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The proliferation of smart devices and the increasing demand for resource-
intensive applications present significant challenges in terms of computational
efficiency, leading to surge in data traffic. While cloud computing offers partial
solutions, its centralized architecture raises concerns about latency. Multi-access
edge computing (MEC) emerges as promising alternative by deploying servers
at the network edge to bring computations closer to user devices. However, op-
timizing computation offloading in the dynamic MEC environment remains a
complex challenge. This paper introduces novel genetic algorithm-based ap-
proach for efficient computation offloading in MEC, considering processing
and transmission delays, user preferences, and system constraints. The pro-
posed approach integrates computation offloading and resource allocation al-
gorithm based on evolutionary principles, combined with a greedy strategy to
maximize overall system performance. By utilizing genetic algorithms, the pro-
posed method enables dynamic adaptation to changing conditions, eliminating
the need for intricate mathematical models and providing an appealing solution
to the complexities inherent in MEC. The urgency of this research arises from
the critical need to enhance mobile application performance. Simulation re-
sults demonstrate the robustness and efficacy of our approach in achieving near-
optimal solutions while efficiently balancing computation offloading, minimiz-
ing latency, and maximizing resource utilization. Our approach offers flexibility
and adaptability, contributing to advancement of MEC networks and addressing
the requirements of latency-sensitive applications.
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1. INTRODUCTION

In recent years, the rapid proliferation of smart devices has led to an increased demand for appli-

cations such as surveillance, augmented reality, voice recognition, automated transportation, healthcare, and
autonomous driving. These applications generate a large amount of data traffic, especially from tasks that re-
quire low latency and involve complex computations [[1]]. However, smart devices often have limited processing
power and storage capacity, which makes it challenging to perform computation-intensive tasks locally [2]. To
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address these challenges, cloud computing has emerged as a solution by utilizing the computing and storage
resources of cloud servers over a wide area network for task processing [3]. While cloud computing can ef-
fectively handle resource-intensive applications and overcome certain limitations of user devices [4]], it faces
difficulties with latency-sensitive applications due to congestion and packet losses caused by the increasing
data generated by user devices [3].

To overcome these challenges, multi-access edge computing (MEC) proposes the deployment of edge
servers at the network’s periphery to improve support for low-latency applications and services while ensuring
quality of service (QoS) for end-users [[6]. The MEC framework consists of three levels [7]: the user device
level, the edge level, and the cloud level. At the user device level, devices communicate with the local edge
server through WLAN. The edge level consists of multiple interconnected MEC servers via a metropolitan area
network (MAN), while the cloud level involves global cloud servers using a wide area network. Computation
offloading allows devices to offload tasks to the edge servers, contributing to overall performance enhancement.
Various studies prioritize computation offloading in MEC networks, focusing on the full offloading of tasks to
an edge server for each user device request [8]. However, selecting the optimal offloading server is a complex
task that requires adaptation to fluctuating capacities and task diversity [9]. Traditional offline optimization is
unsuitable due to uncertainties in offloading requests and changing network and computing conditions. The
use of MEC for task offloading represents a promising strategy for reducing network latency [[10]. In particular,
MEC addresses the computational offloading needs of user devices by processing tasks near the edge, rather
than relying solely on a central cloud [[L1]. However, the task offloading problem is recognized as an NP-hard
problem [12]], and finding a solution poses significant challenges.

Existing research has explored computation offloading in edge computing and offered various ap-
proaches to minimize latency in MEC systems. For example, Silva et al. [13]] introduced a hybrid cloud-based
offloading scheme. In contrast, Maleki and Mashayekhy [14] considered the runtime and application move-
ment impact for offloading in mobile edge computing. Hossain et al. [15] proposed a task-offloading model
that balances energy consumption and user satisfaction. Heuristic techniques, such as genetic algorithms, have
also been utilized for quick offloading decisions, despite potentially suboptimal outcomes. Genetic algorithms
have shown effectiveness in heterogeneous systems, as demonstrated by Neema et al. [16], who proposed
genetic techniques for dynamic scheduling and load balancing in cloud environments, and Li et al. [17], who
utilized genetic algorithms to address task offloading proportion, channel bandwidth, and computing resources
of mobile edge servers. While these studies provide valuable insights, a comprehensive approach is needed that
considers system constraints, user preferences, and dynamic MEC conditions.

In this research, we propose a genetic algorithm-based approach for offloading in MEC, leveraging a
dynamic genetic algorithm and a greedy strategy for performance maximization. The adaptability of genetic
algorithms makes them ideal for the dynamic environment of MEC, offering near-optimal solutions without
complex models [18]. Our research methodology introduces the computation offloading challenges in MEC
networks, identifies gaps in task-offloading approaches through a literature review, and acknowledges the suc-
cess of genetic algorithms in MEC. We detail the MEC system modeling, integrating task offloading compu-
tations and user preferences. We incorporate task and computation models representing the MEC system to
ensure precision. The problem formulation centers on computation offloading optimization, to minimize the
total task service time. We lay the groundwork for our genetic algorithm design, which is explained in the
subsequent section. Our offloading strategy based on genetic algorithms balances exploration and exploitation
for efficient convergence without sacrificing diversity. An experimental methodology outlines metric selection
and test scenarios, configuring simulation parameters. We assess the performance of our computation offload-
ing approach using metrics such as total service time, task failure rate, and computation resource utilization.
Results are discussed and compared with existing approaches for validation. In conclusion, we summarize con-
tributions, exploring future research directions, including genetic algorithm enhancements in real environments
and integration into operational MEC systems.

The remainder of this paper is organized as follows, section 2 provides details of our system model
and problem formulation, section 3 explains our offloading strategy using genetic algorithms, section 4 presents
the performance evaluation of our approach, and discuss the results, and finally, section 5 concludes the paper
and explore future research directions.
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2.  SYSTEM MODEL AND PROBLEM FORMULATION

The system model in this paper is based on a mobile/MEC/cloud architecture. When a smart mobile
device (SMD) intends to execute a resource-intensive task, it can offload it to an MEC or cloud server. The MEC
system comprises three levels, as shown in Figure |I} Mobile users as clients utilizing the system’s resources,
MEC nodes/servers near users, and the centralized cloud server with more substantial resources. MEC servers
connect to the orchestrator, forming a hierarchical network. When an SMD offloads a task, the MEC server
covering its location attempts to execute it. If resources are insufficient, the orchestrator delegates the remaining
tasks to other servers. Each computation task is defined by length, deadline, and resource consumption. Each
MEC node has virtual machines (VMs) with maximum computing capacity, including CPU, memory, and
storage, allocated for task execution. Two execution modes exist for a computation task: local and remote.
In the local mode, the mobile device performs the task computation, generating the result. This method is
simple and efficient, requiring no data transmission to a remote server. In the remote mode, the SMD sends
an offloading request to the orchestrator via the MEC node. The MEC server allocates necessary computing
resources based on requirements, executes the task, and sends the result back to the SMD.

As illustrated in the MEC system framework in Figure let Eg = {S1,52,...,5p, Sp+1} be the set
of MEC and cloud servers, where p is the total number of servers in the MEC architecture.
Let VMg, = {vm;1,vm; 2,...,vm; } be the set of VMs, where n is the total number of VMs in each MEC
server .S;. To distinguish between VMs in MEC and the cloud server, let VM¢c = {vmc1,vme2, ..., vmco,m}
be the set of VMs in the cloud server S, 1, where m is the total number of VMs.
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Figure 1. MEC system model with mobile/MEC/cloud architecture

2.1. Task model

Unlike other works [19]], [20], each SMD in this study isn’t confined to a single task but rather has a set
of tasks. Equipped with a set of applications, each SMD’s tasks are denoted by A" = {r] | 7/, ... 7} }.
Here, SMD; is the smart mobile device ¢, ¢ is the application type, and j is the total tasks in applicatioh t.
For simplicity, each task is an atomic unit of input data, not fragmented. Each task has three parameters:
task length L. 7i , Tepresents the task data amount transferred to the MEC server or the cloud, indicated by

instructions. Delay sensitivity DS ~ specifies task sensitivity to delay, close to 1 indicates high sensitivity.

Maximum delay demand D 1ndlcates the maximum acceptable delay for chosen server processing.
Te,d
2.2. Computation model
The task computation model incorporates considerations for both local and remote execution times.
Specifically, the local execution time of a task represents the time required for the execution of task 7; ; on the
SMD,;. This parameter captures the duration needed for the local processing of the task on the specific SMD;:

SMD; LTZ’j
_ 1 (D

S’Tt J FSMD,L'

Here, L., i represents the amount of data for task 7, j» and Fgyp, is the processing speed of device SMD;
Off,Sp

in million instructions per second (MIPS). The remote execution time of a task, denoted T’y , is the time
St
required to execute the task on a MEC or cloud server. It is given by (2):
Tsmf T];rans ,Sp + TProcess ,Sp TUp, (. TDW ,Sp + TPracess ,Sp (2)
Tt Tt Tt ¥ Ti ¥ t ¥ Tt ¥
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Ti S
Here, T rans,

task data from the mobile device to the MEC server or the cloud. The upload and download data transfer times
are denoted by TUp P and TDW 5
the target server (S ) and output data from the computing server to the source mobile device. These delays are
calculated using a network model integrated into the EdgeCloudSim simulator [21]]. The simulator dynamically
evaluates data transmission delays, considering the locations and number of mobile devices, traffic, and network
types. The processing time, denoted Tpmms 57 _is calculated using (3):

? denotes the transmission time of task 7/ j to server S, representing the time required to transfer

P for the respective transfers of task input data from the mobile device to

tJ

Process,S Tt,j
T s P p — »J 3
Tt F Sp,n ©)
Here, the processing time represents the time required to execute the task on the MEC or cloud server, and Fs, »,
represents the processing speed expressed in MIPS. This parameter characterizes the computational capability
of the n-th VM on the server S, providing a measure of its efficiency in processing instructions.

2.3. Problem formulation

In this section, the computation offloading problem in the MEC environment is formulated. The
objective is to assign a set of tasks to MEC or cloud servers to meet the QoS requirements of mobile applications
and the constraints of computing resources while minimizing the total processing and transmission time of these
tasks. The computation offloading decision for a task 7; ; is represented by the binary variable ;. If §; = 0,
the task is executed locally, and if {; = 1, it is offloaded to a MEC or cloud server. The problem can be
mathematically formulated as follows:

Nt
minimize T = Z (1-¢) x TSMD1 + & % Tgﬁf’isp (P1)
i=1 g T
subjectto :
Cr: &e{0,1}; vri, e AM Vie{l,... Nr}
Co: max (TSMDI TRS) < D% 5 vie{l,....Nr}, VS, €Es
S, j )Ty i Tt
CReq T ;’n:rget vm
Cg : W <1 & >1 & CTaYTZet < Thsp; vai’n S VMSi; VSP € Eg
CTarget Select

The problem formulation (P1) is designed to minimize the total service time of tasks, considering both
local and remote execution times weighted by the parameter &;. The binary variable £; decides whether task
7'ti7 j is offloaded (§; = 1) or processed locally (¢§; = 0). Constraints (C-C'3) define the conditions and limits
of the problem. C'; ensures that the binary variable &; is within the interval (0,1), indicating whether the task is
offloaded or processed locally. C5 guarantees that the processing and transmission time of each task does not
exceed its latency sensitivity DS Constraint C's encompasses conditions on computing resources, ensuring

that the demand and capacity of V1rtual resources meet predefined criteria. It concurrently regulates the load of
VMson MEC servers, preventing it from exceeding the limit defined by T'hg,,.

3.  COMPUTATION OFFLOADING OPTIMISATION STRATEGY BASED ON GENETIC ALGO-
RITHMS

The genetic algorithm is an evolutionary approach that simulates the process of natural evolution [22]].
Applied to solve complex problems [23]], genetic algorithms find extensive use in addressing NP-complete
problems, including load balancing in cloud computing [24]. Their implementation involves a population of
solutions, where each solution is represented by chromosomes. These algorithms utilize operators inspired by
biological processes, facilitating convergence towards optimal solutions while avoiding local optima. Genetic
algorithms efficiently find solutions close to optimal within a reasonable timeframe, making them a promising
approach for addressing the computation offloading problem in dynamic MEC environments. Given the chal-
lenge of solving (P1) using traditional methods, genetic algorithms are employed, and the steps are outlined as
follows:
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Step 1: Encoding and generation. This involves creating an initial population of potential solutions
represented by chromosomes. Each chromosome corresponds to a computation offloading scheme for an
application task, with genes representing possible execution locations.

Step 2: Evaluation. To obtain an optimal assignment of tasks to computing servers, an adaptation function
measures the optimality of offloading decisions. After evaluating the chromosomes, they are ranked
based on their fitness, where the fitness of a chromosome x is calculated as in (4):

1
(1— &) x TSP 4 ¢, 5 TS
S,‘rt’j S,Tthj

flz) = “4)

This fitness function represents the inverse of the total service time of tasks, considering both local and
remote execution times weighted by the binary variable ¢;. The chromosomes are then ranked based on
their fitness values, with higher values indicating better solutions.

Step 3: Selection operation. The tournament selection method is used to choose the fittest chromosomes,
which are retained for reproduction, while less performing ones are eliminated.

Step 4: Crossover operation. The crossover operator combines the features of two parents to create new
offspring, gradually improving the quality of solutions.

Step 5: Mutation operation. Mutation modifies one or more genes of a chromosome, preventing prema-
ture convergence to a local optimum. Single-point mutation, altering a random gene, is used.

Step 6: Replacement. The new offspring solutions replace the worst solutions in the current population,
maintaining the population’s quality and avoiding premature convergence.

Step 7: Termination and iteration. Steps 2 through 6 are iteratively executed for a designated number
of generations. The algorithm terminates upon reaching the maximum specified iterations or when the
overall fitness function converges to its minimum value.

The resolution method based on these steps is described in Algorithm[I} The proposed genetic algo-

rithm optimizes computation offloading in MEC through an evolutionary approach. In the initialization step,
a population is created with chromosomes representing distinct computation offloading schemes onto MEC
and cloud servers. The algorithm iterates until convergence or a preset limit. Fitness values, based on the
inverse of total service time, guide chromosome selection, crossover, and mutation. A combined population
of parents and offspring is formed, and the top-performing chromosomes advance to the next iteration. The
algorithm concludes by selecting the optimal solution from the final population, offering a versatile framework
for efficient computation offloading optimization in dynamic MEC environments.

Algorithm 1 Genetic algorithm for computation offloading optimization

Require: TZ I Incoming Task, Eg : Set of MEC and Cloud Servers
1: Initialization _
2: P < Generate an initial population of feasible solutions (7} It Eg)

3: repeat
4. Evaluation
5: for all x € P do
6: f(x) + Calculate fitness function as in (4)
7: end for
8: Piored < Sort chromosomes based on their fitness
9: Pielected <— Select top-performing chromosomes from Pygeq
10: while the number of generations is not exhausted do
11: Crossover
12: Poftspring +— Generate offspring by applying crossover t0 Fielected
13: Mutation
14: Poftspring < Apply mutation on Pogfspring
15: Evaluation
16: for all z € Prfspring do
17: f(x) < Calculate fitness function(z)
18: end for
19: Prombined + Pelected U Poffspring
20: Pielected <— Select top-performing chromosomes from Preompined
21: end while

22: until Convergence
Ensure: x : The best chromosome from the final population(Pejected)
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4. PERFORMANCE EVALUATION AND SIMULATION RESULTS

This section is dedicated to the thorough evaluation of the genetic algorithm for computation offload-
ing optimization (GA-COO) algorithm’s performance through simulations. We comprehensively consider a
range of parameters, and we benchmark our results against various offloading schemes and algorithms within
the MEC context. The objective is to provide a detailed analysis of how the proposed GA-COO algorithm
compares and performs under diverse scenarios, shedding light on its effectiveness in addressing computation
offloading challenges in MEC networks.

4.1. Experimental evaluation

The GA-COQO algorithm’s experimental assessment aims to minimize task response time and failure
rates, considering mobile application constraints and MEC/cloud server utilization. Metrics analyzed include
task response time (processing and transmission time), computational task failure rates, and resource utilization.
Results are compared with four algorithms: i) DCOA-ST [25]]: a greedy approach minimizing task service time
while adhering to sensitivity constraints, ii) Random [26]: random task assignment to available VM, serving as
areference, iii) Utilization-based [27]: allocation based on real-time VM utilization with predefined thresholds,
iv) Network-based [27]: allocation considering network characteristics, including bandwidth, and v) Hybrid
[27]: an approach combining real-time VM utilization and network characteristics.

4.2. Simulation environment

To assess GA-COO, EdgeCloudSim [21] was chosen for its realistic simulation of decentralized envi-
ronments, precise computing architecture modeling, and accurate workload generation. Task parameters, gen-
erated randomly using EdgeCloudSim’s workload generator, defined simulated applications (e.g., augmented
reality, health, infotainment, and heavy computation) with specific characteristics. These applications varied
in upload/download sizes, task lengths, and VM utilization. Delay sensitivity ranged from 0.9% to 0.1%, and
maximum delay requirements varied from 0.5 seconds to 2 seconds. The MEC architecture included 14 MEC
servers, 1 cloud server, and a variable number of SMDs. Each MEC server had 8 VMs per host, the cloud server
had 4 VMs per host, and SMDs had 1 core per VM. VM CPU speed was specified in GIPS, with values of 10
for MEC servers, 100 for the cloud server, and 4 for SMDs. Experiments were conducted using EdgeCloudSim
in JAVA on a computer with 4 Intel Core 17-9600U processors at 2.59 GHz and 8§ GB of RAM.

4.3. Simulation results

With the specified parameters, we evaluate our genetic algorithm’s performance. Figure [2] displays
computation task service times relative to the number of SMDs, showcasing GA-COO’s efficiency. Results
reveal a linear increase in service time with growing SMD numbers, highlighting challenges associated with
limited shared computing resources. GA-COO maintains competitive service times, ranging from 1.1 seconds
for 100 SMDs to 1.95 seconds for 2300 SMDs. In comparison, the DCOA-ST algorithm exhibits notable
performance, ranging from 0.8 seconds to 2.5 seconds for the same SMD values.

Simulation results of failure rates in Figure [3] provide insights into the robustness of different ap-
proaches concerning SMD numbers. GA-COO maintains a low and stable failure rate up to 2100 SMDs, then
experiences a notable increase to 12% for 2300 SMDs. DCOA-ST maintains a low failure rate, slightly in-
creased to 20% for 2300 SMDs. In contrast, Random exhibits a rapid growth in the failure rate, reaching 61%
for 2300 SMDs. Hybrid shows a progressive increase to 28%; Network-based maintains stability up to 2100
SMDs, then increases to 18% for 2300 SMDs. Utilization-based demonstrates a significant increase to 46% for
2300 SMDs.

Analyzing Figure {4 reveals trends in average VM utilization for MEC servers. GA-COO maintains
stability at 25% for 1900 SMDs, persisting at 24% for 2100 and 2300 SMDs. DCOA-ST’s performance remains
consistent, slightly increasing to 19% for 2300 SMDs. In contrast, Random experiences rapid growth, reaching
61% for 2300 SMDs. Hybrid progresses to 69.5%, indicating sensitivity to high loads. Network-based stays
stable up to 1900 SMDs, then increases to 44% for 2300 SMDs. Utilization-based increases to 59% for 1900
SMDs, slightly decreasing to 49% for 2300 SMDs.

In terms of cloud VM utilization, depicted in Figure 5] GA-COO maintains gradual usage, ranging
from 0.1% to 3.9% for 100 to 2300 SMDs. DCOA-ST increases from 0.1% to 8.1% for 100 to 2300 SMDs.
Random shows a slight increase, from 0.3% to 1% for 100 to 2300 SMDs. Hybrid maintains minimal usage,
from 0.01% to 1.25% for 100 to 2300 SMDs. Network-based displays lower usage, from 0.3% to 2.1% for 100
to 2300 SMDs.
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The simulation results confirm the stability and effectiveness of the GA-COO approach for compu-
tation offloading in MEC networks. GA-COO maintains consistent performance under increasing workloads,
with a linear increase in task service times and a low, stable task failure rate even under high loads. The
utilization of VMs in MEC servers remains stable, indicating efficient resource management in the presence
of significant workloads. In response to the identified challenges, GA-COO demonstrates competitive per-
formance with short task service times, low failure rates, and stable resource utilization, indicating efficient
resource management, particularly under heavy workloads.

5. CONCLUSION

The proposed GA-COO employs a genetic algorithm to optimize computation offloading in MEC
networks. Comparative evaluations, involving various reference offloading schemes, unequivocally establish
GA-COQO’s effectiveness in minimizing task service times and failure rates, all while considering the constraints
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of mobile applications and computational resource utilization. GA-COO consistently outperforms traditional
methods and certain reference algorithms, especially in scenarios with a substantial number of SMD. This
robust performance underscores the significance of tailored offloading strategies that account for application
specifics and system constraints. This work not only introduces a novel computation offloading approach in
MEC but also aligns with broader goals of optimizing edge computing systems for diverse applications in an
increasingly interconnected and data-intensive landscape. Future research prospects involve not only enhancing
GA-COO’s performance in real-world environments but also considering specific factors such as quality of
experience and mobility. Furthermore, crucial investigations into GA-COQ’s impact on other aspects of MEC
networks, including energy consumption and security, are imperative for a comprehensive understanding of its
implications.
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