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 This paper proposes a novel metaphor-free metaheuristic, namely the guided 

imitation optimizer (GIO). This metaheuristic combines the guided search and 

imitation-based search. There are five guided searches and three imitation-

based searches. Meanwhile, there are three references used in this 

metaheuristic: global finest, a randomly picked solution among the swarm, 

and a randomized solution within the search space. GIO is then evaluated by 

using 23 classic functions that consist of seven high dimension unimodal 

functions (HDUF), six high dimension multimodal functions (HDMF), and 

ten fixed dimension multimodal functions (FDMF). Through simulation, GIO 

is superior to golden search optimizer (GSO), grey wolf optimizer (GWO), 

puzzle optimization algorithm (POA), and coati optimization algorithm 

(COA) in handling most of these functions. GIO is the first finest in tackling 

seventeen functions and second finest in tackling six functions. Tight 

competition occurs between GIO and COA due to the performance of COA 

which becomes the second finest in handling most of these functions. 
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1. INTRODUCTION 

Optimization work is a subject in applied mathematics that has been extensively used in various areas, 

including engineering, industry, and finance. For example, power flow optimization is necessary in the 

operation of the electrical power system [1]. Optimization plays important role in other energy related system, 

such as electricity distributed system [2] and power system stabilizer [3]. In the manufacturing system, 

optimization plays a significant role in scheduling the arriving job in the distributed flow-shop system [4] or 

assembly job-shop system [5]. In supply chain management, vehicle routing problems become a common issue 

to optimize, for example in the context of capacitated vehicle routing problems where there is a limitation on 

the fleet capacity [6]. In recent years, many studies on the vehicle routing problem have used the electric vehicle 

as the use case, for example in its relationship with charging and discharging functions [7]. In the financial 

sector, portfolio optimization is a crucial issue in arranging the assets held by individuals or institutions to 

maximize the investment return and minimize the investment risk [8]. Optimization deals with problems with 

multiple possible solutions.  

In finding the finest solution, optimization faces three key issues: decision variables, constraints, and 

objective function. In some works, constraints are called hard constraints while objectives are called soft 

constraints. Both constraints and objectives are constructed from decision variables. Constraints or hard 

constraints are designed to limit the possible solutions and become the boundaries of the solution space. 

Objectives or soft constraints are some entities that become the focus of optimization. It may be minimization 
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or maximization. The examples of minimization objectives are minimizing total tardiness [4], total completion 

time [5], total inventory time [5], and waiting time [9]. On the other hand, maximization-based objectives are 

often related to revenue [10], profit [11], and service level [6]. 

In general, optimization can be solved using two approaches: deterministic and stochastic. 

Deterministic or exact method is powerful in guaranteeing the global optimal solution. But deterministic 

methods have disadvantages in tackling complex or complicated problems with high dimensions or huge 

number of decision variables. The deterministic method needs excessive computational resources, so it is 

difficult to implement in handling various practical optimization problems [12]. Meanwhile, stochastic method 

is more flexible and feasible to be implemented for handling various and complex problems [12]. Its random 

search strategy can reduce the computational resource, but with the consequence that the real optimal is not 

ensured to be found [12]. 

Metaheuristics is a popular stochastic based optimization method. As a stochastic tool, it does not 

search for all possible or available solutions. In general, it starts with a full random search inside the search 

space. Then, the current solution is improved as the iteration goes. Because of its flexibility and feasibility [13], 

metaheuristic has been widely used in various optimization projects. 

The popularity of metaheuristic is followed by the massive development of various metaheuristics. 

This massive development comes from several reasons. First, there are various stochastic methods that can be 

explored, modified, and implemented to develop a new metaheuristic. Second, a new metaheuristic can also be 

built by modifying the existing metaheuristic or combining some existing metaheuristics, such as hybrid 

pelican Komodo algorithm (HPKA) [14] or guided pelican algorithm (GPA) [15]. Third, as stated in no-free 

lunch (NFL) theory, there is no one tool that is most suitable to solve all problems [12]. Any optimization 

method may be superior in handling some problems but mediocre or inferior in handling other problems [12].  

In recent decades, nature becomes the main source of inspiration in proposing a new metaheuristic. 

Many metaheuristics are inspired by the animal behavior during mating or searching for food, such as: grey 

wolf optimizer (GWO) [16], Komodo mlipir algorithm (KMA) [17], puzzle optimization algorithm (POA) 

[18], coati optimization algorithm (COA) [19], northern goshawk optimizer (NGO) [20], naked mole-rat 

algorithm (NMR) [21], marine predator algorithm (MPA) [22], butterfly optimization algorithm (BOA) [23], 

cheetah optimizer (CO) [24], clouded leopard optimizer (CLO) [25], squirrel search optimizer (SSO) [26], and 

white shark optimizer (WSO) [27].  

Several metaheuristics are also built by mimicking the human or social behavior or game mechanics. 

Some metaheuristics that are built based on the human or social behavior are paint optimizer (PO) [28], sewing 

training-based optimizer (STBO) [29], teaching learning-based optimizer (TLBO) [30], driving training-based 

optimizer (DTBO) [31], chef-based optimization algorithm (CBOA) [32], and election-based optimization 

algorithm (EBOA) [33]. Several metaheuristics that are built based on the game mechanics are darts game 

optimizer (DGO) [34], football game-based optimizer (FBGO) [35], and POA [36]. 

Unfortunately, there exists critiques because of the explosive number of metaheuristics. Many 

metaphor-based metaheuristics are claimed to have poor or limited novelty and hide behind their metaphor 

[12]. In their first introduction, these metaheuristics shown their adoption of the metaphor as the novelty [12]. 

But, through deeper analysis, especially based on the mathematical model used in them, some metaheuristics 

have high similarity [12]. Studies in proposing new metaheuristics are also often trapped in beating each other 

rather than focusing on finding or exploring new strategies. Fortunately, not all new metaheuristics are 

metaphor-based metaheuristics. Some others, such as golden search optimizer (GSO) [37], total interaction 

algorithm (TIA) [38], and average subtraction-based optimizer (ASBO) [39] are metaphor-free metaheuristics. 

They use their main strategy for their name. 

By abstracting the metaphor, various new metaheuristics are built based on swarm intelligence or 

swarm movement. In these swarm-based metaheuristics, some references are often used to guide the 

movement, such as global finest, local finest, randomly picked solution, randomized solution within the space, 

or combination among them. For example, the slime mold algorithm uses global finest and two randomly 

picked solutions as references [40]. Meanwhile, crossover or imitation strategy that becomes the main strategy 

in the popular genetic algorithm (GA) [41] becomes less popular. New metaheuristics that adopt crossover or 

imitation approach are more difficult to find. Coronavirus optimization algorithm (COVIDOA) is an example 

of new metaheuristic that adopts imitation based search through frameshifting of the parent [42]. Like GA, 

COVIDOA deploys crossover and mutation in a different way compared with GA [42]. This circumstance 

makes the development of a new metaheuristic by combining swarm movement and imitation challenging. 

Based on these problems and opportunities, this work is carried out to present a new metaheuristic 

called a guided-imitation optimizer (GIO). GIO is a metaheuristic that combines the guided search and 

imitation-based search. It consists of five guided searches and three imitation-based searches. It uses three 

references for its searches: the global finest, a randomly picked solution, and a randomized solution within 

space. The main scientific contributions to this paper: i) this work presents a novel metaheuristic that combines 
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multiple guided searches and multiple imitation-based searches, ii) this work exhibits the main concept, 

strategy, and formulation of the GIO, iii) the effectivity and efficiency of GIO are tested through 23 classic 

functions that can be split into seven high dimension unimodal functions (HDUF), six high dimension 

multimodal functions (HDMF), and ten fixed dimension multimodal functions (FDMF), and iv) the 

performance of the shown GIO is also competed with four new swarm-based metaheuristics. 

The remainder of this paper is arranged as follows. Section 2 presents a review of several new studies 

proposing new metaheuristics. Section 3 presents the concept, detailed description, and formalization of GIO. 

Section 3 also presents the testing scenario to assess the performance of GIO. Section 4 presents the evaluation 

result of GIO, that consists of the comparison and data; and performs the in-depth analysis based on the test 

data, findings, and complexity of GIO. In the end, the conclusion and the future work potential regarding this 

work are presented in section 5. 

 

 

2. RELATED WORKS 

In general, all metaheuristics are stochastic based methods. It means that metaheuristic is identical to 

the use of random numbers [25]. As a searching method, metaheuristic deploys random search too [25]. 

Metaheuristics can also be seen as a trial-and-error tool. It means there is no assurance that the next move will 

produce a better solution than the current solution. Metaheuristic is also known as iterative method [12] where 

the improvement is performed through iteration. 

There are various methods in the searching procedure performed by the metaheuristic. Uniform 

random search is common in the initialization phase [25]. It means the initial solution can be anywhere within 

the search space. In different point of view, any location within the search space has equal opportunity to 

become the initial solution. 

During the iteration phase, there are several kinds of searches: imitation or crossover, full random 

search, neighborhood search, and guided search. Imitation is the backbone of evolution-based metaheuristics, 

such as GA. Imitation means the copy procedure of the value of some decision variables to produce the next 

solution. Neighborhood search means a new solution is generated close to the current solution. Neighborhood 

search can be found in several metaheuristics, such as tabu search (TS) [43], simulated annealing (SA) [44], 

invasive weed optimizer (IWO) [45], and artificial bee colony (ABC) [46]. A full random search means the 

new solution is generated within the search space. This method is performed in some metaheuristics, especially 

when the neighborhood search faces stagnation or in other words, the agent is structing in the local optimal. 

The guided search means the next solution is generated along the way from the current solution to or away 

from the reference. The guided search is the backbone strategy in the swarm-based metaheuristic. Particle 

swarm optimizer (PSO) is an example of the early built swarm-based metaheuristic where each agent performs 

guided search toward the mixture of the global finest and its local finest [47].  

A summary of some new metaheuristics is shown in Table 1. The information in Table 1 includes the 

number of strategies, the existence of the guided search, the existence of the random/neighborhood search, the 

existence of imitation-based search, references used in the guided search, the existence of sorting procedure at 

the beginning of every iteration, and the use of metaphor. 

 

 

Table 1. Summary of some new metaheuristics 

No Metaheuristic 

Number 

of 

strategies 

Guided 

search 

Random or 

neighborhood 

search 

Imitation 

based 

search 

References 

Sorting 

during 

iteration 

Use of 

metaphor 

1 KMA [17] 4 yes yes no Some finest solutions, finest solution yes yes 

2 POA [18] 2 yes yes no Randomized solution no yes 

3 POA [36] 2 yes no yes Randomly picked solution no yes 

4 GSO [37] 1 yes yes no Local finest, global finest no no 

5 NGO [20] 2 yes yes no Randomly picked solution no yes 

6 GWO [16] 1 yes no no Some finest solutions yes yes 

7 MPA [22] 5 yes yes no Local finest no yes 

8 SMA [40] 3 yes yes no Global finest, two randomly picked solutions no yes 

9 TIA [38] 1 yes no no All other solutions no no 

10 ASBO [39] 3 yes no no Finest solution, worst solution no no 

11 COVIDOA [42] 2 no yes yes All solutions (roulette wheels) yes yes 

12 EBOA [33] 2 yes yes no Most popular solution no yes 

13 DTBO [31] 3 yes yes no A randomly picked solution from some 

finest solutions 

yes yes 

14 STBO [29] 3 yes yes yes A randomly picked solution from all better 

solutions or itself 

no yes 

15 CBOA [32] 3 yes yes yes Finest solution, a randomly picked solution 

from some finest solutions 

yes yes 

16 This work 8 yes no yes Global finest, a randomly picked solution, a 

randomized solution 

no no 
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Table 1 indicates that most of the news of metaheuristics are metaphor-based metaheuristics. Only a 

few of them are metaphor-free metaheuristics. Most of these new metaheuristics adopt swarm intelligence 

which is known as the guided search. Some of these swarm-based metaheuristics are enriched with random 

search or neighborhood search. Most of these metaheuristics also deploy multiple strategies rather than single 

strategy only. Unfortunately, metaheuristic that use imitation or crossover as its backbone strategy is very rare. 

The imitation strategy becomes the additional strategy embedded in the swarm-based metaheuristics. 

Based on this review, the opportunity to propose a new metaphor-free metaheuristic is still open. 

Moreover, this opportunity also comes from an approach in embedding swarm intelligence and imitation 

strategies. As found in the new metaheuristics, deploying multiple strategies becomes the rational choice so 

that the proposed metaheuristic is competitive with the existing metaheuristics. 

 

 

3. METHOD 

3.1.  Proposed model 

GIO is constructed by combining guided searches and imitation based searches. In the guided 

searches, a solution moves relative to a reference. In the imitation-based search, a solution copies some values 

of the reference. There are three references used in this GIO: the global finest, a randomly picked solution, and 

a randomized solution within the search space. 

There are five guided searches. The first guided search is searching toward the global finest. The 

second guided search is searching toward the randomly picked solution. The third guided search is searching 

away from the randomly picked solution. The fourth guided search is searching toward the randomized solution 

within the space. The fifth guided search is searching away from the randomized solution within the search 

space. The reason for searching toward and searching away relative to the second and third references is that 

there is a possibility that these references are better or worse than the related solution. The illustration of these 

guided searches is shown in Figure 1. 

There are three imitation based searches. The first one is imitating some values of the global finest. 

The second one is imitating some values of the randomly picked solution. The third one is imitating some 

values of the randomized solution within the space. The imitation-based searches are performed stochastically 

where the probability of the imitation-based search increases as the iteration increases too. This imitation-based 

search is illustrated in Figure 2. 
 
 

 
 

Figure 1. The five guided searches 
 

 

 
 

Figure 2. Imitation based search 
 
 

Each search generates an offspring. It means there are eight off-springs for a related solution in every 

iteration. The finest offspring is then chosen from among these eight ones for possible replacement of the 

current value of the related solution. The population is constructed as X={x1, x2, x3, …, xn} where x is a solution, 

X is a set of solutions, and n is the swarm size. Each solution also consists of multiple entities so that xi can be 

shown as {xi,1, xi,2, xi,3, …, xi,m} where i is the solution index and m is dimension. The formalization of GIO is 

shown in algorithm 1. This algorithm can be split into two parts: initialization and iteration. The initialization 

is shown from line 2 to line 5 while the iteration is shown from line 6 to line 18.  
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Algorithm 1: guided imitation optimizer 
1 Begin 

2   for i=1 to n 

3     initialize xi using (1) 

4     update xbest using (2) 

5   end for 

6   for t=1 to tmax 

7     select xref1 using (3) 

8     generate xref2 using (4) 

9     for i=1 to n 

10       for j=1 to m 

11         generate r1 using (5) 

12         generate candidates using (6) to (13) 

13       end for 

14       select cbest,i using (14) 

15       update xi using (15) 

16       update xbest using (2) 

17     end for 

18   end for 

19 end 

 

During initialization, the initial solution is distributed randomly within the space. This procedure is 

formulated by using (1). Meanwhile, the global finest is updated every time a new solution is initialized. The 

updating procedure of the global finest is formulated by using (2). In (1), xi,j is solution i in dimension j, r2 is 

the real random number from 0 to 1, xl,j is the lower border of dimension j, and xu,j is the upper border of 

dimension j. In (2), xbest is the global finest and f is the objective function. The related solution alters the current 

value of the global finest only if the related solution is better than the global finest one. 
 

𝑥𝑖,𝑗 = 𝑥𝑙,𝑗 + 𝑟2(𝑥𝑢,𝑗 − 𝑥𝑙,𝑗)  (1) 

 

𝑥𝑏𝑒𝑠𝑡′ = {
𝑥𝑖 , 𝑓(𝑥𝑖) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

𝑥𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
  (2) 

 

The iteration procedure runs from the first iteration to the maximum iteration. In the beginning, two 

references are selected. This selection is formulated by using (3) and (4). xref1 is the first reference while xref2 is 

the second reference. 
 

𝑥𝑟𝑒𝑓1 = 𝑈(𝑋)  (3) 

 

𝑥𝑟𝑒𝑓2,𝑗 = 𝑥𝑟𝑒𝑓2,𝑗 + 𝑟2(𝑥𝑢,𝑗 − 𝑥𝑙,𝑗)  (4) 

 

After selecting the references, the next procedure is to perform the eight searches. The five guided 

searches are formulated using (6) to (10). On the other hand, the three imitation based searches are formulated 

using (11) to (13). In (6) to (13), c represents the offspring.  
 

𝑟1 = 𝑈(0,1)  (5) 
 

𝑐1,𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝑟2(𝑥𝑏𝑒𝑠𝑡,𝑗 − 𝑟3𝑥𝑖,𝑗)  (6) 

 

𝑐2,𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝑟2(𝑥𝑟𝑒𝑓1,𝑗 − 𝑟3𝑥𝑖,𝑗)  (7) 

 

𝑐3,𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝑟2(𝑥𝑖,𝑗 − 𝑟3𝑥𝑟𝑒𝑓1,𝑗)  (8) 

 

𝑐4,𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝑟2(𝑥𝑟𝑒𝑓2,𝑗 − 𝑟3𝑥𝑖,𝑗)  (9) 

 

𝑐5,𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝑟2(𝑥𝑖,𝑗 − 𝑟3𝑥𝑟𝑒𝑓2,𝑗)  (10) 

 

𝑐6,𝑖,𝑗 = {
𝑥𝑏𝑒𝑠𝑡,𝑗 , 𝑟1 <

𝑡

𝑡𝑚𝑎𝑥

𝑥𝑖,𝑗, 𝑒𝑙𝑠𝑒
  (11) 

 

𝑐7,𝑖,𝑗 = {
𝑥𝑟𝑒𝑓1,𝑗 , 𝑟1 <

𝑡

𝑡𝑚𝑎𝑥

𝑥𝑖,𝑗 , 𝑒𝑙𝑠𝑒
  (12) 
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𝑐8,𝑖,𝑗 = {
𝑥𝑟𝑒𝑓2,𝑗 , 𝑟1 <

𝑡

𝑡𝑚𝑎𝑥

𝑥𝑖,𝑗 , 𝑒𝑙𝑠𝑒
  (13) 

 

After all, offsprings are generated, there are three sequential procedures. The first step is selecting the 

finest offspring. This procedure is formulated by using (14). The second procedure is updating the related 

solution with the selected offspring. This procedure is formulated by using (15). The finest offspring alters the 

current value of the related solution only if the improvement takes place. The third procedure is updating the 

global finest. This procedure is formulated by using (2). After the iteration procedure is completed, the global 

finest becomes the end solution. 

 

𝑐𝑏𝑒𝑠𝑡,𝑖 = 𝑐𝑘,𝑖 ∈ 𝐶𝑖, min (𝑓(𝑐𝑘,𝑖))  (14) 

 

𝑥𝑖 ′ = {
𝑐𝑏𝑒𝑠𝑡,𝑖, 𝑓(𝑐𝑖) < 𝑓(𝑥𝑖)

𝑥𝑖 , 𝑒𝑙𝑠𝑒
  (15) 

 

3.2.  Simulation setup 

The first assessment is performed to evaluate the performance of proposed GIO in handling theoretical 

problems. The 23 benchmark functions are chosen as the theoretical problem. These 23 functions can be clustered 

into three groups: HDUF, HDMF, and FDMF. In this assessment, GIO is compared with four new metaheuristics: 

GWO, GSO, POA, and COA. There are five parameters observed in this test: mean, standard deviation, minimum 

score, maximum score, and the mean rank. In this first test, the swarm size is set to 5 while the maximum iteration 

is set 30. It means that all these metaheuristics must find an acceptable solution in the low swarm size and low 

maximum iteration circumstances. The second assessment is to evaluate the hyperparameters. GIO has only two 

adjusted parameters: the swarm size and maximum iteration. Based on this circumstance, the hyperparameter test 

consists of two parts. The first part is evaluating the relationship between swarm size and the average fitness score. 

The second part is evaluating the relationship between the maximum iteration and the average fitness score. In 

general, the simulation setup of this assessment is presented in Figure 3. 
 

 

 
 

Figure 3. Simulation setup 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Simulation data 

The first group of the classic functions is HDUF. This group consists of seven functions. The unimodal 

function is a function that consists of a single optimal solution which is the global optimal solution. In general, 

the global optimal solution of this function is easy to find. The main challenge is finding this global optimal 

solution as fast as possible. In this test, the dimensions are set to 30. The data is shown in Table 2. 

The data depicted in Table 2 indicates that GIO performs superior in handling HDUFs. GIO creates 

the finest data of all seven HDUFs. This superior data comes with several notes. GIO becomes the sole winner 

in handling five functions (F3, F4, F5, F6, and F7). Meanwhile, the finest data is also achieved by POA in 

handling F1. Similar circumstances also occur in handling F2 where the global optimal solution is also achieved 

by GWO, POA, and COA. 

The second group of the classic functions is HDMFs. Like in the first group, the dimension of these 

functions is from 2 to unlimited. In this test, the dimensions are also set to 30. This group consists of six 

functions. As multimodal functions, these functions have multiple optimal solutions. One optimal solution is 

the global optimal solutions while the other is the local optimal solutions. Based on this circumstance, the main 

challenge is avoiding the local optimal entrapment. The data is shown in Table 3. The data in Table 3 indicates 

that GIO is still superior in handling HDMFs. Among these six functions, GIO is on the first rank in handling 

five functions (F8, F10, F11, F12, and F13) and on the second rank in handling one function (F9). 
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Table 2. Comparison data for the HDUF 
F Parameter GWO [16] GSO [37] POA [36] COA [19] GIO 

1 mean 3.2089x103 3.1240x104 0.0000 0.0034 0.0000 
 std. dev. 4.1376x103 1.1202x104 0.0000 0.0049 0.0000 

 min 2.8285 1.7295x104 0.0000 0.0000 0.0000 

 max 1.5946x104 5.9520x104 0.0000 0.0211 0.0000 
 mean rank 4 5 1 3 1 

2 mean 0.0000 1.2892x1042 0.0000 0.0000 0.0000 

 std. dev. 0.0000 6.0250x1042 0.0000 0.0000 0.0000 
 min 0.0000 0.0000 0.0000 0.0000 0.0000 

 max 0.0000 2.8264x1043 0.0000 0.0000 0.0000 

 mean rank 1 5 1 1 1 
3 mean 6.0285x104 6.3340x104 2.4339x104 2.7205x102 3.3244 

 std. dev. 1.2422x105 3.4919x104 2.6376x104 3.5221x102 8.1483 

 min 6.7799x101 3.1491x104 0.0000 5.2564 0.0011 
 max 4.5622x105 1.8301x105 9.8432x104 1.5264x103 3.5129x101 

 mean rank 4 5 3 2 1 

4 mean 4.5655x101 5.3414x101 3.3454x101 0.3116 0.0054 

 std. dev. 3.2771x101 5.6680 2.4767x101 0.1806 0.0029 

 min 2.4248 4.2597x101 0.0000 0.0942 0.0014 

 max 1.0000x102 6.5398x101 7.8000x101 0.8747 0.0116 
 mean rank 4 5 3 2 1 

5 mean 9.4773x106 6.6570x107 1.3437x103 2.9043x101 2.8866x101 
 std. dev. 1.9134x107 2.8428x107 5.5833x103 0.1239 0.0732 

 min 2.1957x102 2.9106x107 2.9000x101 2.8757x101 2.8661x101 

 max 8.8474x107 1.3585x108 2.5637x104 2.9379x101 2.8960x101 
 mean rank 4 5 3 2 1 

6 mean 2.4327x103 3.2144x104 7.4202x101 6.3854 4.4338 

 std. dev. 3.0096x103 6.3433x103 3.0681x102 0.3284 0.5114 
 min 7.0013 1.7136x104 7.2500 5.7104 3.4171 

 max 9.9282x103 4.2928x104 1.4132x103 6.8506 5.4172 

 mean rank 4 5 3 2 1 
7 mean 5.6672 2.7459x101 0.0616 0.0259 0.0083 

 std. dev. 1.3042x101 1.3265x101 0.0926 0.0187 0.0050 

 min 0.0481 8.6964 0.0000 0.0010 0.0012 
 max 5.4423x101 6.0294x101 0.3680 0.0838 0.0200 

 mean rank 4 5 3 2 1 

 

 

Table 3. Comparison data for the HDMF 
F Parameter GWO [16] GSO [37] POA [36] COA [19] GIO 

8 mean -6.0766x101 -2.9805x103 -6.3115x102 -4.0885x103 -5.8179x103 

 std. dev. 2.2428x102 6.3864x102 1.3026x102 4.8512x102 6.0766x102 

 min -5.4289x102 -4.4572x103 -9.3975x102 -5.4440x103 -6.9978x103 
 max 2.8163x102 -2.1147x103 -3.9920x102 -3.2294x103 -4.9424x103 

 mean rank 5 3 4 2 1 

9 mean 3.7674x101 2.7457x102 3.0911x101 0.0618 3.4019 
 std. dev. 1.9629x101 3.2482x101 1.0947x102 0.2164 8.9217 

 min 0.6036 2.2088x102 0.0000 0.0000 0.0000 

 max 7.0684x101 3.2992x102 4.8402x102 1.0287 3.0961x101 
 mean rank 4 5 3 1 2 

10 mean 6.2863 1.8751x101 1.3986 0.0091 0.0002 

 std. dev. 4.8255 0.8060 4.5718 0.0053 0.0001 

 min 0.5179 1.7112x101 0.0000 0.0017 0.0000 

 max 1.4997x101 2.0393x101 1.7457x101 0.0248 0.0004 

 mean rank 4 5 3 2 1 
11 mean 3.1236x101 2.8642x102 0.1101 0.0866 0.0009 

 std. dev. 3.3773x101 8.4099x101 0.3314 0.1658 0.0030 

 min 1.2017 1.4478x102 0.0000 0.0000 0.0000 
 max 9.1159x101 5.2613x102 1.2722 0.5131 0.0103 

 mean rank 4 5 3 2 1 

12 mean 2.8236x107 9.9010x107 1.6623 0.6528 0.5520 
 std. dev. 6.9235x107 7.7622x107 0.0000 0.1658 0.1731 

 min 1.5188 1.0083x107 1.6623 0.3944 0.3153 

 max 2.5260x108 2.9460x108 1.6623 1.0936 0.9362 
 mean rank 4 5 3 2 1 

13 mean 3.7150x107 2.2172x108 4.4869x106 3.1173 2.5002 

 std. dev. 7.8634x107 1.1072x108 2.1045x107 0.0469 0.2506 
 min 3.4814 3.8948x107 3.1400 3.0455 2.0435 

 max 2.6464x108 4.3676x108 9.8712x107 3.2184 2.9439 

 mean rank 4 5 3 2 1 
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The third group of the classic functions is the FDMFs. Like the second group, functions in this group 

consist of multiple optimal solutions. This group consists of ten functions. Although the dimension of these 

functions is low, the global optimal solution is not easier to find because of the terrain of these functions. The 

data is shown in Table 4. 

 

 

Table 4. Comparison data for the FDMF 
F Parameter GWO [16] GSO [37] POA [36] COA [19] GIO 

14 mean 4.5702x101 8.2354 9.5935 5.8988 3.1483 
 std. dev. 1.0783x102 4.7194 4.2878 4.3178 2.7454 

 min 1.2670x101 1.0100 2.9821 0.9984 0.9980 

 max 4.2197x102 1.8305x101 1.2671x101 1.8304x101 1.1719x101 
 mean rank 5 3 4 2 1 

15 mean 0.1560 0.0313 0.1276 0.0030 0.0019 

 std. dev. 0.0548 0.0310 0.03754 0.0046 0.0048 
 min 0.0902 0.0020 0.0472 0.0004 0.0003 

 max 0.3725 0.1001 0.1484 0.0204 0.0236 

 mean rank 5 3 4 2 1 
16 mean -0.0235 -0.8406 0.0000 -1.0313 -1.0292 

 std. dev. 0.1642 0.5590 0.0000 0.0006 0.0046 

 min -0.7234 -1.0316 0.0000 -1.0316 -.10316 
 max 0.1806 1.5223 0.0000 -1.0292 -1.0141 

 mean rank 4 3 5 1 2 

17 mean 5.8934x101 1.6557 2.9992x101 0.3989 0.4017 
 std. dev. 2.7375x101 4.5941 2.2146x101 0.0035 0.0071 

 min 2.8207x101 0.3981 3.6711 0.3981 0.3981 

 max 1.9584x102 2.1938x101 5.5602x101 0.4160 0.4319 
 mean rank 5 3 4 1 2 

18 mean 1.1992x103 1.9070x101 6.0000x102 8.6918 3.4265 

 std. dev. 2.6291x103 2.5948x101 0.0000 1.4952x101 1.8067 
 min 5.5605x102 3.0000 6.0000x102 3.0000 3.0000 

 max 1.2667x104 8.4844x101 6.0000x102 6.9836x101 1.1506x101 

 mean rank 5 3 4 2 1 
19 mean -0.0019 -0.0197 -1.9173 -0.0495 -0.0495 

 std. dev. 0.0072 0.0175 0.0000 0.0000 0.0000 

 min -0.0331 -0.0495 -1.9173 -0.0495 -0.0495 
 max 0.0000 0.0000 -1.9173 -0.0495 -0.0495 

 mean rank 5 4 1 2 2 

20 mean -0.0051 -2.4889 -0.0042 -3.1339 -3.2318 
 std. dev. 0.0000 0.5391 0.0020 0.1427 0.0575 

 min -0.0051 -3.1234 -0.0051 -3.3078 -3.3054 

 max -0.0051 -1.3707 0.0000 -2.6505 -3.1048 
 mean rank 4 3 5 2 1 

21 mean -0.2731 -1.3593 -0.2739 -5.4403 -5.5778 

 std. dev. 0.0000 0.7581 0.0020 2.4723 2.4451 
 min -0.2731 -3.1535 -0.2789 -9.7219 -9.7287 

 max -0.2731 -0.4236 -0.2731 -2.4787 -1.3548 

 mean rank 5 3 4 2 1 
22 mean -0.2936 -2.5151 -0.2951 -5.8511 -5.5088 

 std. dev. 0.0000 2.5708 0.0037 2.5955 2.6288 
 min -0.2936 -1.0326x101 -0.3043 -1.0093x101 -1.0106x101 

 max -0.2936 -0.5184 -0.2936 -2.2968 -1.5911 

 mean rank 5 3 4 1 2 

23 mean -0.3217 -2.2718 -0.3226 -6.0851 -4.2484 

 std. dev. 0.0000 0.8416 0.0040 2.4817 2.1794 

 min -0.3217 -3.7867 -0.3403 -1.0093x101 -9.7136 
 max -0.3217 -0.8051 -0.3217 -2.5770 -2.0862 

 mean rank 5 3 4 1 2 

 

 

The data in Table 4 indicates that GIO is superior in handling the FDMFs. But its superiority is not so 

high as in the first and second groups of functions. GIO is the finest only in handling five functions (F14, F15, 

F18, F20, and F21). Meanwhile, GIO becomes the second finest at handling five functions (F16, F17, F19, 

F22, and F23). On the other hand, COA is the finest at handling four functions (F16, F17, F22, and F23). 

The scenario of the second assessments for both parts is as follows. In the first part, there are two 

values for swarm size: 10 and 30. In the second part, there are also two values for the maximum iteration: 40 

and 80. In the first part, the maximum iteration is set 30 while in the second part, the swarm size is set 5, 

columns 2 and 3. The data of the first part and the second part is shown in Table 5, columns 4 and 5. 
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Table 5. Data of the relation between adjusted parameters and average fitness score 
Function Average Fitness Score 

n(X) = 10 n(X) = 30 tmax = 40 tmax = 80 

1 0.0000 0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0000 0.0000 

3 1.6306 0.0865 0.1581 0.0000 
4 0.0021 0.0003 0.0001 0.0000 

5 2.8800x101 2.8715x101 2.8853x101 2.8879x101 

6 3.4946 1.9709 4.4951 4.3506 
7 0.0050 0.0020 0.0074 0.0025 

8 -7.1948x103 -8.5142x103 -6.3097x103 -7.0289x103 

9 4.0756 4.7956 1.4231 0.0000 
10 0.0000 0.0000 0.0000 0.0000 

11 0.0033 0.0018 0.0000 0.0000 

12 0.3525 0.1316 0.5792 0.5766 
13 1.9694 1.2402 2.5028 2.4100 

14 1.9416 1.0024 2.0888 1.2201 

15 0.0007 0.0006 0.0013 0.0016 

16 -1.0316 -1.0316 -1.0292 -1.0311 

17 0.3986 0.3981 0.3987 0.3989 

18 3.0030 3.0005 3.0104 3.0020 
19 -0.0495 -0.0495 -0.0495 -0.0495 

20 -3.264 -3.3026 -3.2089 -3.2342 
21 -7.1882 -8.7324 -6.1033 -6.0115 

22 -6.9203 -8.9980 -5.9724 -6.9457 

23 -6.4704 -8.9659 -4.9636 -6.7135 

 

 

The data in columns 2 and 3 in Table 5 indicates that there are two circumstances regarding the relation 

between the increase of swarm size and the average fitness score. The first one is the increase of swarm size 

improves the average fitness score significantly. The list of functions that are in the first group or in the second 

group is shown in Table 6. The data in column 4 and 4 in Table 5 also indicates that there are two circumstances 

regarding the relation between the increase of maximum iteration and the average fitness score. The first one 

is that the increase in maximum iteration improves the average fitness score significantly. The list of functions 

that are in the first group or in the second group is also shown in Table 6. 
 

 

Table 6. Group based list regarding the relation between adjusted variables and average fitness score 
Group Swarm size to Average Fitness Score Max. Iteration to Average Fitness Score 

1st Circumstance 2nd Circumstance 1st Circumstance 2nd Circumstance 

1 F4, F7 F1 - F3, F5, F6 F3, F7 F1, F2, F4 – F6 

2 F12 F8 - F11, F13 F9 F8, F10 – F13 
3 - F14 – F23 - F14 – F23 

 

 

The data in Table 6 indicates that there is not any significant improvement of the average fitness score 

due to the increasing of swarm size in most functions. There are only two functions in the first group, and one 

function in the second group, where its average fitness core is improved significantly. Fortunately, in some 

functions, the second circumstance occurs because the global optimal solution has been found or the end 

solution is near the global optimal solution. These functions are (F1, F2, F10, F11, F12, F14, F15, F16, F17, 

F20, F21, F22, F23). The data in Table 6 also indicates that there are only three functions whose average fitness 

score is improved by increasing the maximum iteration from 40 to 80. It means that convergence has been 

achieved in the low maximum iteration for most functions. This convergence occurs whether the end solution 

is the global optimal solution, near to the global optimal solution, or still far from the global optimal solution. 

 

4.2.  Discussion 

In this section, the discussion focuses on the improvement of the proposed GIO in relation to the 

recent development of metaheuristics. Different from several recent studies that still use old metaheuristics like 

GA and PSO, the discussion in this paper compares the performance of GIO only with recent metaheuristics. 

Moreover, the discussion also includes the technical comparison between GIO and its contenders, limitations, 

computational complexity, and the potential for further study. 

The main finding of this paper is through evaluation, GIO is proven superior to GWO, GSO, POA, 

and COA in handling all groups of functions (HDUF, HDMF, and FDMF). The superiority of GIO mostly 

comes from the high dimension functions. Meanwhile, its superiority is not so high when handling the fixed 

dimension multimodal functions. Since the test using unimodal functions is designed to evaluate the 
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exploitation capability while multimodal functions are designed to evaluate the exploration capability [31], this 

means GIO is excellence in both exploration and exploitation. 

This consideration is explained through the hyperparameter evaluation that has been performed and 

the data are shown in Table 6. In general, it is shown that an acceptable solution has been achieved in the low 

swarm size and the low maximum iteration. It means that the increase of swarm size or maximum iteration 

from low to high does not improve the solution significantly although the computation cost increases linearly. 

In some functions, the end solution is the global optimal solution or near the global optimal solution. 

Unfortunately, in some functions, the end solution is still far from the global optimal solution. 

The superiority of GIO to GWO, GSO, POA, and COA in most of functions in 23 classic functions 

can be seen as the superiority of multiple strategies to limited strategies. As seen in Table 1, GWO and GSO 

deploy only a single strategy. Meanwhile, POA deploys only two strategies where the first strategy is guided 

search, and the second strategy is imitation-based search [34]. 

This superiority also means the necessity in variety of the references. GIO uses three references: global 

finest, a randomly picked solution, and a randomized solution. GWO uses single reference: resultant of some 

finest solutions [16]. GSO uses two references: global finest and local finest [37]. POA uses a reference: a 

randomized selected solution [36]. COA uses two references: the finest solution in every iteration and a 

randomized solution within the search space [19]. 

The complexity analysis in the iteration phase of GIO is shown as O (8n.m.tmax) where n is the swarm 

size, m is dimension or decision variable, and tmax is the maximum iteration. This means the computational 

complexity of GIO is proportional to the swarm size, decision variables, or the maximum iteration. Term 8 in 

this big-O notation is applied due to there are eight searches in every iteration for every agent. As the dimension 

or decision variables cannot be adjusted, user should focus on the swarm size and maximum iteration as the 

hyperparameter setup. The main consideration is whether adjusting the swarm size or maximum iteration may 

improve the performance. 

Although GIO is proven in producing superior performance, it still has limitations. The first limitation 

is this superior performance comes from multiple seeds where each seed represents a distinct search method. 

In other words, GIO performs massive multiple searches although only single finest seed replaces the current 

solution. It is different from many other metaheuristics that employ only one search method or few search 

methods. The second limitation of this work is that there are a lot of use cases that can be used to investigate 

GIO in a more comprehensive manner. These use cases can be theoretical or practical. But there is no single 

paper that can accommodate all these use cases. The practical use cases can also be found in broader fields of 

engineering with various characteristics, such as whether they are numerical or combinatorial problems.  

Future development can be performed in various ways. First, both GIO and COA outperform the other 

three metaheuristic. It will be interesting to hybridize these two metaheuristics to make more powerful and 

comprehensive metaheuristic. Second, the imitation-based search should be more promoted as it is now less 

popular than the swarm movement. It is because GA is still implemented in many optimization studies due to 

its flexibility and openness to improvement. Third, the use of multiple strategies and multiple references will 

become more popular in the future. Fourth, random search is still important to be implemented in every iteration 

to overcome the local optimal problem. Future studies can also be taken by employing GIO to solve various 

optimization problems. There are also various sets of standard assessments, such as CEC sets in which the 

problems are more complex due to the existence of equality and inequality boundaries. 

 

 

5. CONCLUSION 

This work has built and shown a new metaphor-free metaheuristic called GIO. As its name implies, 

GIO deploys both guided search which is the backbone of swarm-based metaheuristic and imitation-based 

search which is the backbone of evolution-based metaheuristic. This approach is transformed into eight 

searches (five guided searches and three imitation-based searches). Through simulation, GIO outperforms 

GWO, GSO, POA, and COA in handling most unimodal and multimodal functions. It indicates that GIO has 

excellent exploration and exploitation capabilities. Through hyperparameter test, GIO can find an acceptable 

solution in the low swarm size and low maximum iteration circumstances. In the future, the construction of 

new metaheuristic is still available. This development can be performed by hybridizing GIO and COA. 

Moreover, upcoming studies can be carried out by implementing GIO to handle various optimization problems 

in a broader area. 
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