cut filter mechanically 

controlled onboard by a motor or an electromagnet coil that pushes or pulls the filter based on sense by light-

sensor and turns on a built-in infrared LED. The RPi runs Debian Bullseye 64-bit OS with remote access via 

a virtual network computing (VNC) server and client. For a better frame per second (FPS) of object 

detection, an edge tensor processing unit (TPU) accelerator is attached to RPi. The mechanical camera setup 

in Figure 2 is operated by Python programming which accesses the RPi GPIO through the RPi-GPIO library. 

The RPi camera module was initiated using the picamera2 library. For NP object detection, this research used 

the TensorFlow2 (TF2) object detection application programming interface (API) [16]. 
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Figure 3. Infrared-cut mechanism 



Int J Artif Intell  ISSN: 2252-8938  

 

Detection of vague object signatures on deep learning surveillance devices (I Ketut Swardika) 

3265 

2.1.  Night-person datasets collection 

The first research step is collecting of images NP datasets using the research setup in Figure 1. The 

NP stand-in male with attribute wearing a facemask, hat, jacket, or hoody as one class object. Walk randomly 

to the camera with attention to variable d as distance. For simplification, they act over a line mark of 7 m and 

6 m. The NP images are captured automatically using Python CV2 programming with dimensions 640 by 

480 pixels. The NP images focused only on object structure and omitted detail on the face. Total images NP 

datasets collected about 800 images. For an early preview, the NP image datasets with their BGR histogram 

are present in Figures 4(a) and 4(b) in this section, further analyses and discussion will be presented in the 

next section. For better understanding, the NP image is also compared with VIS day_person (DP) images 

with their BGR histogram in Figures 5(a) and 5(b). 

 

 

 
(a) 

 

 
(b) 

 

Figure 4. The NP image datasets, (a) NP images in the dark room and (b) their histogram BGR channel 

respectively 

 

 

 
(a) 

 

 
(b) 

 

Figure 5. The DP image datasets, (a) DP images on the day room and (b) their histogram BGR channel 

respectively 

 

 

2.2.  Object detection 

Object detection is a computer vision (CV) task concerned with automatically finding semantic 

objects in an image, through a training process with a bunch of images and respective annotations. Before 

that, CV is a hard subject to get running, strong understanding of the underlying computer infrastructure and 

deep knowledge of machine learning to achieve a minimally acceptable performance. Today, with the 
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breakthroughs of deep learning, object detectors achieve state-of-the-art accuracy and impressive real-time 

FPS rates [14], [16]. With the TF2 object detection API framework, it’s now more convenient for writing 

complex models like object detectors with only concerns about hyperparameters tunning to achieve the 

desired performance [10]. 

The model of object detection is a combination of two tasks i.e., classification of the object label and 

regression of the bound-box coordinates as seen in Figure 6. This means that the model has two output 

branches. The streamlining of the model consists of the input layer, feature extraction or hidden layer, and 

output layer. The common structure of the feature extractor is composed of a sequence of convolution layers 

(CNNs, ReLU activation, and pooling) [10]. Features are something like building blocks of images i.e.,  

low-level regularities in the training data. The extracted features are fed into the adapter layer, which is 

basically a flattened layer and ends with two output branches (fully connected layers) i.e., the classifier and 

the regressor. Both classifier and regressor have a similar architecture, except at the end the classifier has 

only one output i.e., class label while the regressor has a four-unit output i.e., bounding box coordinates. 

During the training process, each output branch will be specialized to its respective task. 
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Figure 6. NP object detection architecture 

 

 

In order to learn, the network provided consistent knowledge about objects. This process is known 

as ground truth or annotation images as seen in Figure 7. With this process, set pixels of object structure i.e., 

the NP class object segmented from others set pixels. The annotation information consists of the source file, 

class name, and geometric segmentation. The annotation file in XML for pattern analysis, StatistiCAL 

modeling, and computational learning (PASCAL) visual object classes (VOC) format is separated from the 

image file [1]. Produce a total image dataset of about 800 images (JPEG) and their 800 annotation-file 

(XML) respectively. Data preparation set before mounting to COLAB drive, divided into three folders i.e., 

randomly selects 80 percent for train, 10 percent test for evaluation, and the remaining 10 percent for 

validation to ensure the training process is not overfitting [14]. 

 

 

 
 

Figure 7. NP annotation 



Int J Artif Intell  ISSN: 2252-8938  

 

Detection of vague object signatures on deep learning surveillance devices (I Ketut Swardika) 

3267 

As the target model will be running on an SBC RPi, the model output must be light enough. 

Therefore, the model output must be exported into the lite version of TF2 (TFlite). One of the lite model 

versions that is developed specifically for SBC and IoT devices is the efficient detector lite model. This 

model assures running well with reasonable accuracy on RPi. The training process is run on Colab with 

TFlite model maker library installed inside Conda virtual environment. For train model evaluation, simply 

use COCO metric evaluator format provided by cocotools library [23]. 

As seen in Figure 6, the model output has two branches, the classifier and regressor. Both outputs 

are greatly different, therefore at least two metric evaluators are needed. Since the objective of object 

detection is to correctly classify the objects and where those objects are in the image, image classification 

metrics such as precision and recall cannot be simply used. Therefore, the metric evaluator offers both 

classification and geometric consideration. First, for geometric consideration use intersection over union 

(IoU) pixels. Its ratio between overlap and union of ground-truth bound-box pixels and predicted bound-box 

pixels, as seen in (1). The number will be zero to one, where one meaning exactly matches both bond boxes. 

At least an IoU threshold of 0.5 is typically considered. Second, for classifier offers a confidence score (CS) 

as seen in (2), which is the probability of the image being detected correctly by the network and is given as a 

percentage [14]. 

 

𝐼𝑜𝑈 =
∑ (𝐺∩𝑃)𝑝𝑥

∑ (𝐺∪𝑃)𝑝𝑥
=

∑ (min𝑥𝑦(𝐺,𝑃)−max𝑥𝑦(𝐺,𝑃))𝑝𝑥

∑ (𝐺+𝑃−min𝑥𝑦(𝐺,𝑃)−max𝑥𝑦(𝐺,𝑃))𝑝𝑥
 (1) 

 

Where G and P are ground truth and predicted pixels. While min/max G and P is the minimum and maximum 

coordinates of G, P, or width and height of intersection areas. 

 

𝐶𝑆 = 𝐶𝑙𝑎𝑠𝑠𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦. 100% (2) 

 

To improve or benchmark model results, sometimes need a single-number metric. However, cannot 

simplify multiply IoU and CS. Because object detection considers a qualitative number of success or failure 

predictions on sample test datasets. Therefore, they are divided into true-positive (TP), when actual (true) and 

predict class agrees (positive), otherwise true-negative (TN). Errors will come when the actual (false) and 

predicted class agree (positive) false-positive (FP) or the predicted class disagrees (negative) false-negative 

(FN). All bounds will be summaries from their confusion matrix. When measuring the precision or accuracy 

of the model in classifying samples as positive, bring up precision as in (3). And how sensitive or recall of 

model in classifying samples as the right prediction out of all predictions, present in (4) [31]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (4) 

 

Both metrics should reach maximum, otherwise, there is a trade-off between them which causes 

issues in the model's performance. In practice, to get the best compromise between these metrics by setting a 

threshold on the precision-recall curve. For each setting threshold respects their precision after interpolation 

(Pinterp), by average all precision (AP) across all unique recall (R) levels ends AP as seen in (5) [32]. 

 

𝐴𝑃 = ∑ (𝑅𝑖+1 − 𝑅𝑖)
𝑛−1
𝑖=1 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑖+1) (5) 

 

If the model detects more than one class, (5) becomes mean average precision (mAP) across all classes (K) as 

seen in (6). Within the training process, model NP will be evaluated with metric mAP [23]. 

 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖
𝐾
𝑖=1

𝐾
 (6) 

 

Analysis will be conducted from training to implementation results. In the training process with 

fixed model selection, conversion model format from tensor flow to lite version of tensor flow and edge TPU 

format affects precision and performance. The amount of training datasets not only affects the time-step to 

the longer training process but possibility wider of validation loss. These results will be analyzed using a 

statistical comparison method. In the implementation, as an NIR camera suffers with the working range the 

NP detection performances will be associated with object distance. The mAP result will be obtained from 

real-time detection of NP wearing various attributes. 
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3. RESULTS AND DISCUSSION 

The NP that was captured by the NIR camera as seen in Figure 4(a) is a three-channel BGR image. 

Images look dark with predominantly purple. The NP pixel's object structure is clearly distinguished and 

brighter compared with the darkroom. The three-channel BGR histogram of NP in Figure 4(b) is expected to 

be identical or in grayscale but not, all channels can be distinguished. The green channel is more dominant. 

Like dark images, histograms assemble to the left toward zero. The arithmetic mean of all pixels is about 53 

and the median statistic is about 51. Since NP is captured by an active NIR camera in the darkroom which 

camera sensor absorbs reflected infrared energy, and the NP pixel’s structure is clearly obtained even person 

wears a dark outfit. Comparison with DP images in Figure 5(a) shows a person standing in a predominantly  

white-paint room. A person wearing a dark shirt clearly sees contrast with the room color. The DP histogram 

in Figure 5(b) shows channels that distribute and accumulate in the center of the histogram. This is due to DP 

images dominated by white color. With no light, DP captured by a passive VIS camera in the darkroom 

results in nothing only dark images. 

Kristo et al. [33] review images resulting from thermal imaging (LWIR) cameras which provide 

much less detail and lower resolution. The pixel body of NP tends to be blurred and cannot determine the 

boundary surrounding the background. Dai et al. [34] provide a comprehensive comparison of NP capture by 

VIS, NIR, SWIR, and LWIR cameras. And state that longer operational wavelength causes lower resolution 

and detail but is more expensive. 

 

3.1.  Mean average precision network format evolution 

The NP dataset had been trained on Google Colaboratory with GPU hardware accelerator. Within a 

total of 800 images and 50 epochs, the train process took 69.65 minutes to finish. During the training process, 

logs were saved for further analysis. Since the model will run on SBC RPi, the network format evolution is 

presented, and the results are shown in Table 1. The mAP metric is a primary challenge metric, its computed 

within 10-step thresholds of IoU starting from 0.50 to 0.95 [16]. This is a standard metric to evaluate the 

performance of object detectors, however, there are variations among the metrics shown in Table 1. The 

mAP50 or mAP70 is mAP computed with single thresholds of IoU. Another variant of mAP computes across 

scales with large, medium, and small areas. The mean average recall (mAR) is another variant that uses recall 

rather than precision [23]. The mAP_/NP overall high over 0.85, within network format conversion to edge 

TPU a slick reduces to 0.84. This network format evolution reduces the workload to 38 percent as seen from 

network file size (MB). These mAP results are comparable with the related study in [16], where obtained mAP 

around 0.70-0.80. Additionally, the smaller network size improves the precision of real-time detection [14]. 

 

 

Table 1. Metrics network format comparison 
Metrics TF TF lite Edge TPU 

mAP 0.87263596 0.86358064 0.8425685 

mAP50  1.0 1.0 1.0 

mAP75  1.0 1.0 1.0 

mAP_/NP  0.87263596 0.86358064 0. 8425685 
mAPl :  0.8726906 0.86359024 0. 8425685 

mAPm :  -1.0 -1.0 -1.0 

mAPs :  -1.0 -1.0 -1.0 

mARl :  0.91625 0.88375 0.84565 

mARm :  -1.0 -1.0 -1.0 
mARmaxl  0.88502 0.88465 0.84375 

mARmaxl0 0.91625 0.88375 0.84265 

mARmaxl00  0.91625 0.88375 0. 84265 

mARs  -1.0 -1.0 -1.0 

Size(MB) 7.2 5.8 4.4 

 

 

3.2.  Loss of train and validation 

In the training process to ensure the training process runs properly, loss is used to measure quantities 

of the error produced by the network. High loss means the network produces erroneous output. Two losses 

are mostly used to assess network performances i.e., train and validation loss. The training loss indicates 

training data fits by the network, while validation loss shows how the network fits on new data. Figure 8 

shows the network learning curve by both losses. To omit overfit or long-period training, full dataset (within 

800 images) and halt dataset to be tested. Results shown in Figure 8(a) with a full dataset, the network tends 

to be overfit. In Figure 8(b) gap between losses becomes small, indicating that the network optimally fits and 

can generalize on new data. These results were confirmed by an investigator in [14], who stated that deeper 

networks, heavy datasets, and longer training processes cause overfitting. 
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(a) 

 

 
(b) 

 

Figure 8. Comparison of train and validation loss for (a) full datasets and (b) halt datasets 

 

 

3.3.  Night-person detection 

The real-time NP detection also considers of distance NP from the camera, as known the NIR 

camera heavily depends on an active infrared light source. Figure 9 shows real-time NP detection at various 

distances from the camera. NP distance gradually longer from the upper-left to the bottom-right image. The 

blue bounding box labeling with CS indicates NP has been detected. This figure is also printed of FPS 

detection with an average of 6 FPS beside time stamps. The real-time NP detection has been tested 10 times 

for each distance and results in good performance. In general, the real-time NP was successfully detected 

with a high CS above 0.7 for various distances between 1 m to 6 m. Kristo et al. [33] carefully determine the 

distance of thermal imaging cameras to successfully detect humans in various weather conditions. In foggy or 

rainy weather conditions, for successful human detection, the distance is close enough. Dai et al. [34] use a 

strong infrared light source installed on a car to get enough distance (about 20 m) for pedestrian detection. 

These results show that distance is crucial in nighttime object detection. 

 

 

   

   
 

Figure 9. NP with 1 m camera distance from upper-left to 6 m camera distance (bottom-right) 
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The true NP detection which NP successfully detected with various distances has been summarized in 

Figure 10. In figure shows the number of true NP detected with various distances in meters. The optimal 

distance that NP successfully detected falls in the range of 4 m to 6 m. When NP is too close or far from the 

camera, pixels of NP structure become unclear due to very high or low exposure from an infrared LED source. 

 

 

 
 

Figure 10. Optimal NP distance from camera successfully detects 

 

 

The real-time NP detection of precision and recall are computed using (3) and (4), after values of 

TP, FP, and FN are obtained from the binary confusion matrix. Within 100 times detection of the trial, the 

result was obtained where TP=86, FP=0, and FN=14. Therefore: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) = 86/(86 + 0) = 1.0  

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) = 86/(86 + 14) = 0.86  

 

Both precision and recall are high, which means that the network is capable of generalized detection of NP. 

An additional test was carried out to confirm the system is working also with absolutely new data. Where NP 

is in the form of female or male wearing new attributes that have not been in the training dataset. Figure 11 

shows the result of NP detection with new data, where Figures 11(a) to 11(c) male wearing a mask, hat, or 

coat, while Figure 11(d) female. The results of CS show a high above 70% with an average of 6 FPS. This 
result confirms that the network is capable of generalized detection of NP. 

 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 11. Additional test with new data 
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4. CONCLUSION 

The NP images captured by the camera in the dark environment is a day-night or VIS-near infrared 

camera which operates at 0.4–1.4 μm wavelengths. There is an infrared-cut filter that operates with a 

mechanical shutter to block infrared light for the day or delivers infrared light for the night or in low-light 

conditions, providing three-channel high-resolution images. The camera is an active sensor equipped with an 

infrared light source to illuminate the object's surface and capture back reflection to generate an image. The 

NP images look dark with predominantly purple, and the pixels of object structure are clear and brighter. The 

images have a three-channel histogram separated independently and the green channel is dominant. The 

image histogram assembles to the left toward zero as a dark image. Preparation of the NP detection requires 

ground truth information within the appropriate format as an additional separated file. The deep learning of 

object detection uses a pre-train model that is a network consisting of the classifier and the regressor. The 

classifier has a task to infer classes, while the regressor determines class location with maximum confidence. 

The average precision is used as a single metric obtained from the precision-recall curve to evaluate the 

network. The learning curve is evaluated using the train again validation curve. The validation curve over the 

training curve causes overfitting due to an insufficient set of train datasets. NP detection uses an ordinary 

camera with infrared capability capable of producing high-precision detection. The additional infrared light 

source causes objects to be under or overexposed affecting the object being recognized furthermore affecting 

distance and detection results. 
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