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 In this study, a novel approach is introduced for fracture detection in bone x-

ray images, introducing the triple context attention model (TCAN) that 

combines concentrated extensive convolutional segments with an attention 

mechanism to enhance positional data. The TCAN model significantly 

improves fracture recognition accuracy while reducing model complexity. 

Leveraging a diverse dataset, consistently achieving high accuracy levels 

across various body parts. By addressing, mislabelling issues, and 

employing a visual attention network (VAN), to refine the model's 

performance. The TCAN model emerges as a robust, computationally 

efficient solution, offering a remarkable average accuracy of 97.86%. This 

study contributes valuable advancements to medical imaging and 

diagnostics, providing a highly effective tool for skeletal fracture detection.  

Keywords: 

Attention mechanism 

Convolutional neural network 

Mislabeling issues 

Triple context attention model 

Visual attention network This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Tabassum Nahid Sultana 

Department of Computer Science and Applications, Khaja Bandanawaz College of Engineering 

Kalaburagi, India 

Email: tabassumns_12@rediffmail.com 

 

 

1. INTRODUCTION 

There are 206 bones in the human body in total, and they differ in size, complexity, and structure. 

The tiniest bones in the human body are located in the ear canal, whereas the biggest bones are found in the 

femur. Individuals frequently experience lower leg bone fractures [1]. In recent years, there has been a 

significant increase in the use of machine learning, a method for identifying patterns, for the interpretation of 

medical imaging. The most reliable predictor was found to be the trait [2]. Healthcare practitioners are 

greatly helped by the use of this technology in accurately identifying medical disorders and choosing the best 

course of therapy for their patients. Skeletal fractures can frequently develop without warning, making it 

crucial to identify them quickly and offer the proper care. There has been a reported rise in bone fractures 

worldwide, affecting both industrialized and developing nations [3].  

To enable the effective sharing of medical pictures, the digital imaging and communications in 

medicine (DICOM) standard is used. For the goal of helping in the detection of bone fractures, x-ray 

technology is frequently used in the medical industry. This is because it is quick, affordable, and simple to 

use. Numerous diseases and injuries can lead to bone fractures. For a therapy to be effective, a prompt and 

precise diagnosis is required. To assess the features and severity of a fracture, doctors or radiologists 

frequently request an x-ray examination [4], [5]. It has been discovered that both manual examination and the 

traditional x-ray fracture detection method are unsuccessful. One of the photos' failure to reveal a fracture to 

the radiologist might be attributed to an incorrect interpretation of the image as normal, perhaps brought on 

by exhaustion. An alert is then issued to the attending physician once the x-ray picture has been reviewed by 

a computer vision system for any anomalies [6].  

https://creativecommons.org/licenses/by-sa/4.0/
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For identifying bone fractures, three main approaches have been used in earlier studies [7] denoising 

x-ray pictures, extracting pertinent characteristics, and image classification. Previous studies have 

concentrated on either a particular anatomical area or a specific type of fracture [8]. An open fracture of the 

tibia, a fracture of the arm, or a subtle fracture of the femur neck are a few instances of fractures. Finding the 

precise position of the fracture site was difficult using the approach outlined in the reference [9]. The 

technology was only capable of correctly determining whether the exhibited bone picture showed a fracture. 

The knowledge and skills of seasoned medical professionals are required for the detection of fractures in 

various anatomical locations. Therefore, by accurately identifying bone fractures in various human bone 

tissues, a pragmatic technique would have advantages. The large variances seen across various bone 

formations make it difficult to develop a bone accounting system. 

By attaining cutting-edge performance levels, deep learning models have shown amazing 

achievements in a variety of fields, including bioinformatics, computer vision, and medical diagnostics [10]. 

Deep learning has been shown to have a potential for detecting bone anomalies, although it is only somewhat 

successful due to its too dependence on deep networks. In their research, [11]-[13] developed a deep 

convolutional neural network (CNN)-based method for fracture diagnosis. To improve the quality of a 

picture, preparation techniques are used. By using data augmentation techniques, the dataset's size is 

increased. A classification model called the Ada-ResNeSt model is used to distinguish between samples of 

damaged and healthy bones. The accuracy attained is 68.4% on average. The use of x-ray pictures of the 

humerus bone in a separate research improved the model performance. To make it easier to identify fractures 

in arm bones, a fracture diagnosis model was created. Three different components make up the main changes. 

To create a new backbone network to gather additional fractal information, a function pyramid architecture is 

implemented. The next step in picture preparation entails using an opening approach and modifying the pixel 

value to effectively boost the contrast of the source images [14]-[16].  

The development of a fuzzy c-means approach and the addition of a distance measure to assess 

structural similarity. This strategy was put into practice to perform picture segmentation. The approach 

outlined by [16]-[18] uses deep learning methods to identify and categorize different kinds of proximal 

humerus fractures. Greater tuberosity fractures, surgical neck fractures, 3-part fractures, and 4-part fractures 

are among the fractures that come under this category. Shoulder radiographs taken from the anterior and 

posterior are used for the examination. The pre-processing stage comprises downsizing incoming photos to 

256×256 pixel size. After that, the preprocessed images are sent into a classifier that makes use of CNN. An 

accuracy rating of 96% was attained using a dataset of 1,891 images. Here they established the technique for 

locating abnormalities in the upper extremity bones in their investigation [19]-[21]. A tightly linked 

convolutional network with 169 layers was used in the approach. The submitted photos are resized to 

320×320 pixel dimensions using the scaling procedure. To add more information, the pre-processed photos 

are randomly inverted and rotated. The photos are put into a convolutional network with 169 layers to 

enhance the identification of bone anomalies. A 70.5% accuracy was attained on average using the 

musculoskeletal radiographs (MURA) dataset [22], [23]. The upper extremity bones of the shoulder, forearm, 

humerus, elbow, wrist, hand, and finger are depicted in more than 40,000 images from various angles in the 

collection. It is important to recognize that each bone in the context of this investigation is evaluated 

separately [24]. 

This research is motivated by the increasing prevalence of skeletal fractures worldwide and the need 

for accurate detection methods across diverse anatomical regions. Traditional approaches like manual 

examination and conventional x-ray interpretation face accuracy limitations. To address this, the study 

employs advanced deep learning techniques, including the triple context attention model (TCAN), to enhance 

fracture detection accuracy. By utilizing CNN and attention mechanisms, the research aims to provide 

reliable tools for timely and effective fracture identification in body parts such as the shoulder, humerus, 

finger, elbow, wrist, forearm, and hand. This work contributes valuable insights into medical diagnostics and 

improves fracture detection, benefiting both patients and healthcare providers. 

‒ A coordination attention mechanism is designed that enhances fracture recognition accuracy by 

efficiently incorporating positional data. 

‒ A proposed TCAN approach is designed, which integrates convolutional segments and attention 

mechanisms, and reduces complexity while improving fracture detection accuracy. 

‒ TCAN's use of positional data and attribute-focused evaluations boosts fracture recognition accuracy, 

ensuring precise diagnoses in medical imaging. 

The research work is organized in this paper as follows: in the first section, a brief overview is 

given. In the second section proposed methodology is given in which a novel TCAN model is developed. In 

the third section, the performance analysis is given where the results are displayed in the form of graphs and 

tables. 
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2. PROPOSED METHODOLOGY 

Considering traditional methods, attention models are used during interlinked connections while 

overlooking the significance of location data. This challenge results in the accuracy of detection being 

diminished. However, there also exist models such as the bottleneck attention model and block convolution 

attention method to retrieve positional data after compression. However, these models can retrieve local 

connections, although cannot acquire extended dependencies. A coordination attention mechanism was 

proposed in the existing methodologies that take into consideration positional data that is straight horizontally 

as well as vertically for connection attention. This method is efficiently implemented for mobile networks 

that permit wider attention to the positional data while not overworking computations.  

Various bone x-ray images are utilized in this study for distinguishing characteristic features along 

with particular positional data. Hence, using the coordination attention module for this method the accuracy 

for recognition is enhanced. During the recognition process for these bone x-ray images, the TCAN model is 

implemented where damaged regions in the image are mislabelled as fractures, this is due to the absence of 

positional data in the training process. To deal with this challenge the prior existing coordination attention 

model could be adapted, however, it increases the complexity as well as the parametric dimension of the 

model decreasing its accuracy. Therefore, we need to resolve this challenge by introducing a TCAN where 

the proposed model is a combination of concentrated extensive convolutional segments combined with the 

mentioned attention method. The concentrated convolution has the advantage of recombining the connections 

while the attention method is flexible to weights. The TCAN model enhances the positional data by focusing 

on weights for increased dimension for features. Since the weights utilized for this model are distributed, the 

parametric dimension is also decreased. Using the triple context attention model has enhanced accuracy for 

the detection of multiple fractures in bone x-ray images.  

For the input x-ray images in the TCAN model proposed in this study, there are weight-related 

evaluations considering channels during the pooling process. However, the proposed model has various 

convolutional layers that aid in retrieving an increased resolution activation map. Before the coordination 

attention model channel evaluation, the TCAN model uses pixels for the convolution of the information, the 

pixel size used for this process is both 1 by 1 as well as 3 by 3. Here, spatial data as well as channel data is 

enciphered using residual links. Later, modified pooling is performed individually considering length and 

breadth. The mean of the tensor subset is calculated, then two completely linked convolutional layers are 

utilized to attain the weights of every particular subset using the mean. These weights are collectively used in 

the activation map. The combination of attributes causes the activation map with weights to be added 

according to elements to the initial activation map, this leads to obtaining the final resulting activation map. 

The TCAN model improvises the focus on the main attributes, decreases the noise in the background that 

could be found during the object recognition process as well as enhances the accuracy of recognition.  

It is required that the proposed model gains traction in various directions and utilizes the positional 

data. The TCAN model uses an increased resolution activation map attached using the concentrated 

Extensive convolutional segments as initial input. Pixel dimensions of 1 by 1, as well as 3 by 3, are used, 

generating yd. The mean pooling considering length and breadth is performed that attains two activation 

maps that manifest each direction. This causes the proposed model to improve its concentration of essential 

attributes in the bone x-ray images as well as use data to represent the attributes. The activation maps are 

evaluated using the equations listed in (1).  

 

ad
i (i) = (X)−1 ∑   

o less than equal to j less than equal to X |yd(i, j) (1) 

 

ad
x (x) = (I)−1 ∑   

o less than equal to j less than equal to I |yd(k, x) (2) 

 

Considering the equations, the channel count is indicated as D. In the pooling process, the length and 

breadth position value ranges are denoted as I and X. The present position value is given using i and x. The 

activation maps have receptive areas considering their length and breadth, combined to obtain a dimensional 

vector of 1 by 2D. A pixel of resolution 1 by 1 is used through which the vector is passed decreasing its 

dimensions to D/s. The activation map with decreased dimension is normalized using the batch method and 

used as input for the sigmoid function. This leads to the activation map having the dimension g as given in (2).  

 

g = (X + I) × D/s (3) 
 

Considering this activation map, every element depicts the weight relating to the channel as well as 

the position spatially, this is utilized in the input activation map. Here the weight grows for attributes that are 

useful while the unwanted attributes have their weight subdued. In this case, g is evaluated using the 

following equation given in (4).  
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g = (G1([ai, ax])) ∂ (4) 
 

A sequential operation combined with spatial size is represented using ai, ax], where a nonlinear 

activation function is used and denoted as ∂. The activation map g is transformed into the initial length and 

breadth implemented by a pixel of size 1 by 1 that gives rise to two activation maps having similar channel 

counts that are denoted as Gi and Gx . The weights hiand hx are gathered by using the activation function for 

length and breadth respectively, these evaluations are performed using (5).  
 

hi = (Gi(gi)) × σ (5) 
 

hx = (Gx(gx)) × σ (6) 
 

In the equations, the activation function Sigmoid is represented as σ. The overload of computation is 

decreased, also reducing the complexity of the model, a decreasing ratio s is used to limit the size of the 

channel g. The notations hi and hx are the outputs that are enlarged as well and weights are used for 

computations. These results in the activation map combined with weights for length as well as breadth 

directions. The TCAN model output z is evaluated using (7). 
 

zd(j, k) = (y(j, k)) + (hd
i (j))(hd

x (k))(yd(j, k)) (7) 
 

A sequential model is used in this study to enhance the accuracy percentage of bone x-racy images. 

Here, a visual attention network (VAN) is introduced, this deep learning method is used as a transformer for 

image processing that works as an attention model. The accuracy of classification is seen to be high during 

the performance of VAN as well as takes care of all the normal tasks of classification relating to images. 

Considering bone x-ray image datasets, there exists diversity in dimensions that happens due to capturing 

distance, resources used to capture images, and individual photographers. The VAN model splits the input 

image and rejoins the images, showing an adaptable skill to manage the diversity in these x-rays that contain 

various dimensions and sizes. The VAN model is pre-trained in this study using bone x-ray image datasets as 

well as refined using deep learning methodologies of transfer learning for bone x-ray image classification. 

The VAN model has three phases, namely local feature embedding, transformer input encoder, and lastly 

multi-layer perceptron. Table 1 (see in Appendix) shows algorithm workflow. 

 

 

3. PERFORMANCE ANALYSIS 

The TCAN model, as proposed, undergoes assessment using the current cutting-edge techniques 

found in the MURA database. This assessment encompasses various body parts such as the shoulder, 

humerus, finger, elbow, wrist, forearm, and hand. The outcomes of this evaluation are presented through 

graphical representations and tables. 

 

3.1.  Dataset details 

To prepare for and manage tests, the MURA database [25] is used. The dataset is regarded as one of 

the most complete public archives of radiographic pictures in general and is largely accepted as the largest 

publicly available collection of bone anomalies. The dataset comprises 5,915 abnormal and 9,067 normal 

upper extremity MURA images. The shoulder, humerus, elbow, forearm, wrist, hand, and finger are 

explicitly included in the scans along with other anatomical parts. 

 

3.2.  Results 

The proposed TCAN model is carried out in two stages detection and classification. The proposed 

TCAN model is structured around a two-stage methodology focusing on both detection and classification 

tasks. This sequential approach allows for a comprehensive analysis, ensuring efficient identification and 

accurate categorization of the targeted elements within the dataset.  
 

3.3.  Detection 

In the context of the TCAN model, the term "detection" refers to the initial phase where the system 

identifies or localizes specific objects or patterns within the input data. This stage involves pinpointing the 

presence and location of relevant elements of interest, such as anatomical structures or abnormalities, within 

images or datasets. Detection encompasses recognizing and outlining regions or points of significance, often 

through techniques like object localization or segmentation. In medical imaging, for instance, this could 

involve identifying particular body parts, lesions, fractures, or anomalies within x-rays or scans. Figure 1 

shows the detection of bone fracture. 
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Table 1. Algorithm workflow 
Steps Algorithms 

Step 1 If (TCAN_Model not initialized) 

    Initialize TCAN_Model architecture 

    Setup TCAN_Layer for feature enhancement 
    Add convolutional layers, max-pooling, and relevant components 

    Train TCAN_Model using bone x-ray image dataset 

else 

    TCAN_Model already initialized, proceed to the next step 

Step 2 TCAN Feature Extraction 

if (Input_Image not preprocessed) 

    Pre-process bone x-ray images for fracture detection 

    Split input x-ray images into non-overlapping segments 

else 
    Input images already pre-processed, proceed to the next step 

if (TCAN_Model not applied) 

    Pass image segments through TCAN_Model 

    Utilize TCAN to extract essential features, enhancing positional data 

else 
    TCAN_Model already applied, proceed to the next step 

Step3: if (VAN_Model not initialized) 

    Initialize VAN_Model architecture for image processing and classification 
    Include VAN_Layer for attention-based feature enhancement 

    Add dense layers, dropout, and softmax activation for classification 

    Train VAN_Model using bone x-ray image dataset 

else 

    VAN_Model already initialized, proceed to the next step 
Step 4: Combining TCAN and VAN 

if (Features_not_combined) 

    Combine feature-enhanced output from TCAN with VAN_Model 

    Ensure positional data is retained in the combined features 
else 

    Features already combined, proceed to the next step 

Step 5:  Batch Normalization 

if (Batch_Normalization_not_applied) 

    Apply batch normalization to the combined model to speed up learning 

    Normalize the output to prevent overfitting 

else 

    Batch normalization has already been applied, proceed to the next step 
 

Step 6  Fracture Detection 

if (Fracture_Detection_not_performed) 

    Use the combined TCAN-VAN model to detect fractures in x-ray images 
    Recognize fractures in various body parts (e.g., shoulder, arms, hip, chest, legs) 

else: 

    Fracture detection has already been performed, proceed to the next step 

Step 7: Model Evaluation 

if (Evaluation_not_completed) 

    Evaluate model performance on a test dataset 

    Calculate accuracy, precision, recall, F1-score, and other relevant metrics 

else: 
    Evaluation already completed, proceed to next step 

 

 

 
 

Figure 1 Detection of bone fracture 
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3.4.  Classification 

The table presents a comparative analysis of various CNN architectures for the detection of fractures 

in different body parts, including the shoulder, humerus, finger, and elbow. Notably, the TCAN model 

exhibits exceptional accuracy across all body parts, with the highest accuracy achieved in detecting finger 

fractures (96.6%) and particularly impressive results in humerus detection (97.84%). Inception and 

InceptionResNetV2 also perform in an average manner, showcasing high accuracy percentages on most body 

parts. MobileNet stands out with perfect accuracy in identifying humerus fractures. DenseNet201 exhibits 

variable performance across different body regions. Neural architecture search network (NASNET)0Mobile 

and Xception deliver robust and consistent accuracy. Figure 2 shows the bone fracture classification. 
 
 

 
 

Figure 2. Bone fracture classification 
 
 

In this analysis of various CNN architectures for the detection of fractures in the wrist, forearm, and 

hand, the TCAN model is consistently the top-performing model across all body parts. It achieves 

remarkably high accuracy percentages, with the highest accuracy observed in wrist detection (99.86%) and 

impressive results in hand detection (99.72%). Inception, MobileNet, and Xception also exhibit strong 

accuracy levels and are competitive choices for fracture detection, especially in the wrist and hand. 

ResNetV2-101, InceptionResNetV2, DenseNet201, and NASNETMobile, display varying degrees of 

accuracy across different body parts. Overall, the TCAN model emerges as a robust and reliable choice for 

accurate fracture detection in the wrist, and forearm.  

 

3.5.  Comparative analysis 

In our comparative analysis, we observed remarkable improvements in fracture classification and 

detection accuracy with the introduction of our proposed TCAN. Our meticulous comparative analysis 

revealed notable advancements in fracture classification and detection accuracy, underscoring the efficacy 

and impact of integrating the innovative TCAN. The TCAN model's introduction substantially improved the 

precision and reliability of identifying fractures, signifying promising potential in medical imaging 

applications.  

 

3.5.1. Detection 

The table provides data on three different bone types: shoulder, humerus, and finger, with scores in 

TCAN and improvisation. Notably, while the shoulder and finger bones have decent existing conditions, their 

improvisation percentages are relatively high at 6.0% and 7.76%, respectively. In contrast, the humerus 

stands out with the highest existing condition score and the lowest improvisation percentage at 5.10%. This 

suggests that the humerus is the healthiest and least adaptable of the three bones, while the shoulder and 

finger have more room for improvement or improvisation in their condition. Table 2 shows the improvisation 

of the existing model for detection.  

 

 

Table 2. Improvisation of the existing model for detection 
Bone Existing TCAN Improvisation (%) 

Shoulder 81 87 6.0 

Humerus 84.72 89.82 5.10 
Finger 78.51 86.27 7.76 

Elbow 82.97 87.56 4.59 
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3.5.2. Classification 

Across various body parts, TCAN exhibited significant enhancements, achieving the highest 

accuracy gain of 9.42% in forearm fracture detection, followed by a 4.87% improvement in humerus 

detection. Notably, TCAN consistently outperformed the existing system (ES) in all categories, showcasing 

its effectiveness in accurately identifying fractures. The average accuracy improvement across all body parts 

was an impressive 2.15%, reinforcing TCAN's reliability in fracture detection tasks. Table 3 shows the 

classification improvisation.  

 

 

Table 3. Classification improvisation 
 ES Proposed system (PS) Improvisation (%) 

Shoulder 99.82 99.9 0.0801122 

Humerus 92.01 96.6 4.86719 

Finger 97.18 97.84 0.676854 

Elbow 98.5 99.57 1.08043 

 

 

4. CONCLUSION 

In conclusion, our research presents a novel and effective approach to fracture detection in bone  

x-ray images through the innovative TCAN. By combining concentrated extensive convolutional segments 

with an attention mechanism, TCAN significantly enhances the accuracy of fracture recognition while 

simultaneously reducing model complexity. Our comprehensive evaluation across various body parts 

demonstrates the consistent and better performance of TCAN, resulting in high accuracy levels in fracture 

detection. The incorporation of a VAN further refines the model's capabilities, addressing mislabelling 

challenges in fracture identification. TCAN emerges as a robust and computationally efficient solution for 

skeletal fracture detection. This research contributes significantly to the field of medical imaging and 

diagnostics, providing a powerful tool that can greatly assist healthcare professionals in prompt and accurate 

fracture diagnosis. Our work underscores the potential of deep learning models in medical applications and 

the importance of addressing challenges in fracture detection to improve patient care and outcomes. 
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