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 Deep learning models have been successfully applied to many visual tasks. 

However, they tend to be increasingly cumbersome due to their high 

computational complexity and large storage requirements. How to compress 

convolutional neural network (CNN) models while still maintain their 

efficiency has received increasing attention from the community, and 

knowledge distillation (KD) is efficient way to do this. Existing KD methods 

have focused on the selection of good teachers from multiple teachers, or 

KD layers, which is cumbersome, expensive computationally, and requires 

large neural networks for individual models. Most of teacher and student 

modules are CNN-based networks. In addition, recent proposed KD methods 

have utilized cross entropy (CE) loss function at student network and KD 

network. This research focuses on the quantifiable evaluation of  

teacher-student model, in which knowledge is not only distilled from 

training models that have the same CNN architecture but also from different 

architectures. Furthermore, we propose combination of CE, balance cross 

entropy (BCE), and focal loss functions to not only soften the value of loss 

function in transferring knowledge from large teacher model to small student 

model but also increase classification performance. The proposed solution is 

evaluated on four benchmark static image datasets, and the experimental 

results show that our proposed solution outperforms the state-of-the-art 

(SOTA) methods from 2.67% to 9.84% at top 1 accuracy. 
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1. INTRODUCTION 

Convolution neuron network has become a successful solution in many fields, such as natural 

language processing (NLP) [1], [2], and computer vision (CV) [3]–[5]. In many reviews, convolutional 

neural network (CNN) architectures are increasingly complex, but in return, their efficiency is increasing [6], 

[7]. The complex architecture of CNN models with a large number of parameters will lead to high 

computational cost and large memory storage. This limits the ability to deploy the CNN models on limited-

resource devices. In order to boost the performance of a simple and small-size CNN model that can be 

deployed for robot applications and/or mobile devices, the knowledge distillation (KD) technique has been 

considered to transfer the trained parameters from a complicated model to a light model. This KD process is 

called the student-teacher framework, where the large model plays the role of teacher and the light model is 

the student [8]–[11]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The first KD method was proposed by [12], and expanded by [8]. The KD method is used for model 

compression and knowledge transfer. It could be deployed as an online or offline distillation model, with a 

single teacher or multiple teachers, supervised or unsupervised learning. In many reviews [8], [9], [13], KD 

methods are divided into two main categories: i) feature distillation [10], [11] which compresses knowledge 

at feature levels; ii) model distillation [14], [15] with the parameters transferred between two models of 

teacher and student through loss functions. For the feature KD method, it boosts the performance of a small 

student model with the supervision of the output feature maps from a complex teacher model. Some recent 

researches introduced a single teacher or multiple teachers to provide more supervision to a student network. 

Guan et al. [10] tackled both the efficiency and effectiveness of KD with feature aggregation to imitate the 

multiple teachers in the single teacher framework. According to Guan et al. [10], the differentiable feature 

aggregation (DFA) method is used to extract informative supervision from feature maps of multiple teachers 

by a two-stage DFA search. Heo et al. [16] investigated the design aspects of feature distillation methods for 

achieving network compression. In this work, the distillation loss is designed to create a synergy among 

various aspects: teacher and student transformations, distillation feature position, and distance function with 

distillation loss. It composes a feature transform with a designed margin rectified linear unit, a distillation 

feature position, and a partial Euclid distance function to skip redundant information, giving adverse effects 

to the compression of the student. Liu et al. [17] merges the transfer learning task and the model compression 

task into one stage that distills and transfers knowledge at the feature map level, releasing inconsistency 

between teacher and student. However, the multiple-teacher distillation method requires costly computation. 

In addition, comparisons between distributions of features are large, complex works, and there is no 

generalization for layer feature distillation. 

For the loss function distillation, Yao et al. [14] proposed a graph few shot learning algorithm that 

incorporates prior knowledge learned from auxiliary graphs. A transferable metric space characterized by a 

node embedding and a graph-specific prototype embedding function is shared between auxiliary graphs and 

the target, facilitating the transfer of structural knowledge. This paper used reconstruction loss for training 

auto-encoders. According to Zhang et al. [15], an object relational graph-based encoder, that captures more 

detailed interaction features to enrich visual representation. In this work, a teacher recommended a learning 

method to make full use of the successful external language model to integrate the abundant linguistic 

knowledge into the caption model. The training criterion is based on the cross-entropy loss that temperature 

used to smooth output distribution. Siam et al. [18] proposed a teacher-student learning paradigm to teach 

robots about their surrounding environment. Two stream motions and appearances teacher network provide 

pseudo-labels to adapt to an appearance student network. The student network is able to segment the newly 

learned objects into other scenes, whether they are static or dynamic actions. The model distillation approach 

is highly generalized and simpler than data distribution comparison, thus reducing time costs. According to 

Siam et al. [18], the cross-entropy loss is also viewed as a mean value to decrease the divergence between the 

true distribution and the predicted one. However, most of the studies have been focused on analyzing the 

influence of the teacher model on a student, the role of many teachers versus fewer teachers, or studies using 

only cross entropy (CE) loss functions. In addition, research concentrated on the same type of CNN network 

for teacher and student, where teacher is the higher version and student is the smaller version (e.g., 

Resnet101 vs Resnet18, or DenseNet121 vs Densenet169.). In summary, the contributions of this research are 

two-fold: i) a new method for transferring knowledge between the teacher model and the student model is 

proposed, in which we investigate the influence of CE, balance cross entropy (BCE) and focal loss (FC) 

functions on transfer learning between a teacher model and a student model; ii) we quantitatively evaluate the 

effect of the proposed solution on KD between the same CNN architecture styles and the different CNN 

architecture styles. Some limitations and suggestions for future work are also discussed. 

The remainder of this paper is organized as follows: section 2 firstly explains the proposed 

evaluation scheme. The experimental results and discussions are analyzed in section 3. Finally, section 4 

concludes the proposed research directions for future works. 

 

 

2. METHOD 

Our proposed framework is illustrated in Figure 1, which comprises three main parts: The first part 

includes a teacher model as shown in Figure 1(a). It is a complex network with a large number of trained 

parameters. The second part is a student model whose network is more simple than the teacher network as 

shown in Figure 1(b). The third part comprises KD is shown in Figures 1(c) and 1(d). Given a target dataset, 

the progress of KD is firstly retrained and/or fine-tuned for the teacher network to obtain a teacher model. 

This complex model is then utilized to transfer to the student network where the teacher network is blocked 

on all layers and the student network is transferred with the adjusted parameters through the KD loss function 

(the third part concludes Figures 1(c) and 1(d)). In this paper, we propose a new loss function combination of 

the KD framework that is presented in detail in the next sections. 
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Figure 1. Our propose KD framework, (a) pretrained complex of teacher model, (b) simple of student model, 

(c) CE/BCE KD block, and (d) FC KD block 

 

 

2.1.  Cross entropy, balance cross entropy, and focal loss functions 

For a machine learning or deep learning model, a loss function is used to optimize and adjust 

parameters when the model is trained. The objective function is the best way to minimize the value of the 

loss function. The lower the loss, the better the model. In this section, we briefly survey some common loss 

functions such as CE, BCE, and FC. 

The CE method [19] was proposed as an adaptive importance sampling procedure for the estimation 

of rare-event probabilities that uses the CE function [19] A or Kullback-Leibler divergence [20] as a measure 

of closeness between two sampling distributions. The CE loss function is an important loss function that is 

widely used with a skewed dataset. It is pegged to an understanding of the softmax activation function. 𝑦̂ is 

the predicted probability distribution, and 𝑦𝑖  is the ground truth probability distribution. The cross-entropy 

loss function is shown in (1): 

 

𝐿𝐶𝐸(𝑦, 𝑦̂) = −∑ 𝑦𝑖log⁡(𝑦𝑖̂)
𝐶
𝑖=1  (1) 

 

Moreover, previous research indicated that the CE function is not good for imbalanced data. Thus, 

the CE function [21] is improved by weighted CE. It is widely used for skewed datasets in which both 

positive and negative examples are weighted by α as presented in (2): 

 

𝐿𝐵𝐶𝐸(𝑦, 𝑦̂) = −𝛼∑ 𝑦𝑖log⁡𝑦𝑖̂
𝐶
𝑖=1  (2) 

 

Where 𝛼 =
1

𝜖+𝑓𝑖
, ϵ is constant which helps to avoid zero denominator. However, the BCE method is not 

efficient for serious imbalances of data between categories in the training dataset. But it does not really 

change the gradient descent of the loss function yet. While the model is trained on the severely imbalanced 

sample, the gradient descent value is largely influenced by the dominant class. It is necessary to adjust more 

radically to increase the influence of minorities on gradient descent. The FC function [22] is proposed as 

illustrated in (3) which continues to inherit BCE and adjusts for gradient descent.  

 

𝐿𝐹𝐶(𝑦, 𝑦̂) = −𝛼∑ 𝑦𝑖(1 − 𝑦𝑖̂)log𝑦𝑖̂
𝐶
𝑖=1  (3) 

 

The FC loss obtains the best effects on a highly-imbalanced dataset, down-weighing the contribution 

of easy samples and enabling the model to learn hard samples. It is clear that the FC function of (1 − 𝑦𝑖̂) is 

added in the BCE formula. However, this element is effective in adjusting output labels on the loss function 

and gradient descent. In this work, we propose to combine the loss functions of CE and FC functions, or BCE 

function and FC function, in the KD framework. They will be presented in the next section. 
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2.2.  Loss function combination strategy for the knowledge distillation method 

Given Ii image, its ground truth label is 𝑦𝑖 . The Ii image is passed through the teacher model and the 

student model. The predicted result of the teacher model is 𝑦𝑝𝑟𝑒𝑑
𝑡𝑒𝑎𝑐ℎ𝑒𝑟 = 𝑦𝑡̂ . The predicted result of the student 

model is 𝑦𝑝𝑟𝑒𝑑
𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑦 𝑠̂. KD was first introduced [8], it applied the original CE function as shown in (4): 

 

𝐿(y,𝑦 𝑠̂,⁡𝑦𝑡̂ )= 𝐿𝐶𝐸
𝑆 (y, 𝑦 𝑠̂) + 𝜆𝐿𝐶𝐸

𝐾𝐷(𝑦𝑡̂ , 𝑦 𝑠̂) = −∑ 𝑦𝑖log𝑦𝑖𝑠̂
𝐶
𝑖=1  -⁡𝜆 ∑ 𝑦𝑖𝑡̂ log𝑦𝑖𝑠̂

𝐶
𝑖=1  (4) 

 

Moreover, KD utilizes CE as (4) is a hard logit probability distribution. Thus, it is then added with 

temperature scale normalization for a soft logit probability distribution as illustrated in (5) and (6). This 

transformation slightly reduces the output probability, in which the large value is not too close to 1 and the 

small value is not approaching 0. This function corresponds to Figure 1(c): 

 

𝐿𝐶𝐸(y,𝑦 𝑠̂,⁡𝑦𝑡̂ )= (1 − 𝜆)𝐿𝐶𝐸
𝑆 (y, 𝑦 𝑠̂) + 𝜆𝐿𝐶𝐸

𝐾𝐷(𝑦𝑡̂ , 𝑦 𝑠̂) (5) 

 

𝐿𝐶𝐸(y,𝑦 𝑠̂,⁡𝑦𝑡̂) = −(1− 𝜆)∑ 𝑦𝑖log𝑦𝑖𝑠̂
𝐶
𝑖=1  - 𝜆𝑇2 ∑

𝑦𝑖
𝑡̂

𝑇
log

𝑦𝑖
𝑠̂

𝑇

𝐶
𝑖=1  (6) 

 
KD uses BCE loss with temperature scale normalization as shown in (7) and (8). This function corresponds 

to Figure 1(c): 

 

𝐿𝐵𝐶𝐸(y,𝑦 𝑠̂,⁡𝑦𝑡̂ )= (1 − 𝜆)𝐿𝐵𝐶𝐸
𝑆 (y, 𝑦 𝑠̂) + 𝜆𝐿𝐵𝐶𝐸

𝐾𝐷 (𝑦𝑡̂ , 𝑦 𝑠̂) (7) 

 

𝐿𝐵𝐶𝐸(y,𝑦 𝑠̂,⁡𝑦𝑡̂) = −(1 − 𝜆)𝛼∑ 𝑦𝑖 log𝑦𝑖𝑠̂
𝐶
𝑖=1  - 𝜆𝑇2𝛼∑

𝑦𝑖
𝑡̂

𝑇
log

𝑦𝑖
𝑠̂

𝑇

𝐶
𝑖=1  (8) 

 

The KD framework utilizes FC with temperature scale normalization as illustrated in (9) and (10). This 

function corresponds to Figure 1(d): 

 

𝐿𝐹𝐶(y,𝑦 𝑠̂,⁡𝑦𝑡̂ )= (1 − 𝜆)𝐿𝐹𝐶
𝑆 (y, 𝑦 𝑠̂) + 𝜆𝐿𝐹𝐶

𝐾𝐷(𝑦𝑡̂ , 𝑦 𝑠̂) (9) 

 

𝐿𝐹𝐶(y,𝑦 𝑠̂,⁡𝑦𝑡̂) = −(1− 𝜆)𝛼∑ 𝑦𝑖(1 − 𝑦𝑖𝑠̂)log𝑦𝑖𝑠̂
𝐶
𝑖=1  - 𝜆𝑇2𝛼 ∑

𝑦𝑖
𝑡̂

𝑇
(1 −

𝑦𝑖
𝑠̂

𝑇
)𝜆log

𝑦𝑖
𝑠̂

𝑇

𝐶
𝑖=1  (10) 

 

This paper also evaluates the effect of a combination between FC and CE or between FC and BCE. 

We propose a new loss function that is composed of two hyper parameters as shown in (11) and (12). This 

function relates to both Figures 1(c) and 1(d). 

 

𝐿𝐶𝐸−𝐹𝐶(y,𝑦 𝑠̂,⁡𝑦𝑡̂ )= 𝛽1𝐿
𝐶𝐸(y, 𝑦 𝑠̂ , 𝑦𝑡̂) +⁡𝛽2𝐿

𝐹𝐶(y, 𝑦 𝑠̂ , 𝑦𝑡̂) (11) 

= ⁡𝛽1 [−(1 − 𝜆)𝛼∑𝑦𝑖log𝑦𝑖𝑠̂
𝐶

𝑖=1

⁡− ⁡𝜆𝑇2𝛼∑
𝑦𝑖𝑡̂

𝑇
log

𝑦𝑖𝑠̂

𝑇

𝐶

𝑖=1

]

+ 𝛽2 [−(1 − 𝜆)𝛼∑𝑦𝑖(1 − 𝑦𝑖𝑠̂)log𝑦𝑖𝑠̂
𝐶

𝑖=1

⁡− ⁡𝜆𝑇2𝛼∑
𝑦𝑖𝑡̂

𝑇
(1 −

𝑦𝑖𝑠̂

𝑇
)𝜆log

𝑦𝑖𝑠̂

𝑇

𝐶

𝑖=1

] 

 

𝐿𝐵𝐶𝐸−𝐹𝐶(y,𝑦 𝑠̂,⁡𝑦𝑡̂ )= 𝛽1𝐿
𝐵𝐶𝐸(y, 𝑦 𝑠̂ , 𝑦𝑡̂) + ⁡𝛽2𝐿

𝐹𝐶(y, 𝑦 𝑠̂ , 𝑦𝑡̂) (12) 

=⁡𝛽1 [−(1 − 𝜆)∑𝑦𝑖log𝑦𝑖
𝑠̂

𝐶

𝑖=1

⁡− ⁡𝜆𝑇2∑
𝑦𝑖𝑡̂

𝑇
log

𝑦𝑖𝑠̂

𝑇

𝐶

𝑖=1

]

+ 𝛽2 [−(1 − 𝜆)𝛼∑𝑦𝑖(1 − 𝑦𝑖𝑠̂)log𝑦𝑖𝑠̂
𝐶

𝑖=1

⁡− ⁡𝜆𝑇2𝛼∑
𝑦𝑖𝑡̂

𝑇
(1 −

𝑦𝑖𝑠̂

𝑇
)𝜆log

𝑦𝑖𝑠̂

𝑇

𝐶

𝑖=1

] 

 

2.3.  Teacher and student networks 

In this research, Resnet50 [23] or DenseNet121 [24] is utilized as a teacher model, and Resnet18 

[23] is used as a student model. These CNN networks are trained on the ImageNet dataset. A for the KD 

training, two steps are deployed, as follows: in the first one, a large CNN network was transferred by a new 

dataset to archive a large pre-trained model. In the second one, both the large pre-trained model and a small 

CNN network are utilized for training the KD network using the above new dataset. The large model is 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3240-3249 

3244 

blocked and all layers of the small CNN network are fine-tuned. We deployed two cases including:  

i) teacher is Resnet50 network, student is Resnet18 network (KD Resnet18-Resnet50 framework); ii) teacher 

is DenseNet121 network, student is Resnet18 network (KD Resnet18-DenseNet121 framework). The setup of 

Resnet18, Resnet50, DenseNet121 and the KD frameworks are presented in detail in Table 1. 

In addition, some factors of FC function in (9)-(12) are also used as follows: T=6.0, α=0.95, λ=2.0. 

In particular, two hyper parameters β1 and β2 are considered and chosen in detail in section 3. The CNN 

models are obtained at 100 epochs on both the training sub-dataset and the validation sub-dataset. 

 

 

Table 1. The setup details of CNN architectures 
Parameter Resnet18 Resnet50 DenseNet121 KD 

Learning rate 10−5 10−5 10−5 10−5 

Batch size 64 images 64 images 64 images 64 images 

Optimizer Adam Adam Adam Adam 

Loss function CE CE CE CE, BCE, FC 

Transfer learning All layer All layer All layer All layer (Resnet18), No Layer (Resnet50) 
All layer (Resnet18), No Layer (DenseNet212) 

Input image 224x224 pixels 224x224 pixels 224x224 pixels 224x224 pixels 

 

 

2.4.  Evaluation protocols and measurements 

In this study, four benchmark datasets are used to evaluate the KD method, including: CIFAR-100 

[25], EPUHandInWild3 [26], Kinect Leap [27], and Creative Senz3D [28]. The CIFAR-100 dataset has 100 

categories, each class contains 500 training images and 100 testing images. The training part is divided into 

the training sub-dataset and a validation sub-dataset with the ratio of 80% and 20%, respectively. A  

CIFAR-100 dataset is evaluated in N=10 times. Each evaluation obtained accuracy (𝐴𝑐𝑐⁡𝑖). The final result is 

then averaged as shown in (13): 

 

𝐴𝑐𝑐𝐶𝐼𝐹𝐴𝑅100 =
∑ 𝐴𝑐𝑐𝑖
𝑁=10
𝑖=1

𝑁
 (13) 

 

Remaining datasets conclude EPUHandInWild3 [26], Kinect Leap [27], and Creative Senz3D [28] 

we follow ”One-leave-subject-out” for the subject independence test. That means that one subject is tested 

and the remaining subjects are used for training models as presented in our previous research [7]. In this 

paper, each testing subject is evaluated in N=10 times. Experiments are rolled out for every subject in each 

dataset to ensure that every person is tested. Hand gestures of a subject are used for testing that does not 

appear in the training phase. The number of subjects in each dataset is M, Each subject obtains accuracy at a 

certain time (𝐴𝑐𝑐𝑖
𝑗
, i , i = (1, ..., N), j = (1, ..., M)). Final accuracy is computed as illustrated in (14): 

 

𝐴𝑐𝑐 =
∑ ∑ 𝐴𝑐𝑐𝑖

𝑗𝑀
𝑗=1 ⁡𝑁

𝑖=1

𝑁∗𝑀
 (14) 

 

 

3. EXPERIMENTAL RESULTS 

The experiments are conducted to indicate which is the best loss function for recognition in the KD 

framework. We also analyze the role of a combination between optimal functions, including: CE-FC loss, 

BCE-FC loss. Our method is compared with some state-of-the-art (SOTA) KD solutions, such as: KD [8], 

FDA [10], Margin [16], and AB [29]. The experiments are performed on the same CNN architectures (KD 

Resnet18-Resnet50 framework) and different CNN styles (KD Resnet18-DenseNet121 framework). The 

evaluation schemes are written in Python on a Pytorch deep learning framework and run on a workstation 

with an NVIDIA GPU 11G. 

 

3.1.  Evaluation of hyper parameters on recognition by knowledge distillation method 

In this section, we evaluate the recognition accuracy of the same types of CNN architectures 

(Resnet50 is a teacher and Resnet18 is a student) with various values of hyper parameters of our proposed 

KD methods. The first loss combination is the CE-FC loss in (11); the results are illustrated in Figure 2(a). 

The second one is the BCE-FC loss in (12) which is shown in Figure 2(b). Figure 2 shows that the best 

accuracy is at 𝛽1 = 𝛽2 = 0.5⁡and the worst at 𝛽1 = 1⁡and 𝛽2 = 0. It means that the combinations of CE loss 

and FC loss are better than a single loss function. Furthermore, the best accuracy results at 𝛽1 = 𝛽2 = 0.5⁡of 

BCE-FC loss (74.11%, 81.38%, 83.19%, 75.48% for EPUHandInWild3, CIFAR-100, Kinect Leap, Creative 
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Senz3D, respectively) are higher than CE-FC strategy (68.76%, 79.12%, 80.16%, 73.29% for 

EPUHandInWild3, CIFAR-100, Kinect Leap, Creative Senz3D, respectively) on the entire four benchmark 

datasets. Thus, we will apply 𝛽1 = 𝛽2 = 0.5⁡in the remaining evaluations. 

Figure 3 shows four confusion matrices of experimental results, such as Resnet18 in Figure 3(a); 

Resnet50 in Figure 3(b); KD of Resnet18-Resnet50 with CE-FC loss in Figure 3(c); KD framework of 

Resnet18-Resnet50 with BCE-FC loss function in Figure 3(d). This figure shows that the accuracy of the KD 

method of Resnet18-Resnet50 model with BCE-FC loss dramatically increases in entire categories after KD 

by Resnet50 model, such as: (91.8%, 84.0%, 73.2%, 52.6%, 80.7%, 78.6%, 57.9%) of BCE-FC loss and 

(83.5%, 80.0%, 71.1%, 49.2%, 77.8%, 72.2%, 48.3%) of CE-FC loss for (G1, G2, G3, G4, G5, G6, G7, 

respectively). The results show that the recognition accuracy of the Resnet18 network significantly increases 

when Resnet18 is used for KD by teachers model (DensetNet121 or Resnet50). However, knowledge of the 

Resnet50 model is better transferred than knowledge of the DensetNet121 model. Thus, we will use the 

Resnet50 model for KD in the remaining evaluations. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. The accuracy with various strategies combination of hyper parameters, (a) combination between 

BCE and FC functions, and (b) combination between CE and FC functions 
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3.2.  Comparison of knowledge distillation methods 

In this section, we perform our proposed KD methods for the same network architecture types and 

the different network architecture types at hyper parameter values 𝛽1 = 𝛽2 = 0.5. In addition, we perform 

evaluations on three CNN models Resnet18, Resnet50, and DenseNet121, with the results are shown in the 

first, second and third columns in Figure 4, respectively. Four KD models with different optimization 

functions in (11) and (12) that correspond to KD models of Resnet18-Resnet50 with CE-FC loss,  

Resnet18-DenseNet121 with CE-FC loss, Resnet18-Resnet50 with BCE-FC loss, Resnet18-DenseNet121 

with BCE-FC loss are also evaluated, with the results illustrated from the fourd columns to the seventh 

columns in Figure 4, respectively. Evaluations are deployed on four benchmark datasets. The results in 

Figure 4 are Top 1 recognition accuracy, and they demonstrate that: 

− The KD Resnet18-Resnet50 models and Resnet18-DenseNet121 models (from the fourth column to the 

seventh column in each group of Figure 4) archive higher accuracy than the original Resnet18 model 

(from the first column to the third column in each group of Figure 4) on entire four benchmark datasets. 

It is evident that our KD method is efficient in transferring knowledge from the teacher model to the 

student model. 

− The KD models transfer between the same style of network architecture (Resne18-Resnet50) obtains larger 

accuracy than different architecture network styles (Resnet18-DenseNet121), such as: the fourth columns 

compare with the fifth columns, and the sixth columns compare with the seventh columns in Figure 4. It 

shows that KD model of the similarity architectures is more efficient than the difference models. 

− The KD methods use the BCE-FC loss function (the sixth and the seventh columns in Figure 4) obtain 

higher accuracy than KD with the CE-FC loss function (the fourth columns and the fifth columns in 

Figure 4) on both the same architecture styles as well as different architecture styles.  

− The KD Resnet18-Resnet50 model with BCE-FC loss (the sixth columns) archives the highest accuracy 

at 81.38%, 74.11%, 83.19%, and 75.48% for CIFAR-100, EPUHandInWild3, Kinect Leap, and 

Creative Senz3D, respectively. It means that the combination between BCE loss function and FC loss 

function gives the best transfer from the teacher model (Resnet50) to the student model (Resnet18). 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 3. Confusion matrix of EPUHandInWild3 dataset with Resnet50 and Resnet18 networks,  

(a) Resnet18, (b) Resnet50, (c) CE-FC KD, and (d) BCE-FC KD 
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Figure 4. Top 1 accuracy of Resnet18 model with and without uses KD 

 

 

In addition, we also evaluate the Top 1 and Top 5 accuracy of the CIFAR-100 dataset for four 

compressed models as illustrated in Table 2. The result shows that: 

− Using BCE-FC loss is dramatically higher than CE-FC loss for the Top 5 in accuracy at 96.19% vs 

89.51% for the same Resnet architecture styles (Resnet18-Resnet50) and 93.64% vs 87.96% for 

different CNN architecture styles (Resnet18-DenseNet121). It is apparent that BCE-FC loss is more soft 

digit than CE- FC loss. 

− The KD Resnet18-Resnet50 model with BCE-FC loss function accounts for the highest accuracy with both 

Top 1 and Top 5 accuracy at 81.38% and 96.64%, respectively. This result once again shows that 

knowledge is best transferred on the same CNN architecture styles (Resnet18-Resnet50) with BCE-FC loss. 

 

 

Table 2. Top 1 and Top 5 accuracy (%) of CIFAR-100 dataset with various the KD models 

 Top 1 Top 5 

KD Resnet18-Resnet50 (CE-FC) 78.12 89.51 

KD Resnet18-DenseNet121 (CE-FC) 77.35 87.96 

KD Resnet18-Resnet50 (BCE-FC) 81.38 96.19 
KD Resnet18-DenseNet121 (BCE-FC) 79.93 93.64 

 

 

3.3.  Comparison our method with SOTA knowledge distillation methods 

In this section, we compare the efficiency of the proposed teacher-student methods with SOTA KD 

methods (KD [8]–the first rows, FDA [10]–the second rows, Margin [16]–the third rows, and AB [29]–the 

ford rows in Table 3)). Our best option of BCE and FC function at 𝛽1 = 𝛽2 = 0.5⁡(the fifth rows of Table 3) 

is compared with SOTA methods. All methods are deployed in 10 times and averaged as presented in  

section 2.4. Table 3 shows the accuracy of four various benchmark datasets. Table 3 illustrates that our 

proposed method outperforms SOTA KD frameworks on the entire four benchmark datasets at 81.30%, 

74.11%, 83.19%, and 75.48% in accuracy for CIFAR-100, EPUHandInWild3, Kinect Leap, and Creative 

Senz3D, respectively. 

 

 

Table 3. Comparison accuracy (%) between our method with SOTA teacher and student methods 
  CIFAR-100 EPUHandInWild3 Kinect_Leap Creative senz3d 

KD [8] 76.12 65.39 74.21 73.16 

FDA [10] 77.92 67.24 78.74 73.58 
Margin [16] 72.27 64.27 76.49 72.81 

AB [29] 76.45 66.13 75.26 72.98 

Our KD Resnet18-Resnet50 (BCE-FC) 81.38 74.11 83.19 75.48 
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4. CONCLUSION 

This paper presents a comparative analysis of KD methods with two similar CNN architecture styles 

(Resnet18-Resnet50) and two different CNN architecture styles (Resnet18-DenseNet121). In addition, we 

also investigated the efficiency of various loss functions on the KD models. Our proposed method is 

evaluated on four benchmark static datasets. Among the evaluated models, the same architecture styles of 

Resnet18-Resnet50 in combination with BCE-FC loss archives the best recognition accuracy. Its 

performance is superior to that of other SOTA works by 2.67% for Creative Senz3D dataset and 9.84% for 

EPUHandInWild3 dataset at Top 1 accuracy. Especially, our KD method obtains 96.19% of the Top 5 

accuracy for the CIFAR-100 dataset. This performance of the proposed solution is remarkable and promises 

deployment in other KD models. 

 

 

REFERENCES 
[1] F. Yuan et al., “Reinforced multi-teacher selection for knowledge distillation,” 35th AAAI Conference on Artificial Intelligence, 

AAAI 2021, vol. 16, no. 16, pp. 14284–14291, 2021, doi: 10.1609/aaai.v35i16.17680. 

[2] R. Sovia, S. Defit, Yuhandri, and Sulastri, “Development of natural language processing on morphology-based Minangkabau 

language stemming algorithm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 31, no. 1, pp. 542–552, 

2023, doi: 10.11591/ijeecs.v31.i1.pp542-552. 

[3] H. Tan, X. Liu, M. Liu, B. Yin, and X. Li, “KT-GAN: knowledge-transfer generative adversarial network for text-to-image 
synthesis,” IEEE Transactions on Image Processing, vol. 30, pp. 1275–1290, 2021, doi: 10.1109/TIP.2020.3026728. 

[4] L. Beyer, X. Zhai, A. Royer, L. Markeeva, R. Anil, and A. Kolesnikov, “Knowledge distillation: a good teacher is patient and 

consistent,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2022, 

pp. 10915–10924, doi: 10.1109/CVPR52688.2022.01065. 

[5] H. G. Doan, H. Q. Luong, T. O. Ha, and T. T. T. Pham, “An efficient strategy for catastrophic forgetting reduction in incremental 
learning,” Electronics, vol. 12, no. 10, 2023, doi: 10.3390/electronics12102265. 

[6] T. Vuletic, A. Duffy, L. Hay, C. McTeague, G. Campbell, and M. Grealy, “Systematic literature review of hand gestures used in  

human computer interaction interfaces,” International Journal of Human Computer Studies, vol. 129, pp. 74–94, Sep. 2019, doi: 

10.1016/j.ijhcs.2019.03.011. 
[7] H. G. Doan, “Multiple views and categories condition GAN for high resolution image,” in Lecture Notes on Data Engineering 

and Communications Technologies, Springer International Publishing, 2022, pp. 507–520, doi: 10.1007/978-3-030-97610-1_40. 

[8] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” ArXiv-Statistics, pp. 1-9, 2015. 

[9] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: a survey,” International Journal of Computer Vision, vol. 

129, no. 6, pp. 1789–1819, 2021, doi: 10.1007/s11263-021-01453-z. 
[10] Y. Guan et al., “Differentiable feature aggregation search for knowledge distillation,” in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , Springer International 

Publishing, 2020, pp. 469–484, doi: 10.1007/978-3-030-58520-4_28. 

[11] R. Miles and K. Mikolajczyk, “Understanding the role of the projector in knowledge distillation,” Arxiv-Computer Science, pp. 1-

9, 2022. 
[12] C. Bucilǎ, R. Caruana, and A. N. -Mizil, “Model compression,” in Proceedings of the ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, in KDD06, ACM, 2006, pp. 535–541, doi: 10.1145/1150402.1150464. 

[13] L. Wang and K. J. Yoon, “Knowledge distillation and student-teacher learning for visual intelligence: a review and new 

outlooks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 6, pp. 3048–3068, 2022, doi: 

10.1109/TPAMI.2021.3055564. 
[14] H. Yao et al., “Graph few-shot learning via knowledge transfer,” AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, 

vol. 34, no. 04, pp. 6656–6663, Apr. 2020, doi: 10.1609/aaai.v34i04.6142. 

[15] Z. Zhang et al., “Object relational graph with teacher-recommended learning for video captioning,” in Proceedings of the IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2020, pp. 13275–13285, doi: 

10.1109/CVPR42600.2020.01329. 
[16] B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, and J. Y. Choi, “A comprehensive overhaul of feature distillation,” in Proceedings of 

the IEEE International Conference on Computer Vision, IEEE, 2019, pp. 1921–1930, doi: 10.1109/ICCV.2019.00201. 

[17] G. Liu, Y. Shang, Y. Yao, and R. Kompella, “Network specialization via feature-level knowledge distillation,” in IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition Workshops, IEEE, 2023, pp. 3368–3375, doi: 

10.1109/CVPRW59228.2023.00339. 
[18] M. Siam et al., “Video object segmentation using teacher-student adaptation in a human robot interaction (HRI) setting,” in IEEE 

International Conference on Robotics and Automation, IEEE, 2019, pp. 50–56, doi: 10.1109/ICRA.2019.8794254. 

[19] R. Y. Rubinstein, “Optimization of computer simulation models with rare events,” European Journal of Operational Research, 

vol. 99, no. 1, pp. 89–112, 1997, doi: 10.1016/S0377-2217(96)00385-2. 

[20] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 
1951, doi: 10.1214/aoms/1177729694. 

[21] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings of the IEEE International Conference on Computer Vision, 

IEEE, 2015, pp. 1395–1403, doi: 10.1109/ICCV.2015.164. 

[22] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327, 2020, doi: 10.1109/TPAMI.2018.2858826. 
[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition, IEEE, 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90. 

[24] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings - 30th 

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, IEEE, 2017, pp. 2261–2269, doi: 

10.1109/CVPR.2017.243. 
[25] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” Computer Science, University of Toronto, 

pp. 1–58, 2009. 



Int J Artif Intell  ISSN: 2252-8938  

 

Quantitative strategies of different loss functions aggregation for... (Huong-Giang Doan) 

3249 

[26] H. G. Doan and N. T. Nguyen, “New blender-based augmentation method with quantitative evaluation of CNNs for hand gesture 
recognition,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 2, pp. 796–806, 2023, doi: 

10.11591/ijeecs.v30.i2.pp796-806. 

[27] G. Marin, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with jointly calibrated leap motion and depth sensor,” 

Multimedia Tools and Applications, vol. 75, no. 22, pp. 14991–15015, 2016, doi: 10.1007/s11042-015-2451-6. 

[28] A. Memo and P. Zanuttigh, “Head-mounted gesture controlled interface for human-computer interaction,” Multimedia Tools and 
Applications, vol. 77, no. 1, pp. 27–53, 2018, doi: 10.1007/s11042-016-4223-3. 

[29] B. Heo, M. Lee, S. Yun, and J. Y. Choi, “Knowledge transfer via distillation of activation boundaries formed by hidden neurons,” 

33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, 

IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, vol. 33, no. 01, pp. 3779–

3787, 2019, doi: 10.1609/aaai.v33i01.33013779. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Huong-Giang Doan     received B.E. degree in Instrumentation and Industrial 

Informatics in 2003, M.E. in Instrumentation and Automatic Control System in 2006 and 

Ph.D. in Control Engineering and Automation in 2017, all from Hanoi University of Science 

and Technology, Hanoi, Vietnam. She can be contacted at email: giangdth@epu.edu.vn. 

  

 

Ngoc-Trung Nguyen     received B.E degree in Power System in 2003, M.E in 

Electrical Engineering in 2006, all from Hanoi University of Science and Technology, Hanoi, 

Vietnam; received Ph.D. in Electrical Engineering from University of Palermo, Palermo, Italy, 

in 2014. He can be contacted at email: trungnn@epu.edu.vn. 

 

https://orcid.org/0000-0003-3428-0939
https://scholar.google.com/citations?user=6cMbcLcAAAAJ&hl=vi
https://www.scopus.com/authid/detail.uri?authorId=57144021400
https://www.webofscience.com/wos/author/record/GVT-4073-2022
https://orcid.org/0000-0002-6389-6567
https://scholar.google.com/citations?hl=en&user=9CnJofsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57204644234
https://www.webofscience.com/wos/author/record/KBC-0981-2024

