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 Researchers have shown a lot of potential in optimizing cloud-based 

workload-scheduling over the past few years. However, executing scientific 

workloads inside the cloud is time-consuming and costly, making it 

inefficient from both a financial and productivity standpoint. As a result, 

there are many investigations conducted, with the general trend being to 

speed up the rate of processing and establish a cost-effective system, 

whereby customers are billed according to their actual use. In addition, 

energy-consumption is capable of being reduced, especially if the available 

resources are heterogeneous; however, few investigations have optimized 

multi-core with analyzing makespan parameters collectively to fulfill the 

quality of service (QoS) and service level agreement (SLA) of the workload 

task. In this research, we introduce an optimal scheduling for a 

heterogeneous distributed cloud computing environment called task aware 

makespan optimized scheduler (TAMOS) that guarantees requirements 

across the task levels of scientific workflows. The energy and time required 

to carry out specific workflows are significantly reduced by using this 

TAMOS strategy. The TAMOS framework was studied using the scientific 

workflows namely, inspiral and sipht. When compared to the conventional 

method of scheduling work, our methodology used less energy and 

makespan.  
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1. INTRODUCTION 

Parallel scientific workflow tasks are extensively employed in both scientific and business 

investigations [1]. Several instances of workloads in various scientific fields can be observed. These involve 

astrophysics workloads such as Montage and Ligo, which focus on astronomical data analysis. Additionally, 

there is a tremor identification workload called CyberShake, which aims to identify seismic activities. 

Furthermore, deoxyribonucleic acid (DNA) sequencing workloads like epigenomics and sipht are employed 

for studying genetic information. These workloads have been identified in previous research [2]. Multiple 

scientific workloads are commonly utilized for a multitude of reasons. The execution of scientifically 

challenging workloads is observed across various platforms, including MapReduce [3] and Amazon EC2 [4]. 

Platforms like MapReduce [5] as shown in Figure 1, are not efficient for execution of complex workflow 

having multiple levels of dependency. 

On the other side, the cloud-based parallel computational infrastructures as shown in Figure 2 are 

known for their ability to offer top-notch storing and computing capabilities, including applications, 

networks, and services. These resources are particularly valuable for handling the demanding computational 

https://creativecommons.org/licenses/by-sa/4.0/
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requirements of scientific demanding workloads [6]. In contemporary times, various scientific disciplines, 

such as science, biology, and astrophysics, have been increasingly leveraging cloud services to simulate and 

analyze sophisticated scientific-workloads. This utilization of cloud-based parallel computational systems 

enables researchers to devise better approaches for real-time challenges [7]. Therefore, it is evident that 

scientific complicated tasks are effectively performed on cloud-based parallel computational systems, 

wherein the evaluation is conducted utilizing computational tools offered by the cloud infrastructure.  

 

 

 
 

Figure 1. Standard hadoop based computational platform 

 

 

 
 

Figure 2. Cloud-based computational platform for execution of scientific workflow with multi-level 

dependencies 

 

 

Moreover, it has been observed that the implementation of scientifically complicated tasks in cloud 

environments leads to a significant reduction in both execution cost and energy, as highlighted in previous 

research [7]. The intricate nature of tasks can be effectively characterized by employing a directed acyclic 

graph (DAG) framework. Within this framework, the centers of the DAG represent the interdependencies 

among tasks, while the edges of the DAG delineate the specific tasks themselves. Through the 

implementation of this process, it is anticipated that the workload can be effectively and efficiently carried 
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out within the designated deadlines. This implies that the tasks are going to be carried out in a sequential 

manner, adhering to their predetermined order [8]. Furthermore, the intricate interdependencies among the 

different tasks pose a significant challenge when it comes to effectively managing and allocating the 

workload within a cloud computing environment. 

In recent years, more and more people have started using cloud services for their various software 

needs. As a result, a significant number of researchers have opted to utilize cloud services as a means to 

efficiently manage and allocate their workload [9]. The provided diagram, Figure 2, illustrates a 

straightforward architectural representation of the workload-scheduling process within a cloud environment. 

Designing an effective workload-scheduling approach necessitates a thorough examination of current 

systems, a process that in turn poses multiple difficulties. Notably, carrying out of more complicated and 

bigger scientific-workloads demands increased execution-time and incurs higher costs. The execution of 

tasks within a specified deadline presents an increased level of difficulty. Numerous investigations were 

conducted by scholars from various institutions, focusing on the development of algorithms based on 

heuristics. These algorithms aim to offer optimal solutions for a wide range of issues. Moreover, it has been 

observed that the aforementioned heuristic algorithms exhibit a lack of time efficiency. Consequently, a 

significant number of scholars have encountered challenges in attaining the best possible outcome, resulting 

in adverse impacts on service level agreement (SLA) compliance and quality of service (QoS). Furthermore, 

it has been established in the literature that the allocation of workload is classified as an NP-hard  

(non-deterministic polynomial-time) problem [10]. Indeed, the optimization of both cost and time presents a 

formidable challenge within the domain of workload-scheduling [11]. In the context of a scheduling 

approach, it is observed that when the objective is to minimize costs, there is an associated rise in the time 

necessary for finishing a specific task. The interdependence of time and cost is a significant contributing 

factor to the observed phenomenon. The lack of consideration for virtual machine (VM) decision-making 

procedures in current approaches during schedule creation has resulted in an ongoing issue of make-span and 

cost [12], [13]. 

To effectively tackle the issue, this research introduces an innovative approach known as task aware 

makespan optimized scheduler (TAMOS) under multi-core platform, which aims to ensure SLA compliance 

at the task levels. The TMOS is designed in such a way it reduces makespan leveraging multi-core execution 

and thereby utilizing system resource i.e., reducing overall energy consumption meeting multi-level scientific 

workflow task dependencies. The significance of the research work is mentioned here. 

− The work introduces a novel makespan model leveraging multi-core resource utilization.  

− A makespan with task dependencies model considering multi-level workflow task interdependence of 

scientific workflow, 

− Simulation is considered using two different scientific workflows namely inspiral and sipht. 

− Experiment outcome shows the proposed model exhibits superior performance in terms of reducing 

makespan and energy in comparison with existing methodology. 

The manuscript organization: section 2 introduces current state-of-the-art system to meets strict QoS 

and SLA constraint of scientific workflow application with multi-level dependencies. Section 3 introduces a 

novel makespan model to fully utilize resources efficiently and assures task dependencies of scientific 

workflow application. The performance is proposed and existing is studied using two scientific workflows in 

section 4. the last section the significance of research and future enhancement is provided. 

 

 

2. LITERATURE SURVEY 

The scientific workflow applications have grown exponentially in recent years due to availability of 

parallel and distributed computing platforms, and their efficiency has improved as a result. Methods created 

in [14] for a homogeneous framework execute unsatisfactorily in a heterogeneous framework due to the need 

for the input/output (I/O) and memory optimization method, despite providing lockless first in first out 

(FIFO) which incorporates hadoop map reduce (HMR) and other applications. In the HMR system, the 

scheduler technique used during the shuffling stage is the primary determinant of makespan for completing 

tasks [15]. As demonstrated in [16], prior approaches to performing heterogeneous tasks have not taken task 

dependence models into account, leading to inefficient use of available resources [17]. So, they devised a 

new yet another resource negotiator (YARN) scheduling scheme that cuts down the makespan of various 

industrial tasks. Makespan efficiency, particularly when dealing with complicated repetitive applications, is 

negatively impacted by the fact that the models described in [18], [19] don't account for failures at 

intermediary tasks considering DAG applications. The optimization of energy and cost for diverse 

computational structures is the main objective of the study [20]. The researchers aimed to develop a 

scheduling mechanism that effectively managed the workload in order to achieve optimal outcomes in terms 

of both energy and cost efficiency. The utilization of a minimum functionality in this context aims to 
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optimize the use of energy and meet task-deadlines, taking into account the dispersed location. Distribution 

of task-related data. The deadlines have been carefully examined and organized in ascending order, starting 

from the smallest to the largest. In this study, they presented a novel approach to address the challenge of 

selecting an effective schedule for execution of processes. The proposed approach was based on adaptable 

searching techniques, which have shown promise in various optimization problems. By leveraging the 

adaptability of the search algorithm, their method aimed to identify the most suitable schedule that can 

maximize the efficiency of the method of execution. 

This research contribution fills a gap in the existing literature by offering a practical solution to the 

problem at hand. As per [12], there exists an immediate connection between escalated computation expenses 

associated with service provision and the corresponding surge in energy usage. Timeliness and reliability are 

widely recognized as the primary metrics of utmost significance within the realm of customer service supply. 

The researchers devised a scheduling structure called energy min scheduling (EMS) to address the need for 

reduced energy-consumption in running workloads. This framework successfully fulfilled both the timeliness 

and reliability requirements. The application of non-linear mixed-integer-programming (NL-MIP) was 

employed in this particular scenario to obtain an optimal solution. The present study focused on the 

development of a meeting reliability approach, which centered on the utilization of a schedule length 

minimizing approach. Furthermore, the implementation of dynamic-voltage frequency-scaling (DVFS) 

method allowed for the reduction of energy-consumption through the method of processor merging with one 

another In this particular case, scaling was performed at both the processor and task stages. The findings of 

this study suggested that previous frameworks performed more effectively when exposed to varying degrees 

of disruption. 

Nested particle swarm optimization (NPSO) and fast nested particle swarm optimization (FNPSO) 

are two evolutionary computing models developed in [21] to enhance the performance of demanding 

workloads. Compared to the traditional NPSO approach, the FNPSO is considerably reduced make-span and 

cost. As per the findings of the study conducted by [22], it is imperative for a cloud-based scheduling method 

to fulfill both user time constraints and SLAs. A multi-cloud system [23] was employed in order to align with 

the particular efficiency and cost criteria of the stream workload implementation. By leveraging a multi-

cloud structure and implementing a fault-tolerant scheduling architecture, a system can be developed to 

address the task at hand. The utilization of a multi-cloud structure allows for the distribution of workloads 

across multiple cloud service providers, thereby enhancing resource availability and scalability. Additionally, 

the incorporation of a fault-tolerant scheduling structure ensures that the system can withstand and recover 

from potential failures or disruptions, thereby minimizing downtime and maximizing reliability [24]. 

Furthermore, the proposed model not only guarantees the fulfillment of the reliability criterion but also 

effectively reduces the associated cost. A comprehensive examination was conducted to assess the rates of 

failure and reliability by employing an ongoing probability distribution. After determining the financial 

implications of implementing the multi-cloud platform, the subsequent phase involves formulating a fault-

tolerant workload-scheduling framework that guarantees dependability, cost reduction, minimized execution 

duration, and cost efficiency. The inability to fulfill the cost constraints of the application can be attributed to 

the absence of load balancing mechanisms [25]. The subsequent section presents a scheduling strategy that 

takes into consideration QoS performance factors like makespan, resource utilization and SLA constraints 

like workflow deadline at different level in heterogeneous cloud environments, in order to tackle the 

challenges previously mentioned. 

 

 

3. PROPOSED METHODOLOGY 

This paper introduces a novel cloud-based parallel computational framework for effective execution 

of parallel scientific workflow with reduced makespan as shown in Figure 3. This work introduces a  

multi-level workflow application specific QoS dependency aware makespan model. Namely task-aware 

makespan optimized scheduler (TAMOS) meeting SLA constraint with better resource utilization leveraging 

multi-core platform.  

A comprehensive makespan approach is presented to address the issue of improving task execution 

efficiency in the TAMOS framework. The computation of the makespan 𝐶 for carrying out a task is easily 

achieved by utilizing the equation shown here. The computation of the makespan is mentioned in (1). 

 

𝐶 = 𝐶𝑇 + 𝐶𝑀 + 𝐶𝑅. (1) 

 

The variable 𝐶𝑇 represents the makespan for the beginning worker considering both I/O and memory 

optimization, while 𝐶𝑀 denotes the makespan for carrying out of map tasks, and 𝐶𝑅 represents the makespan 
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for carrying out reduce tasks. Assume a scenario where each worker, denoted as 𝑞, is comprised of a 

particular number of cores/threads, represented by 𝑛, and has a memory dimension of 𝑥. 

 

 

 
 

Figure 3. Architecture of proposed cloud-based computational framework for execution of parallel 

scientific workflow 

 

 

In this context, the mean make-span for carrying out a task is able to be determined through in (2). 

In an identical manner, the computation of the mean make-span for the reduce task can be determined using 

(3). The computation of the overall make-span of TAMOS can be achieved by utilizing (2) and (3) and it is 

presented in (4). 

 

𝐶𝑀 =
∑  

𝑞
𝑎=1 𝐶𝑎_𝑀

𝑞
 (2) 

 

𝐶𝑅 =
∑  

𝑞
𝑎=1 𝐶𝑎𝑅

𝑞
. (3) 

 

𝐶 = 𝐶𝑇 +
∑  

𝑞
𝑎=1 (𝐶𝑎_𝑀+𝐶𝑎_𝑅)

𝑞
. (4) 

 

The task execution of various phases within the TAMOS framework exhibits variability. Therefore, 

we have established both upper limits and lower limits for the make-span required to execute task 𝐾. In (5) 

used to calculate the overall make-span for the 𝐾𝑡ℎ tasks within the TAMOS framework under the ideal case 

scenario as mentioned here.  

 

𝑈 𝐾
𝐿𝑙𝑖𝑚 = 𝑈𝑀

𝐿𝑙𝑖𝑚 + 𝑈 𝑅
𝐿𝑙𝑖𝑚 − (𝑈𝑀

𝑈𝑙𝑖𝑚 − 𝑈 𝑀
𝐿𝑙𝑖𝑚) (5) 

 

The variable 𝑈 𝐾
𝐿𝑙𝑖𝑚 is used to denote the shortest make-span time required for the execution of task 𝐾. 

Similarly, 𝑈𝑀
𝐿𝑙𝑖𝑚 represents the shortest amount of time required for carrying out a map task, while 𝑈 𝑅

𝐿𝑙𝑖𝑚 and 

𝑈𝑀
𝐿𝑙𝑖𝑚 indicate the bare essential time required for carrying out a reduce-task. On the other hand, 𝑈𝑀

𝑈𝑙𝑖𝑚 

represents the longest amount of time required for carrying out a map-task. In (5) is written in simplified 

representation as mentioned in (6). In the TAMOS framework, the overall makespan of the 𝐾𝑡ℎ job under the 

most severe circumstances is determined by applying the subsequent equation as given in (7). The above 

equation is written in simplified manner as mentioned in (8). In (9) provided below is utilized to derive the 
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overall makespan of task 𝐾 using the TAMOS framework. The estimation of the overall make-span 𝑈⃗⃗ 𝐾  for 

carrying out task 𝐾 is calculated utilizing (6) and (8) as follows in (10). In (10) is simplified as mentioned in 

(11). The final makespan considering multi-level workflow execution is obtained by modifying (11) is 

mathematically given as mentioned in (12). 

 

𝑈 𝐾
𝐿𝑙𝑖𝑚 = 𝑈𝑀

𝐿𝑙𝑖𝑚 + 𝑈 𝑅
𝐿𝑙𝑖𝑚 − (𝑈𝑀

𝑈𝑙𝑖𝑚 − 𝑈 𝑀
𝐿𝑙𝑖𝑚) (6) 

 

𝑈 𝐾
𝑈𝑙𝑖𝑚 = 𝑈𝑀

𝑈𝑙𝑖𝑚 + 𝑈 𝑅
𝑈𝑙𝑖𝑚 − (𝑈𝑀

𝑈𝑙𝑖𝑚 − 𝑈𝑀
𝐿𝑙𝑖𝑚) (7) 

 

𝑈 𝐾
𝑈𝑙𝑖𝑚 = 𝑈𝑀

𝐿𝑙𝑖𝑚 + 𝑈 𝑅
𝑈𝑙𝑖𝑚 (8) 

 

𝑈⃗⃗ 𝐾 =
(𝑈 𝐾

𝑈𝑙𝑖𝑚+𝑈𝐾

𝐿𝑙𝑖𝑚)

2
 (9) 

 

𝑈⃗⃗ 𝐾 =
((𝑈𝑀

𝑈𝑙𝑖𝑚+𝑈 𝑅

𝑈𝑙𝑖𝑚−(𝑈𝑀

𝑈𝑙𝑖𝑚− 𝑈𝑀

𝐿𝑙𝑖𝑚))+(𝑈𝑀

𝐿𝑙𝑖𝑚+𝑈 𝑅

𝐿𝑙𝑖𝑚−(𝑈𝑀

𝑈𝑙𝑖𝑚− 𝑈 𝑀

𝐿𝑙𝑖𝑚)))

2
 (10) 

 

𝑈⃗⃗ 𝐾 =
((𝑈𝑀

𝐿𝑙𝑖𝑚+ 𝑈 𝑅

𝑈𝑙𝑖𝑚)+(2𝑈𝑀

𝐿𝑙𝑖𝑚+𝑈 𝑅

𝐿𝑙𝑖𝑚−𝑈𝑀

𝑈𝑙𝑖𝑚))

2
 (11) 

 

𝑈⃗⃗ 𝐾 =
(3𝑈𝑀

𝐿𝑙𝑖𝑚+𝑈 𝑅

𝐿𝑙𝑖𝑚+𝑈 𝑅

𝑈𝑙𝑖𝑚−𝑈𝑀

𝑈𝑙𝑖𝑚)

2
 (12) 

 

The present study employs a methodology comparable to that described in previous works, 

specifically [3], [5]. To construct a framework for data dependence through the utilization of regression 

analysis. The TAMOS framework has been observed to exhibit superior performance in terms of minimizing 

makespan and reducing energy by utilizing resource efficiently for the execution of parallel scientific 

workflow which is shown through simulation study in next section.  

 

 

4. RESULT AND DISCUSSION 

The following section focuses on the evaluation of performance metrics, namely makespan, and 

energy efficiency, in the context of the suggested TAMOS framework compared to the existing reliable 

workflow scheduling (RWS) approach [13]. TAMOS and RWS have been developed and deployed through 

the utilization of the Java programming language. The CloudSim Software-defined networking-based 

network function virtualization (CloudSimSDN‐NFV) simulator [26] has been employed as the underlying 

platform for the implementation of these systems. The inspiral and sipht scientific workflow is used for 

verifying proposed TAMOS framework. The mathematical complexity of the tasks at hand involves a 

significant amount of memory, processor, and input/output operations. The inspiral structure is known for its 

computationally demanding nature, particularly with regards to central processing unit (CPU) and memory 

usage. On the other side, the sipht structure is known for its computationally demanding nature, particularly 

with regards to CPU and I/O usage. 

 

4.1.  Makespan performance 

The following section addresses the analysis regarding the makespan required to complete the 

execution of inspiral workflows with size ranging from 30, 50, 100, and 1000. Alongside, the section 

addresses the analysis regarding the makespan required to complete the execution of sipht workflows with 

size ranging from 30, 60, 100, and 1000. Figure 4 illustrates a visual representation of the makespan achieved 

over the execution of the inspiral workflow employing the TAMOS and RWS scheduling algorithms, while 

considering a diverse range of workflow scenarios such as 30, 50, 100. Figure 5 illustrates a visual 

representation of the makespan achieved over the execution of the sipht workflow employing the TAMOS 

and RWS scheduling algorithms, while considering a diverse range of workflow scenarios such as 30, 60, 

100. Similarly, for inspiral workflow size of 1000 the visual representation of makespan is given in Figure 6 

and for sipht workflow size of 1000 the visual representation of makespan is given in Figure 7. The 

utilization of TAMOS, as compared to RWS, results in a notable enhancement in average makespan 

efficiency, with an observed increase of 83.32% and 51.46% for inspiral and sipht workflow, respectively. 
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Figure 4. Makespan efficiency with different 

inspiral workflow size 

Figure 5. Makespan efficiency with different sipht 

workflow size 
 

 

  
  

Figure 6. Makespan efficiency with inspiral 

workflow size of 1000 

Figure 7. Makespan efficiency with sipht workflow 

size of 1000 
 

 

4.2.  Energy usage 

The following section addresses the analysis regarding the energy needed to complete the execution of 

inspiral workflows with size ranging from 30, 50, 100, and 1000. Alongside, the work addresses the analysis 

regarding the energy needed to complete the execution of sipht workflows with size ranging from 30, 50, 100, 

and 1000. Figure 8 illustrates a visual representation of the energy efficiency achieved over the execution of the 

inspiral workflow employing the TAMOS and RWS scheduling algorithms, while considering a diverse range 

of workflow scenarios such as 30, 50, 100. Figure 9 illustrates a visual representation of the energy efficiency 

achieved over the execution of the sipht workflow employing the TAMOS and RWS scheduling algorithms, 

while considering a diverse range of workflow scenarios such as 30, 60, 100. Similarly, for inspiral workflow 

size of 1000 the visual representation of energy usage is given in Figure 10 and for sipht workflow size of 1000 

the visual representation of energy usage is given in Figure 11. The resource utilization by reducing energy 

consumption of TAMOS, as compared to RWS, results in a notable enhancement in average energy efficiency, 

with an observed increase of 92.64% and 72.87% for inspiral and sipht workflow, respectively. 
 

 

  
  

Figure 8. Energy efficiency with different inspiral 

workflow size 

Figure 9. Energy efficiency with different sipht 

workflow size 
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Figure 10. Energy efficiency with inspiral 

workflow size of 1000 

Figure 11. Energy efficiency with sipht workflow 

size of 1000 

 

 

5. CONCLUSION 

The present study introduces a novel multi-core resource utilization aware makespan model for 

workflow scheduling which successfully guarantees the fulfillment of task-level SLAs. To our knowledge, 

very limited work has ever before addressed task-level SLA when planning a workflow scheduling. The 

present study presents an innovative approach to adaptable scheduling, which aims to minimize total 

makespan while simultaneously ensuring highest resource efficiency by reducing overall energy by providing 

execution at thread-level in multi-core processor of cloud VM. By implementing this method, a substantial 

reduction in overall operation makespan and energy thereby will aid in utilizing resources efficiently with 

minimal cost can be achieved. TAMOS demonstrates high efficiency in the allocation of CPU, memory, and 

I/O resources for executing parallel scientific workflows that require significant computational and data 

processing capabilities. This efficiency is achieved by utilizing shared computing environments, particularly 

in cloud environments. The experimental results demonstrate that the TAMOS system exhibits a high level of 

makespan and energy efficiency for execution of cybershake workflows. Specifically, when compared to the 

RWS system, TAMOS showcases an impressive increase of 67.39% and 82.75% for makespan and energy 

efficiency, respectively. In the future, it is anticipated that the suggested scheduling approach will undergo 

testing using a broader dataset of workloads. In addition, it is worth exploring the potential benefits of 

utilizing an edge-cloud structure in order to potentially achieve cost reduction and minimize execution 

delays.  
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