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 The artificial bee colony (ABC) algorithm, a well-known swarm 

intelligence-based metaheuristic inspired by the food foraging behavior of 

honeybees, has been widely applied to solve complex optimization 

problems. Despite its effectiveness, the standard ABC algorithm suffers 

from drawbacks such as slow convergence rates, limited balance between 

exploration and exploitation, and a tendency to get stuck in local optima, 

thereby hindering its overall performance. This study introduces an 

enhanced variant of the ABC algorithm, integrating the exploration strategy 

of the arithmetic optimization algorithm (AOA) to overcome these 

limitations. The enhanced algorithm is thoroughly tested on a set of 

benchmark functions as well as a flexible manipulator system model. 

Comprehensive statistical analyses are employed to evaluate and compare 

the performance of the improved algorithm against the original ABC. The 

results demonstrate that the enhanced ABC algorithm delivers superior 

performance in both benchmark scenarios and the flexible manipulator 

application. 
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1. INTRODUCTION 

In recent years, metaheuristic algorithms based on swarm intelligence have emerged as powerful 

tools for addressing complex optimization problems, primarily due to their ease of implementation, 

flexibility, resilience, and computational efficiency. These algorithms are modeled on the collective 

behaviors exhibited by social organisms, such as food searching, nest building, and group navigation. 

Motivated by these biological phenomena, researchers have introduced numerous optimization methods 

grounded in swarm intelligence principles. Noteworthy approaches in this category include the particle 

swarm algorithm (PSA) [1], ant-based optimization (ABO) [2], bee-inspired search algorithm (BSA) [3], 

cuckoo-inspired optimization (CIO) [4], and the echolocation-based bat strategy (EBBS) [5]. While these 

algorithms have achieved notable success, many studies have pointed out their limitations when applied to 

different types of optimization problems. This observation supports the "No free lunch" theorem [6], [7], 

which states that no single algorithm performs optimally across all problem domains. Consequently,  

the field continues to evolve, with ongoing research focused on developing and refining algorithms 

https://creativecommons.org/licenses/by-sa/4.0/
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tailored to the unique demands of specific optimization challenges, thereby enriching the landscape of 

available techniques. 

Originally proposed by Karaboga [8] in 2005, the artificial bee colony (ABC) algorithm is modeled 

after the foraging patterns of honeybee colonies [9]. Its simplicity, minimal parameter tuning, and strong 

performance across diverse optimization problems have made it a popular choice among researchers [10]. In 

a comparative study involving 50 benchmark functions, Kaya et al. [11] demonstrated ABC’s superior 

performance over other well-established algorithms such as the genetic algorithm (GA), differential evolution 

(DE), evolutionary strategies (ES), and particle swarm optimization (PSO), reporting consistently better 

objective values and lower standard deviations. Additional validation was provided by Khosravanian et al. [12], 

who found ABC to be more effective than harmony search (HS), ant colony optimization (ACO), and GA in 

optimizing oil-well designs. Similarly, Agarwal et al. [13] showed that ABC outperformed the firefly 

algorithm in solving the Rastrigin function, highlighting its faster convergence. These studies affirm ABC's 

robustness [11], computational efficiency [14], and reliable performance despite having relatively few control 

parameters. To further enhance ABC's capabilities, Lee and Hashim [15] introduced the hybrid ABC 

algorithm with artificial rabbit algorithm, which accelerates convergence by refining the structure of 

searching bee phase. Numerous enhancements since then have focused on improving the algorithm’s balance 

between exploration and exploitation [16]. Building on these developments, the current study presents a new 

modification that integrates the arithmetic optimization algorithm (AOA) [17] into the ABC structure. This 

hybrid, termed the arithmetic artificial bee colony (AABC) algorithm, is designed to strengthen both global 

exploration and local exploitation efficiency. 

The proposed AABC algorithm enhances the exploration capability of the standard ABC 

approach by embedding the search dynamics of the AOA into the employed bee phase. To strengthen 

exploitation, the onlooker bee phase is refined with innovative strategies, including leveraging the global 

best solution as a guiding reference and implementing a newly designed step-size control mechanism. The 

algorithm's effectiveness is thoroughly evaluated using a set of ten benchmark functions. Moreover, the 

AABC is applied to a flexible manipulator system (FMS) to assess its performance in regulating the hub 

angle within a real-world control context. A detailed comparative study between the proposed AABC and 

the original ABC algorithm is conducted to demonstrate the performance gains achieved through the 

introduced enhancements. 

The structure of the paper is as follows: section 2 presents the fundamentals of the ABC algorithm. 

Section 3 discusses the AOA algorithm and the FMS model, followed by section 4, which details the latter. 

Section 5 describes the formulation and components of the AABC algorithm. Section 6 reports the results of 

numerical experiments on benchmark functions and the application of AABC to the FMS. Section 7 

concludes with a summary of key findings and recommendations for future research. 

 
 

2. ARTIFICIAL BEE COLONY ALGORITHM 

Inspired by the intelligent foraging dynamics of honeybee swarms, the ABC algorithm, developed 

by Karaboga [8], transforms the optimization process into a metaphorical search for nectar. In this nature-

inspired framework, each food source symbolizes a potential solution, scattered across a virtual landscape 

representing the problem’s search space. The algorithm simulates the coordinated efforts of three types of 

bees: employed bees, onlooker bees, and scout bees, each contributing distinctively to the balance between 

exploration (searching new regions) and exploitation (refining known good areas). The journey begins with a 

random initialization phase, where a swarm of solution candidates is dispersed throughout the search domain. 

This initial population, typically represented by SN, mirrors the number of employed bees and is positioned 

using (1) to seed the algorithm’s first steps. 

 

𝑥𝑖,𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) (1) 

 
Where 𝑥𝑖,𝑗 represents the solution in 𝑖 𝑡ℎ food source in 𝑗 𝑡ℎ dimension, 𝐷, in which 𝑖 = 1,2,3, … , 𝑆𝑁 and 

𝑗 = 1,2,3,4, … , 𝐷. Each of the food source is randomly assigned to the SN number of employed bees for the 

purpose of food quality evaluation. 

In employed bee phase, the information of the current food source is used by the employed bee to 

adjust themselves to another random food source to improve the food source quality. The new solution, 𝑣𝑖,𝑗 is 

generated using (2). 

 

𝑣𝑖,𝑗 =  𝑥𝑖,𝑗 +  𝑟𝑎𝑛𝑑(−1,1)(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) (2) 
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Where 𝑥𝑖,𝑗 is randomly chosen solution. 𝑥𝑘,𝑗 is randomly chosen neighbor partner solution in which  

𝑘 = 1,2,3, … , 𝑆𝑁 and 𝑘 must be different from 𝑖. The employed bees will then compare the quality of new 

solution, 𝑣𝑖,𝑗 and the previous solution, 𝑥𝑖,𝑗. If the newly discovered solution is superior to the previous one, 

the employed bee replaces the old solution with the new one. The fitness of this updated solution is then 

evaluated using (3). 

 

𝑓𝑖𝑡𝑖 = {

1

1+𝑓(𝑣𝑖,𝑗)
     𝑓(𝑣𝑖,𝑗) ≥ 0

1 + |𝑓(𝑣𝑖,𝑗)|    𝑓(𝑣𝑖,𝑗)  ≤ 0
 (3) 

 
In this context, 𝑓(𝑣𝑖,𝑗) represents the objective value of the newly generated solution. After 

completing their search, employed bees communicate the quality of the food sources to the onlooker bees 

through a mechanism akin to the waggle dance observed in nature. The quality of the waggle dance reflects 

the fitness of the corresponding food source—the more favorable the food source, the more expressive the 

dance. This quality assessment is quantified using (4). 

 

𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑖=1

 (4) 

 
In this context, the probability value 𝑃𝑖  signifies the quality of the food source. Onlooker bees  

then randomly choose a food source based on its associated probability value 𝑃𝑖 . Following the selection of a 

food source, onlooker bees refine the solution using (2). This selection mechanism mirrors a roulette wheel in 

the ABC algorithm. In instances where a food source fails to exhibit improvement within a specified 

timeframe, as indicated by trial limits, the said food source is deemed unsuccessful and abandoned. 

Employed bees then transition into scout bees, tasked with exploring for new food sources, a process 

facilitated by (1). 

 

 
3. ARITHMETIC OPTIMIZATION ALGORITHM 

Introduced by Hu et al. [17], the AOA is built upon fundamental arithmetic principles: division (D), 

multiplication (M), subtraction (S), and addition (A), which form the core of conventional mathematical 

problem-solving. Like other metaheuristic algorithms, AOA is designed to effectively balance exploration 

and exploitation to locate the global optimum. The algorithm follows the BODMAS principle (brackets, 

orders, division/multiplication, addition/subtraction), prioritizing division and multiplication over addition 

and subtraction to ensure a logically coherent execution of mathematical operations. This hierarchy ensures 

that arithmetic operations are executed in a logical and structured sequence when multiple operations are 

present in a computation. 

AOA begins by initializing a population of candidate solutions (referred to as food sources) 

randomly across the search space. The algorithm then employs a dynamic mathematical function, known as 

the math optimizer acceleration (MOA), to govern the transition between exploration and exploitation 

phases. This switching behavior is formulated in (5), which plays a critical role in controlling the algorithm's 

convergence dynamics. 

 

𝑀𝑂𝐴(𝐶𝑖𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶𝑖𝑡𝑒𝑟 × (
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀𝑖𝑡𝑒𝑟
) (5) 

 
Here, 𝑀𝑖𝑡𝑒𝑟 represents the maximum number of iterations, 𝐶𝑖𝑡𝑒𝑟  is the current iteration count,  

𝑀𝑎𝑥 is the maximum value of MOA, and 𝑀𝑖𝑛 is the minimum value of MOA. The term 

𝑀𝑂𝐴(𝐶𝑖𝑡𝑒𝑟) corresponds to the MOA value at the current iteration. The decision to switch between the 

exploration and exploitation processes is determined by comparing a random number 𝑟1 with the current 

MOA value. If 𝑀𝑂𝐴(𝐶𝑖𝑡𝑒𝑟) < 𝑟1 , the exploration process unfolds, involving the use of division and 

multiplication operators. Conversely, if 𝑀𝑂𝐴(𝐶𝑖𝑡𝑒𝑟) ≥ 𝑟1, the exploitation process takes place, employing 

subtraction and addition operators. 

The exploration phase in the AOA leverages multiplication and division operators due to their 

strong scattering characteristics, which enable broad coverage of the search space. These operations facilitate 

the generation of diverse candidate solutions across wide regions. The updated positions of new candidate 

solutions during exploration are calculated using (6) and (7). 
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𝑣𝑖,𝑗 = 𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜖) ((𝑈𝐵𝑗 − 𝐿𝐵𝑗)𝜇 + 𝐿𝐵𝑗) , 𝑟2 > 0.5 (6) 

 

𝑣𝑖,𝑗 = 𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗)𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (7) 

 

In this context, 𝑏𝑒𝑠𝑡(𝑥𝑗) denotes the best solution found so far in the 𝑗 𝑡ℎ dimension. The term  

𝜇 represents a small floating-point constant introduced to prevent division by zero or singularity. The 

parameter 𝜇 serves as a control factor for adjusting the search behavior. 𝑈𝐵𝑗  and 𝐿𝐵𝑗 correspond to the upper 

and lower bounds of the search space, respectively, while 𝑟2 is a randomly generated number within the 

interval [0, 1]. The math optimizer probability (MOP) is computed using (8). 

 

𝑀𝑂𝑃(𝐶𝑖𝑡𝑒𝑟) = 1 − (
𝐶𝑖𝑡𝑒𝑟

𝑀𝑖𝑡𝑒𝑟
)

1

𝛼
 (8) 

 

Here, the parameter α plays a pivotal role, dynamically tuning the precision of the exploitation 

process as the algorithm progresses through its iterations. The MOP, evaluated at the current iteration 

M𝑂𝑃(𝐶𝑖𝑡𝑒𝑟) further influences this balance. When the randomly generated value 𝑟2 > 0.5, the algorithm 

ventures into exploration using the division operator; otherwise, it opts for the multiplication operator, both 

known for their broad search dispersion, enabling the discovery of diverse regions in the solution space. 

Acknowledging that division and multiplication operators possess high dispersion characteristics—

which can hinder the algorithm’s ability to converge toward the optimal solution in later stages—AOA 

strategically utilizes subtraction and addition operations to enhance the exploitation phase. This localized 

search process is governed by (9) and (10). 

 

𝑣𝑖,𝑗 = 𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗)𝜇 + 𝐿𝐵𝑗) , 𝑟3 > 0.5 (9) 

 

𝑣𝑖,𝑗 = 𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 ×  ((𝑈𝐵𝑗 − 𝐿𝐵𝑗)𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (10) 

 

Here, 𝑟3 represents a randomly generated number within the range [0, 1]. If 𝑟3 < 0.5, the subtraction operator 

is applied during the exploitation phase; otherwise, the addition operator is used. These operators introduce 

only minor adjustments to the solution’s position, allowing the algorithm to maintain focus on promising 

regions of the search space and reducing the risk of drifting away from potential optima. 

 

 

4. FLEXIBLE MANIPULATOR SYSTEM 

A manipulator is a mechanical assembly consisting of multiple interconnected links, designed to 

execute a diverse array of tasks across different application fields [18]. Its segmented structure draws 

inspiration from the versatility and precision of the human arm, which enables complex and coordinated 

motion. Traditional manipulator designs emphasize high structural stiffness to reduce system vibrations and 

enhance positional accuracy [19]. This rigidity is typically achieved through the use of dense and heavy 

materials. While effective in damping oscillations, this approach introduces significant drawbacks, including 

increased system weight, limited maneuverability, the necessity for larger actuators, higher energy demands, 

and elevated operational costs [20]. To mitigate these issues, the FMS has emerged as a promising 

alternative. An FMS generally comprises key components such as a strain gauge, shaft encoder, 

accelerometer, tachogenerator, reduction gearbox, and direct current (DC) motor [21]. In comparison to rigid 

manipulators, FMSs offer several benefits: lighter overall weight, improved mobility, smaller actuator size, 

lower power consumption, reduced manufacturing costs, a higher payload-to-weight ratio, and enhanced 

safety, particularly in collaborative environments involving human interaction [21]. However, due to their 

inherently lightweight and compliant structure, FMSs are more prone to vibrations when subjected to 

external forces or disturbances [22]. These oscillations can compromise the system’s precision and control 

accuracy. To address this challenge, numerous control techniques have been investigated to suppress 

vibrations in FMSs. Among the most notable are the proportional-integral-derivative (PID) control [23], 

nonlinear adaptive control [24], time-delay control [25], linear quadratic regulator (LQR) [26], and input 

shaping [27]. Of these, PID control remains the most commonly employed due to its ease of implementation 

and robust performance. In the present study, both the modified optimization algorithm and the standard 

ABC algorithm are applied to fine-tune the PID controller parameters for the FMS, as illustrated in Figure 1. 

Figure 1(a) depicts the schematic diagram of the single-link flexible manipulator, while Figure 1(b) shows 

the control system architecture used for the FMS. 
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(a) (b) 

 

Figure 1. Flexible manipulator system: (a) single link manipulator system [25] and (b) FMS block diagram 
 

 

5. ARITHMETIC ARTIFICIAL BEE COLONY ALGORITHM 

The AABC algorithm was developed by integrating the AOA into the framework of the original 

ABC algorithm. This hybridization is motivated by the need to overcome several key limitations of the 

conventional ABC algorithm, including its inadequate exploration capability, slow convergence speed, 

tendency to become trapped in local optima, and weak exploitation performance. In the standard ABC 

algorithm, only one employed bee is responsible for discovering a potential solution, which is then 

communicated to the onlooker bees. The search movement is controlled by (2), which relies on a randomly 

chosen solution as a reference point. However, the absence of a guiding mechanism in this process results in 

erratic exploration, hindering the algorithm’s ability to effectively focus on promising regions and thus 

slowing down convergence. 

Furthermore, without a structured selection approach, the algorithm has an equal probability of 

choosing either the best or worst reference solutions, reducing its effectiveness in converging toward optimal 

solutions and increasing the likelihood of becoming trapped in local optima. The use of the addition operator 

in (2) also limits the step size of the search agents, thereby restricting their capacity to explore distant or 

boundary regions of the search space. This limitation diminishes the algorithm’s exploratory strength. In 

terms of exploitation, the original ABC algorithm lacks a mechanism to adaptively control the step size, 

which can lead to inefficient local searches and missed opportunities in promising areas. Additionally, the 

algorithm exhibits an imbalance between exploration and exploitation agents, with a greater emphasis on 

exploration (employed and scout bees) compared to exploitation (onlooker bees), further weakening its local 

search performance. 

To address the limitations of the original ABC algorithm, several enhancement strategies have been 

introduced in the proposed AABC algorithm. In this improved version, the exploration phase traditionally 

performed by the employed bees in ABC is replaced with the exploration mechanisms from the AOA. This 

substitution leverages AOA’s strong exploratory capabilities through its division and multiplication 

operators, enabling a dual-mode search that enhances solution diversity. Additionally, the onlooker bee phase 

is split into two distinct stages. The first stage, referred to as the baron onlooker bee phase, adopts AOA’s 

exploitation strategies, utilizing addition and subtraction operators to allow bidirectional search movement. 

The second stage, termed the duke onlooker bee phase, applies a modified version of the standard onlooker 

bee equation, as detailed in (11). 
 

𝑣𝑖,𝑗 = 𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑟𝑎𝑛𝑑(−1,1)(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗)𝑏 (11) 
 

The best-so-far solution, denoted as 𝑏𝑒𝑠𝑡(𝑥𝑗), is utilized as the reference point for the search 

process within the jjj-th dimension. To enhance the accuracy of the exploitation phase, a step size control 

parameter, 𝑏, is introduced. This parameter governs the magnitude of positional updates near the optimal 

solution, thereby improving local search refinement. The value of 𝑏 is computed using (12). 
 

𝑏 (𝐶𝑖𝑡𝑒𝑟) =
1

𝑒
(1−(

𝑀𝑖𝑡𝑒𝑟−𝐶𝑖𝑡𝑒𝑟
𝐶𝑖𝑡𝑒𝑟

))
 (12) 

 

Where 𝑏 (𝐶𝑖𝑡𝑒𝑟) represents the step size coefficient at the current iteration, with the step size value decreasing 

exponentially as the iteration numbers increase. The selection of the exponential function for the step size 

parameter is motivated by its high rate of change. The baron onlooker bee evaluates feasible solutions 

without using a probability equation, while the duke onlooker bee's evaluation of feasible solutions is 

determined by the probability value calculated using (4). The duke onlooker bee only evaluates the highest-



Int J Artif Intell  ISSN: 2252-8938  

 

Arithmetic artificial bee colony optimization algorithm with flexible manipulator … (Mohd Ruzaini Hashim) 

3795 

quality food based on the probability of the food. The onlooker bee phase in the proposed AABC algorithm is 

divided into two categories—baron and duke onlooker bees—to further strengthen its exploitation capability. 

To ensure diversity in the search process, the original scout bee equation from the ABC algorithm is retained 

in AABC for generating new feasible solutions once the current solution has been fully exploited. Both the 

exploration and exploitation phases in AABC are guided by the best solution identified so far, which serves 

as a reference point to direct the search toward the global optimum. Moreover, the proposed algorithm 

maintains an equal number of exploration and exploitation agents, thereby achieving a balanced search 

process. The overall steps of the AABC algorithm are illustrated in Figure 1, while its detailed framework is 

presented in Algorithm 1. 
 

Algorithm 1: Arithmetic artificial bee colony algorithm 
1: Initialize population FS using (1) 

2: Evaluate fitness of each candidate solution using (3) 

3: Identify best solution so far 

4: Compute MOA and MOP using (5) and (8) 

5: Set iteration counter C_iter ← 0 

6: while C_iter < M_iter do 

7:  Generate random numbers r1, r2, r3 

8:  for each candidate solution in FS do 

9:   if r1 > MOA then 

10:    if r2 > 0.5 then 

11:     Update solution using Equation (6) 

12:    else 

13:     Update solution using Equation (7) 

14:    end if 

15:   else 

16:    if r3 > 0.5 then 

17:     Update solution using Equation (9) 

18:    else 

19:     Update solution using Equation (10) 

20:    end if 

21:    Evaluate fitness of updated solution 

22:    Apply greedy selection 

23:    Memorize best solution 

24:    trial_iter ← trial_iter + 1 

25:   end if 

26:  end for 

27:  Calculate selection probability Pi using Equation (4) 

28:  Set iter ← 1, t ← 0 

29:  while t < FS do 

30:   if rand() < Pi then 

31:    Update step size using Equation (12) 

32:    Update solution using Equation (11) 

33:    Evaluate fitness of updated solution 

34:    Apply greedy selection 

35:    Memorize best solution 

36:    trial_iter ← trial_iter + 1 

37:    t ← t + 1 

38:   end if 

39:   if trial_iter > limit then 

40:    Replace solution using Equation (1) 

41:   end if 

42:   Memorize best solution 

43:   C_iter ← C_iter + 1 

44:  end while 

45: end while 

46: Return best solution found 

 

 

6. RESULTS AND DISCUSSION 

The proposed AABC algorithm is comprehensively evaluated by conducting experiments using five 

widely recognized benchmark functions, each featuring distinct and diverse landscape characteristics as 

referenced in [28]. Additionally, the algorithm is applied to a real-world application involving a single-link 

manipulator system, as detailed in [18]. The primary objective of these experiments is to thoroughly assess 

the algorithm's performance in terms of its convergence speed, robustness against variations in input or 

conditions, and overall accuracy in reaching optimal solutions. 
 

6.1.  Arithmetic artificial bee colony evaluation using benchmark functions 

To assess the performance of the proposed AABC algorithm, a set of five widely recognized 

benchmark functions is employed—these functions are commonly utilized in optimization research [28]. The 
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algorithm is tested on both 10-dimensional and 100-dimensional versions of the benchmark functions to 

evaluate its scalability and effectiveness. For this experiment, the population size is set to 80, with a trial 

limit of 50, and the stopping condition is defined as a maximum of 3,000 cycles. The comparative results for 

both the original ABC algorithm and the proposed AABC algorithm across the 10D and 100D test cases are 

summarized in Table 1. 

 

 

Table 1. Comparison of results obtained by ABC and AABC on benchmark problems with 10 and  

100-dimensions 
Function Algorithm 10 Dimension 100 Dimension 

Average STD Average STD 

F1 Sphere ABC 8.44E-17 1.85E-17 1.20E-11 1.02E-11 

AABC 0 0 5.03E-15 1.03E-14 

F2 Ackley ABC 9.41E-15 2.57E-15 7.11E-05 3.25E-05 
AABC 8.88E-16 8.88E-16 1.58E-13 5.32E-14 

F3 Rosenbrock ABC 2.64E-02 1.80E-02 2.11E+00 1.58E+00 

AABC 2.45E-03 2.78E-03 1.48E+02 6.62E+01 
F4 Griewank ABC 1.48E-11 5.81E-11 2.47E-07 1.10E-06 

AABC 0.00E+00 0.00E+00 2.34E-15 2.60E-15 

F5 Rastrigin ABC 0.00E+00 0.00E+00 3.40E+00 1.91E+00 
AABC 0.00E+00 0.00E+00 5.00E-12 7.59E-12 

 

 

The tables present the best, average, median, worst, and standard deviation values of the benchmark 

functions across 30 independent runs. Values that show superior performance for either algorithm are 

highlighted in bold. The benchmark set includes functions F1 and F3, which are unimodal with a single 

global minimum. These functions are specifically designed to evaluate the algorithms’ exploitation 

capabilities and convergence speed. 

Table 2 demonstrates that the AABC algorithm outperforms the original ABC algorithm on the  

F1 benchmark function. AABC successfully reaches the global minimum of F1 (i.e., 0), consistently across 

multiple runs. This superior performance is also observed in the 30-dimensional version of F1, where AABC 

achieves better average and worst-case results compared to the original ABC. Furthermore, AABC exhibits 

greater stability, as indicated by its lower standard deviation. This improvement in exploitation precision can 

be attributed to the step size control mechanism embedded in the duke onlooker bee phase. For the F3 

benchmark function, AABC surpasses ABC in the 10-dimensional case, delivering a better average 

performance. The improved results can be linked to the relatively low complexity of the problem in lower 

dimensions, which makes it easier for algorithms to converge to optimal solutions. However, as the problem 

dimension increases, the complexity grows—due to transformations such as rotation and convolution—making 

it more challenging. In the 100-dimensional F3 function, ABC outperforms AABC. The decline in AABC’s 

performance at higher dimensions is primarily due to its exploitation mechanism, which uses the global best 

solution as a reference point. While this approach effectively guides the search toward promising regions, it 

also reduces population diversity. This loss in diversity is further exacerbated by the roulette wheel selection 

mechanism, which tends to favor ‘super individuals’—i.e., highly fit solutions—causing the search to 

converge prematurely around limited areas of the solution space. In contrast, the ABC algorithm, despite 

using the same selection strategy, maintains greater diversity by referencing randomly selected solutions 

during the search process, which contributes to its better performance in high-dimensional problems. 

 

 

Table 2. Statistical results of Wilcoxon signed-rank test for 10- and 100-dimensional benchmark problems 
Problem complexity 10-dimensional 100-dimensional 

Function Sign p-value Sign p-value 

F1 + 2.00E-06 + 2.00E-06 
F2 + 7.75E-07 + 2.00E-06 

F3 + 2.00E-06 - 2.00E-06 

F4 + 2.00E-06 + 2.00E-06 
F5 = 1.00E+00 + 2.00E-06 

Overall outcome +/-/= 4/0/1 4/1/0 

 

 

The performance of the proposed AABC algorithm is further evaluated using multimodal 

benchmark functions F2, F4, and F5. Function F2 presents a challenging landscape, characterized by a nearly 

flat outer region and a large central basin. This structure increases the risk of algorithms getting trapped in 
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local minima. Despite this, AABC demonstrates strong performance on F2, achieving better objective values 

than the original ABC algorithm. Similarly, F5 poses a high risk due to its numerous local optima. On this 

function, AABC outperforms ABC in terms of average, worst-case, and standard deviation values, indicating 

greater robustness and consistency. The improved performance of AABC on these complex landscapes can 

be attributed to the enhanced exploration capability introduced by the division and multiplication operators. 

Randomly alternating between these operators in each iteration helps maintain population diversity and 

reduces the risk of premature convergence. For function F4, which contains numerous widely scattered local 

minima, AABC consistently produces better median values than ABC. The ABC algorithm relies solely on 

the addition operator during its search process, which limits its ability to escape local optima due to 

insufficient directional guidance. In contrast, AABC shows significantly improved results, particularly in 

higher-dimensional instances of F4, where it achieves superior average and best objective values. This 

highlights the algorithm’s enhanced exploration ability when tackling complex multimodal problems. 

Overall, the comparison results presented in Table 1 clearly demonstrate that the AABC algorithm exhibits 

superior search capabilities compared to the original ABC. The modifications introduced in AABC lead to a 

more effective balance between exploration and exploitation, enabling it to navigate complex search spaces 

more efficiently. 

To verify the significance of the performance differences between the proposed AABC algorithm 

and the original ABC algorithm, a statistical significance test is conducted. The Wilcoxon signed-rank test—

a widely used non-parametric method—is selected due to its effectiveness in handling data sets that do not 

require assumptions about normality. The test is performed at a 5% significance level to ensure a reliable 

comparison. Table 2 presents the corresponding p-values and outcomes of the test. In this table, the symbols 

‘+’, ‘−’, and ‘=’ represent cases where AABC is statistically superior, inferior, or comparable to ABC, 

respectively. This statistical analysis serves as a rigorous validation of the improvements introduced in the 

AABC algorithm. 

 

6.2.  Arithmetic artificial bee colony evaluation for flexible manipulator system controller 

The AABC algorithm is employed to optimize the trajectory of FMS. In this application, the gain 

values obtained from the AABC algorithm are integrated into a PID controller to improve the system’s 

dynamic response. The effectiveness of the algorithm is assessed using several error-based performance 

metrics. The evaluation process comprises a series of simulation experiments, including error minimization, 

transient response analysis, hub angle performance assessment, and single-objective optimization involving 

multiple control parameters. For all simulations, the population size is set to 30, with a problem 

dimensionality of 3. The algorithm is executed for 100 iterations, with a trial limit of 50. The search space for 

the optimization process is constrained within the range of [0, 10]. 

To evaluate the performance of the PID controller, three error metrics are employed: integral time 

absolute error (ITAE), integral absolute error (IAE), and integral square error (ISE). The proposed AABC 

algorithm is executed over 10 independent trials to determine the optimal values of the proportional gain 
(𝐾𝑃) integral gain (𝐾𝐼), and derivative gain (𝐾𝐷) of the PID controller. For each error metric, the best result 

among the 10 trials is selected for performance evaluation. Additionally, the computational time required by 

the algorithm is recorded to assess its efficiency in minimizing the error criteria. 

The results, summarized in Table 3 and illustrated in Figure 2, compare the performance of the 

AABC algorithm with the original ABC algorithm. In the table, boldface values indicate the lowest error 

achieved for each metric. The findings clearly show that AABC outperforms ABC across all three error 

criteria. Furthermore, AABC demonstrates shorter computational times, indicating improved efficiency. The 

superior performance of AABC can be attributed to its enhanced exploration capability, which allows the 

search agents to explore the solution space more broadly, thus increasing population diversity. At the same 

time, AABC exhibits strong exploitation capabilities, enabling it to converge to lower error values compared 

to ABC. While computational time tends to increase with population size due to the higher number of 

candidate solutions being evaluated, AABC still maintains faster performance under the given settings. In 

terms of PID tuning, AABC consistently produces smaller gain values than ABC, resulting in improved error 

metrics for the PID controller. The convergence plots in Figure 2 further confirm AABC's advantage, 

showing that it starts from a lower initial error and converges more rapidly. This is due to AABC’s guided 

search mechanism, which selects the best-performing individual in the population as a reference point from 

the very first iteration.  

Under the IAE criterion, the ABC algorithm exhibits a shorter settling time (𝑇𝑠) compared to the 

AABC algorithm. This is primarily due to the influence of the integral gain, which plays a significant role in 

the accumulation of error over time. As the integral component increases in response to even small errors, the 

system tends to take longer to stabilize. The ABC algorithm features a higher integral gain than AABC, 

contributing to this faster settling time. However, ABC also incorporates a higher derivative gain, which 

counteracts the effects of its larger integral gain. Additionally, because the IAE criterion inherently leads to 
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slower system responses, the inclusion of a stronger derivative component helps mitigate this drawback by 

accelerating system correction. In terms of overshoot (OS), the AABC algorithm outperforms ABC by 

producing a lower OS value. This improvement is attributed to AABC’s smaller proportional and integral 

gains, which help suppress oscillatory behavior and enhance system stability. When evaluating the rise time 
(𝑇𝑟), AABC demonstrates a faster response compared to ABC, indicating that it reaches the desired output 

level more quickly. 

While for ISE criteria, the two algorithms perform equally well in settling time because they have 

the lowest values of integral and derivative gain. However, ABC algorithm beats AABC algorithm in OS 

because AABC algorithm does not have enough integral gain to balance the high proportional gain. AABC 

algorithm perform better where it reacts faster in term of rise time than original ABC algorithm. For the 

ITAE criteria, AABC algorithm outperforms ABC algorithm in settling time and OS. But AABC algorithm 

has the slowest rise time because it starts from the highest value compared to ABC algorithm, which hinders 

its convergence. This is because ITAE has the most sluggish initial response. 

 

 

Table 3. Outcomes for output response flexible manipulator system experiment 
Error criteria IAE ISE ITAE 

Parameter ABC AABC ABC AABC ABC AABC 

𝐾𝑃   2.818 1.887 9.377 9.421 5.631 5.186 

𝐾𝐼  1.836E-08 0.000 1.081E-06 0.000 1.052E-07 0.000 

𝐾𝐷  0.953 0.667 2.586 2.589 1.863 1.730 

Error 1.215E+02 1.197E+02 8.123E+03 8.122E+03 4.365E+02 4.360E+02 

Ts1 (s) 0.200 0.798 0.000 0.000 0.000 0.000 

Tr1 (ms) 536.529 535.132 450.495 448.971 852.510 862.595 
OS1 (%) 0.085 0.000 5.178 5.376 0.404 0.373 

Ts2 (s) 0.487 1.022 0.000 0.000 0.000 0.000 
Tr2 (ms) 648.342 663.730 599.739 598.440 643.301 645.828 

OS2 (%) 9.863 7.265 32.610 33.040 10.050 9.054 

Ts3 (s) 2.501 2.698 0.000 0.000 0.000 0.525 
Tr3 (ms) 914.849 590.738 520.771 516.829 883.428 887.224 

OS3 (s) 0.000 0.000 0.891 0.905 0.159 0.113 

 

 

  
 

 
 

Figure 2. Output response flexible manipulator system experiment with different error criteria 
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7. CONCLUSION 

The AABC algorithm is a refined variant of the standard ABC algorithm, designed specifically to 

enhance the optimization performance of FMS. This improvement aims to overcome key shortcomings of the 

original ABC, particularly by strengthening global exploration and reducing the risk of premature 

convergence to suboptimal solutions. In this modified approach, the employed bee phase is replaced with the 

exploration mechanism derived from the AOA, introducing a more systematic and efficient search 

methodology. Additionally, the AABC algorithm incorporates the global best solution as a dynamic reference 

point throughout the optimization process to accelerate convergence. To enhance local exploitation, the 

onlooker bee phase is restructured into two distinct components, coupled with a step-size control mechanism 

that enables precise fine-tuning during the local search phase. These enhancements collectively result in a 

more balanced and effective search strategy compared to the original ABC algorithm. The performance of 

AABC has been rigorously validated through comprehensive testing using ten widely accepted benchmark 

functions. Across these functions, AABC consistently demonstrated superior results in terms of convergence 

speed, solution accuracy, and result stability. Further insights into its convergence dynamics and statistical 

performance metrics affirm its effectiveness. To examine the algorithm's practical relevance, the AABC 

algorithm was applied to optimize the control parameters of FMS. Experimental evaluations using various 

performance indicators revealed that AABC outperformed the conventional ABC algorithm, delivering 

notable improvements in control precision. Comparative assessments with other ABC-based variants also 

confirmed the AABC’s competitive edge. These outcomes highlight the algorithm's robustness and efficiency 

as an optimization tool. Future research may explore hybridizing AABC with other metaheuristic techniques 

or intelligent systems—such as GA, PSO, or neural networks—to extend its capabilities for addressing more 

complex and high-dimensional optimization problems. 
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