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Understanding the dynamic nature of the influx of patients is crucial for
efficiently managing supplies, medical personnel, and infrastructure in an
emergency room (ER). While overestimation can lead to resource wastage,
underestimation can result in shortages and compromised service quality. This
study addresses emergency patient forecast by means of implementing
support vector machine (SVM) algorithms. Along four phases (analysis,
design, development, and validation), more than 50,000 ER records were
preprocessed and analyzed. Traditional error metrics such as mean absolute
error (MAE), mean square error (MSE), root mean square error (RMSE), and
mean absolute percentage error (MAPE) were utilized alongside monthly
consolidated forecasts. To benchmark performance, actual values and
forecasts derived from linear regression (LR) models were used. Experiments
revealed that LR models had lower errors compared to SVM models.
However, monthly consolidated forecasts showed that SVM-based models

underestimated less than LR-based models. In conclusion, SVM-based
models could help planners to accurately estimate the requirements for
supplies and medical personnel during the period under study.
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1. INTRODUCTION

Public healthcare systems encompass hospitals, clinics, and health centers, each varying in size and
complexity. Large hospitals typically have an emergency room (ER) to provide immediate care to patients in
critical condition. However, the inherent unpredictability of emergencies, such as strokes, heart attacks, and
traffic accidents, makes the estimation of resources a complicated challenge for planners [1]. It is not
uncommon to see overcrowded waiting rooms filled with dissatisfied patients who have to wait long before
receiving care, increasing the adverse effects of their condition [2].

In many instances, ERs serve as the primary point of entry for a significant number of patients,
increasing the hospital congestion and extending wait times [3]. Accurate forecasting of patient influx would
allow planners improve procurement and allocation of resources [4], thereby minimizing the risk of shortages
and facilitating informed medical decision-making through the timely availability of supplies for diagnostic
procedures and therapies. Typically, public healthcare systems have a centralized department responsible for
the procurement process, generating economies of scale through negotiations involving large volumes of
supplies. Annual procurement plans undergo periodic reviews to ensure alignment with budgetary constraints.
Accurate estimation is imperative due to the consequences of overestimation resulting in operational
inefficiencies and underestimation leading to deficiencies and shortages.
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According to the Organisation for Economic Co-operation and Development [5], the USA ranks as
the foremost global spender on healthcare, surpassing other important economies like Germany and
Switzerland. In Chile, approximately 53% of the annual health budget is allocated for financing the public
hospital network. Despite a sustained increase in budgetary allocation over the past decade, the system's
productivity has not exhibited a comparable growth.

Over time, machine learning (ML) algorithms have gained increasing recognition and application in
different fields. In healthcare, ML techniques have revolutionized the diagnostic process by combining a
multitude of factors to estimate the likelihood of specific events [6]. ML-based models diverge from traditional
approaches applied in the healthcare industry by using statistical techniques that enable specialists to improve
diagnostic precision through the analysis of massive datasets, constructing intricate non-linear relationships
rather than relying solely on linear regressions (LR) [7], [8]. While identifying influential factors in diagnosis
is crucial, treating patients in critical condition presents an even greater challenge, as it involves the risk to life.

Various ML-based models serve different purposes, including predicting the likelihood of disease
occurrence and forecasting future events [9]. In the healthcare sector, ML algorithms, such as artificial neural
networks (ANN), have been increasingly applied to enhance services and reduce costs [10]. In diabetes
prevention, a range of ML algorithms including k-nearest neighbor (KNN), support vector machine (SVM),
decision trees, naive Bayes, and logistic regression have been employed too [11]. Similarly, for predicting heart
diseases, deep learning techniques have been applied to analyze data and to compare the results obtained with
other algorithms such as SVM, naive Bayes, and KNN [12]. By means of analyzing electronic health records
(EHR), specialists can identify and interpret patterns to facilitate timely decision-making based on non-trivial
predictions. Furthermore, combining predictions from multiple algorithms has shown advances in the overall
performance and accuracy [13]. While statistical models and autoregressive integrated moving average
(ARIMA)-based approaches have been extensively studied and utilized in forecasting over the years [14], the
COVID-19 sanitary crisis has catalyzed the adoption of ML algorithms and other forms of artificial intelligence
(Al for predicting, diagnosing, and detecting positive cases [15]. Additionally, ML algorithms have been
useful in identifying biomarkers associated with patient mortality [16].

Significant enhancements in patient classification have been achieved through the application of
ML-based classifiers [17]. Moreover, research has demonstrated that ML-based models can outperform
classical moving averages (MA) in predicting wait times in large queues [18]. Furthermore, ML-based models
have been applied to deal with the complexity and randomness in delay and wait time patterns [19].

SVM-based models have demonstrated efficacy in dealing prediction challenges when handling large
datasets [20]. It is no coincidence that both ANN and SVMs are among the most used forms of Al in the
healthcare industry today [21]. While ANN-based models are widely employed in image recognition [22], SVM-
based models have found application in diagnosing renal diseases [23].

Despite the extensive exploration of SVM-based forecast models in time series analysis, particularly
in financial fields [24]-[27], there appears to be limited research on the utility of SVM for forecasting patient
influx, to the best of the authors’ knowledge. Existing studies predominantly focus on forecasting utilizing
classical methods [28]-[30], or ML algorithms other than SVM [31]. Hence, the contribution of this work is,
on the one hand, the analysis of a vast database collected during the COVID crisis and, on the other hand, the
application of SVM-based models to forecast service demand in the healthcare industry.

Understanding the nature of the emergency patient influx is crucial for planners to accurately estimate
the requirements for supplies, medical personnel, and infrastructure. This investigation explores the utilization
of SVM-based models for iteratively forecasting the monthly influx of ER patients with 30-day horizons. In
addition to employing classical error metrics such as mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), and mean absolute percentage error (MAPE), overestimation or
underestimation in monthly patient counts are analyzed too. To establish a benchmark for comparison, LR
based forecasts serve as the baseline, while error metrics are computed against actual values.

2. METHOD

The investigation advanced through four distinct phases: analysis, design, construction, and validation,
as depicted in Figure 1. The initial phases encompassed activities related to data preprocessing, overall planning,
and comparing alternatives, while the latter phases focused on programming and result comparison.

Analysis \’:> Design }:> Development }:> Validation

Figure 1. 4-phase research
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2.1. Phase of analysis

Throughout the analysis phase, significant effort was dedicated to collecting data from diverse sources
and integrating them into a comprehensive dataset. This task was executed by a specialized management unit
at Hospital Hernan Henriquez Araneda, situated in Temuco, Chile. The investigation encompassed
approximately 50,000 records of patients treated in the ER.

Each record includes patient demographics, reason for ER admission, and a number of fields ranging
from admission time to health insurance type. Given the unpredictable nature of emergencies, daily patient
influxes exhibit considerable variability. To elucidate this dynamic, the data was organized into a chronological
sequence, forming daily time series. As depicted in Figure 2, a significant decline in patient numbers is
observed following the summer months of January, February, and early March.
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Figure 2. Daily number of incoming ER patients over the course of a year

It is intriguing to observe the manifestation of one of the most known principles in engineering,
namely the Pareto principle. In this context, Table 1 and Figure 3 show the relationship between the number
of patients and the corresponding number of medical specialties required for their treatment. Remarkably, it is
found that approximately 75% of all patients required only 20% of the total medical specialties. Only 3 out of
15 specialties. Given the focus of this study on enhancing the accuracy of forecasts to assist planners in
estimating the needs for supplies, medical personnel, and infrastructure, the focus was set in the most demanded
specialties. By narrowing down the list, planners can concentrate their efforts on the predominant needs,
thereby optimizing efficiency and resource allocation.

Table 1. Number of patients sorted by medical specialty during a 12-month period.

Medical specialty Number of patients  Accumulated patients (%)
General surgery 32,974 47
Obstetrics and gynecology 10,664 62
Pediatrics 9,229 75
Midwifery 3,742 80
Adult Trauma 3,587 85
Emergency medicine 3,116 90
General medicine 2,843 94
Neurologist 2,405 97
Neurosurgery 722 98
Internal medicine 532 99
Psychiatry 462 99
Pediatric surgery 185 100
Odontology 181 100
Urology 46 100
Gynecology 11 100
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Figure 3. Principle of Pareto: 75% of all incoming patients required 20% of all medical specialties

2.2. Phase of design

Public health systems typically depend on a centralized procurement office for acquiring supplies.
Planners have to estimate future needs periodically, be it annually, semiannually, or monthly, to ensure the
provision of adequate service levels. In this research, the forecast horizon of 30 days was used. Consequently,
over the span of one year, assuming a monthly review of procurement plans, iterative 30-day forecasts were
generated from March to December. January and February were arbitrarily excluded to facilitate the
development of initial forecast models.

For the purposes of this work, the total number of patients in a day must be understood as a single
observation. Two alternative approaches were explored. The first involves utilizing all accumulated
observations, while the second focuses solely on data from previous month. For instance, as illustrated in
Figure 4, the 31-day forecast for December used information either from the 335 available observations
spanning from January to November or from the latest 30-day period, specifically November. Forecasts derived
from LR models served as the baseline for comparison with those generated by SVM models. While the
simplicity and widespread use of LR justify its inclusion, the selection of SVMs is based on their documented
efficacy in time series forecasting.
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30d 31d 31d 30d 31d 3o0d
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Accumulated
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Last month
Accumulated
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Observations

Months

Figure 4. Monthly forecasts with accumulated and last month’s observations

Standard error metrics such as MAE, MSE, RMSE, and MAPE were employed to assess the accuracy
of the forecasts. However, rather than calculating errors retrospectively from past values, they were computed
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based on the difference between the resulting 30-day forecast and the corresponding actual values. For instance,
December’s 31-day forecast, calculated from either 335 or 30 observations, was compared with the actual
patient influx received during December.

While overestimating patient influx may lead to resource over allocation and operational
inefficiencies, underestimating needs could cause shortages of critical supplies, potentially resulting in loss of
life. Therefore, as an additional metric, the frequency of months where the forecast falls below the actual value
was incorporated into the investigation.

2.3. Phase of development

The initial step of model development involves dataset preparation. Data, in the form of daily time
series, were organized into separate workable files to facilitate further calculations. Given the forecast horizon
of one month (30 or 31 days), ten forecasting models were created, going from March to December. The first
two months (60 days) were set aside to develop the initial models for forecasting March. Table 2 provides a
summary of the monthly forecast models, indicating their respective observation periods and forecast horizons.

For this phase, two software packages were utilized: Microsoft Excel 2016 and WEKA v3.9.6.
Initially, LR models were constructed using the regression analysis capabilities within Microsoft Excel.
Subsequently, SVM models were developed using the forecasting package offered by WEKA.

Table 2. Summary of monthly forecast models, specifying the start and end dates of the observation period,
as well as the forecast horizon
Observations

Forecast horizon

Accumulated Last month
Days From To Days From To Days  From To
March 60 1Jan 29 Feb 31 1Feb  29Jan 31 1Mar 31 Mar
April 91 1Jan 31 Mar 30 1Mar 31 Mar 30 1Apr 30 Apr
May 121  1Jan 30 Apr 31 1Apr 30 Apr 31 1May 31 May
June 152 1Jan 31 May 30 1May 31 May 30 1Jun 30 Jun
July 182 1Jan  30Jun 31 1Jun 30 Jun 31 1 Jul 31 Jul
August 213 1Jan 31Jul 31 1 Jul 31 Jul 31 1Aug  31Aug
September 244  1Jan 31Aug 30 1Aug 31Aug 30 1Sep  30Sep
October 274  1Jan 30 Sep 31 1Sep  30Sep 31 10ct  310ct
November 305 1Jan 310ct 30 10ct  310ct 30 1Nov 30 Nov
December 335 1Jan 30 Nov 31 1 Nov 30 Nov 31 1Dec 31 Dec

Given their simplicity and widespread usage, LR models served as the initial method for forecasting the
patient influx expected over the subsequent 30 or 31 days. These LR models served as the baseline for comparing
forecasts generated by SVM maodels. Table 3 displays the monthly LR forecast models alongside their respective
forecast horizon, number of observations, and mathematical expression. For example, the LR model utilized to
forecast June (30 days) necessitated either 152 or 31 observations, depending on the chosen approach: accumulated
or last month. In this section, SVM models are not included due to their complexity and limited readability. Instead,
comprehensive summary tables containing forecasts and error metrics will be presented in subsequent sections.

Table 3. Summary of monthly LR forecast models with their corresponding horizon, number of observations,
and mathematical expression

Forecast Accumulated Last month
Month Days  Observations LR Model Observations LR Model
March 31 60 Y=203.40 X + 0.03 29 Y=184.64 X + 0.37
April 20 91 Y=229.59 X - 0.88 31 Y=608.50 X - 5.90
May 31 121 Y=242.20 X -1.26 20 Y=73.36 X +0.19
June 30 152 Y=232.67 X - 1.05 31 Y=97.52 X + 0.02
July 31 182 Y=218.75 X - 0.81 30 Y=-24.74 X + 0.80
August 30 213 Y=202.14 X - 0.56 31 Y=-45.24 X + 0.81
September 30 244 Y=188.33 X - 0.38 30 Y=-90.28 X + 0.97
October 31 274 Y=175.14 X - 0.22 30 Y=129.88 X + 0.07
November 30 305 Y=167.95 X - 0.15 31 Y=284.91 X + 0.45
December 31 335 Y=164.69 X -0.12 30 Y=-10.12 X + 0.43

2.4. Phase of validation

The validation process encompassed two distinct approaches. Firstly, forecasts were reviewed to
ensure their positivity and identify any anomalous values. Secondly, correlation analyses were conducted to
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ascertain the fidelity of the proposed models’ forecast values with existing data. A comparison of monthly
correlation coefficients for both approaches-accumulated and last month's observations-is presented in Table 4.

Table 4. Summary of monthly correlation coefficients between actual and forecasted values

Forecast SMV based forecast LR based forecast
Month Days Accumulated Last month  Accumulated  Last month
March 31 -0.65 -0.44 -0.86 -0.86
April 30 0.43 -0.17 -0.17 -0.17
May 31 0.10 0.26 -0.01 0.01
June 30 0.27 0.03 -0.45 0.45
July 31 0.38 0.14 -0.32 0.32
August 31 0.45 0.38 -0.42 0.42
September 30 0.42 0.34 -0.34 0.34
October 31 0.05 0.25 -0.03 0.03
November 30 -0.06 0.40 0.19 0.19
December 31 0.02 0.06 -0.13 0.13

3. RESULTS AND DISCUSSION

Public procurement refers to the systematic acquisition of supplies and services by the public
healthcare system from specialized vendors. Typically, a group of authorized providers is established for
procurement purposes. When multiple providers offer the same goods, a request for quotation is typically
issued, prompting providers to compete with their bids and quotations. Alternatively, direct contracts may be
negotiated in certain instances.

In order to reduce costs and avert potential shortages, healthcare institutions typically prepare annual
or semiannual procurement plans well in advance. Nevertheless, the emergence of outbreaks and unforeseen
events may force planners to conduct monthly reviews of both their present and upcoming requirements.
Budgetary constraints often prohibit excessive purchases, yet inadequacy in procurement can have negative
consequences. A flawed estimation, therefore, risks either operational inefficiencies or critical deficiencies. In
the context of this study, it is assumed that planners routinely conduct monthly reviews of their needs to ensure
appropriate resource management. While Al, particularly ML algorithms, has witnessed a surge in popularity
in recent years, estimations calculated with LR or MA remain prevalent. Consequently, in this study, forecasts
generated by LR models were employed as the baseline for comparison with those produced by SVM models.

Two approaches were investigated concerning the number of observations. Firstly, utilizing the
accumulated observations (long memory). Secondly, restricting the observations to the most recent 30 days (short
memory). With LR-based forecasts, the smoothing effect is visible when older data are incorporated. As depicted
in Figure 5, July's daily LR forecasts exhibit significant deviation from the actual values. Conversely, in Figure 6,
July's forecasts show closer alignment with the actual values (depicted by the red dotted line), irrespective of
whether accumulated or last month's observations were considered. In both scenarios—whether accumulated or
last month's observations-SVM forecasts exhibit less deviation from the actual values compared to LR forecasts.
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Figure 5. July’s forecast with daily accumulated observations from January to June
200

Actual value

Patients

[
a1 o Ul
o O o

e= = SVVM-based (LM)

183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 e e e e ¢ LR-based (LM)
Day

o

Figure 6. July’s forecast with only June’s observations (last month)
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3.1. Error metrics

Using the widely accepted error metrics—namely MAE, MSE, RMSE, and MAPE—the forecasts for
each month were evaluated and compared. Given the familiarity with these error metrics, their definitions and
formulae have been omitted for brevity. Figures 7(a) and (b) illustrates the monthly MAE values obtained using
either accumulated or last month's observations. These values denote the difference between the monthly
forecasts derived from SVM and LM models. While not definitive, discernible differences are observed,
particularly when incorporating all available observations.
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Figure 7. Monthly MAE values: (a) accumulated and (b) last month’s observations

Figures 8(a)-(b) and 9(a)-(b) depict the disparity between monthly MSE values, monthly RMSE
values, and actual values. Once more, discernible differences are evident. Particularly when employing a
comprehensive set of accumulated observations (long memory approach).
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Figure 8. Monthly MSE values: (a) accumulated and (b) last month’s observations
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Figure 9. Monthly RMSE values: (a) accumulated and (b) last month’s observations
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Figures 10(a) and 10(b) illustrates the difference between monthly MAPE values and actual values. It
appears evident that, for this specific dataset, there is not a significant difference in error metrics when adopting
a short memory approach (last month). However, there is less divergence when a smoothing effect from older
data is incorporated (long memory approach).
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Figure 10. Monthly MAPE values: (a) accumulated and (b) last month’s observations
As summarized in Table 5, MAE values do not decisively favor either SVM models or LR models

when utilizing a full set of accumulated observations. In 5 out of 10 months, either SVM models outperformed
LR models or vice versa. However, with 30 observations, LR models exhibit lower MAE in 9 out of 10 months.

Table 5. Monthly MAE and MSE values with daily accumulated and last month’s observations

MAE MSE
Accumulated obs.  Last month obs.  Accumulated obs. Last month obs.
SVM LR SVM LR SVM LR SVM LR
March 71.8 614 69.5 65.9 8702.8 5860.8 8098.4 6885.2
April 86.4 43.0 108.8 1129 102245 21449 14610.1 15723.1
May 15.6 30.7 10.5 9.4 351.5 1180.7 189.4 130.6
June 12.3 52.5 15.1 13.6 2426  3201.4 379.0 296.5
July 30.7 70.5 20.6 11.2 1209.9 5334.6 580.3 230.5
August 47.6 65.0 14.4 12.6 2829.1 4620.3 346.2 241.0
September 26.7 70.3 22.2 20.8 1015.8 5634.5 725.8 551.1
October 76.4 42.1 58.0 185 7250.6 22225 4970.7 514.7

November 32.7 23.2 20.6 17.7 1502.3 858.5 591.7 405.5
December 27.5 28.5 27.2 25.3 12349 12311 11164 883.7

As depicted in Table 6, monthly RMSE values reveal an equivalence between SVM and LR models
when utilizing a full set of accumulated observations. However, LR models outperform SVM models in 9 out
of 10 months when considering the last 30 days. Monthly MAPE values exhibit a similar pattern, with no
discernible difference observed when utilizing accumulated observations. However, LR models yield superior
results when last month's observations are considered, prevailing in 9 out of 10 months.

Table 6. Monthly RMSE and MAPE values with daily accumulated and last month’s observations
RMSE MAPE
Accumulated obs.  Last month obs.  Accumulated obs.  Last month obs.
SVM LR SVM LR SVM LR SVM LR

March 93.3 76.6 90.0 83.0 72.6 60.2 70.1 65.2
Avpril 101.1 46.3 1209 1254 95.6 50.4 116.4 1209
May 18.7 34.4 13.8 11.4 15.2 29.9 11.3 9.5
June 15.6 56.6 195 17.2 113 46.8 13.2 12.1
July 34.8 73.0 24.1 15.2 244 53.5 16.1 9.2
August 53.2 68.0 18.6 155 35.1 455 11.2 9.4
September 31.9 75.1 26.9 23.5 18.1 42.2 14.4 13.2
October 85.2 47.1 70.5 22.7 53.7 26.3 40.4 12.9

November 38.8 29.3 24.3 20.1 25.6 15.1 16.0 12.7
December 35.1 35.1 33.4 29.7 25.7 15.2 16.2 12.8
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When adopting a slightly different approach and analyzing the averaged value of monthly error
metrics, the data revealed that, as illustrated in Table 7, SVM models generated lower errors when utilizing
accumulated observations. However, when the number of observations is limited to 30 days, LR models
demonstrated lower errors. In general, LR models developed with only 30 observations generated lower
averaged error metrics.

Table 7. Averaged monthly error metrics: MAE, MSE, RMSE, and MAPE
Accumulated obsservations  Last month’s obsservations

SVM LR SVM LR
Averaged MAE 42.8 48.7 36.7 30.8
Averaged MSE 3,456.4 3,228.9 3,160.8 2,586.2
Averaged RMSE 50.8 54.2 44.2 36.7
Averaged MAPE 37.7 38.5 325 27.8

3.2. Shortage months

In contrast to previous sections where error metrics were computed based on 30-day forecasts, this
section utilizes monthly consolidated summaries instead. This alternative approach enables planners to identify
those months in which forecasts underestimate actual values, potentially leading to shortages. In public
healthcare systems, while overestimation may incur negative financial implications, shortages resulting from
underestimation could have negative consequences.

When the patient influx is aggregated monthly, mirroring the approach planners would take during
monthly reviews of current needs, new insights emerge. Utilizing all accumulated observations, SVM models
produced only 2 instances of underestimation out of 10 months, contrasting with LR models, which
underestimated in 8 out of 10 months. Conversely, when considering only last month's observations, these
figures were 6 and 3 out of 10 months, respectively. However, it's important to note that the magnitude of these
underestimations was relatively small. Figures 11(a) and 11(b) visually depicts that SVM models forecasted
monthly figures closer to the actual values, while LR models consistently tended to underestimate the number of
patients. It is essential to clarify that the numbers presented in Table 8 depict the summation of monthly actual
values and the corresponding summation of 30-day forecasts conducted using both the accumulated
observations and the last month's observations.

Upon closer examination of the percentage difference between actual values and forecasts, it becomes
evident that even when SVM models generated underestimations, the magnitude of the difference was
relatively small, approximately 4% and 6% in September and December, respectively. Despite the potential
misleading nature of error metrics, when data are aggregated on a monthly basis, it is apparent that forecasts
derived from SVM models closely align with actual values compared to those produced by LR models.
Figures 12(a) and 12(b) illustrates the magnitude (percentage) of the difference between actual values and
forecasts, further reinforcing the preference for SVM models.
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Figure 11. Monthly forecast: (a) accumulated and (b) last month’s observations
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Table 8. Summary of monthly patient influx: actual values versus forecasts

Accumulated observations

Last month’s observations

Actual value SVM LR SVM LR
March 4965 6371 6368 6177 6588
April 2793 4079 4083 3790 -593
May 3102 4564 2160 2930 3061
June 3261 3886 1685 3010 3019
July 4014 4503 1828 3515 4123
August 4337 4620 2321 4097 4337
September 4836 4638 2727 4416 4836
October 4697 5443 3419 5223 4697
November 4237 4881 3603 4635 4237
December 4372 4097 3815 4259 4372
80 80
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Figure 12. Percentage monthly difference (%): (a) accumulated and (b) last month observations

As mentioned earlier, underestimating the number of patients may result in an underestimation of the
requirements for supplies and medical staff, along with its associated implications. Table 9 provides a
quantification of the differences illustrated in Figure 12. Despite the notable distortion observed in the first two
months, SVM models generated a closer forecast to actual values compared to LR models. It is important to
emphasize that all forecasts, summaries, error metrics, and percentage comparisons presented in this study are
valid solely for the dataset under analysis, which ultimately determines the mathematical form of the forecast
models. Even with the same dataset, altering the number of observations could yield significantly different

models.

ML algorithms are known for their sensitivity to input data. While comparing forecasts obtained using
different algorithms is undoubtedly intriguing, evaluating forecast accuracy, measured in terms of error
metrics, across experiments conducted by independent researchers working with different datasets can be
misleading and confusing. Therefore, LR models were utilized as a reference point for comparison in this study.

Table 9. Percentage monthly difference between actual values and forecasts
Accumulated obs.

Last month obs.

SVM (%) LR (%) SVM (%) LR (%)
March 28 28 24 33
April 46 46 36 -121
May 47 -30 -6 -1
June 19 -48 -8 -7
July 12 -54 -12 3
August 7 -46 -6 0
September -4 -44 -9 0
October 16 -27 11 0
November 15 -15 9 0
December -6 -13 -3 0
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4. CONCLUSION

Forecasting models based on time series have been a subject of study for decades. In recent years,
innovative approaches based on ML algorithms have gained acceptation. This study delved into the efficacy
of employing SVM-based models for forecasting ER patient influx to estimate the requirements for supplies,
medical personnel, and infrastructure. Experimental findings indicate that when error metrics are computed
using a 30-day forecast, LR-based models produced lower errors compared to SVM-based models. However,
alternative analyses based on monthly consolidated forecasts revealed that underestimations were less likely to
occur with SVM-based models, and when they did, the magnitude of the difference between forecast and actual
values was typically below 10%. After analyzing over 50,000 ER patient records, it can be concluded that
implementing SVM-based forecast models could aid planners in estimating the needs for supplies and medical
staff during the study period. Furthermore, utilizing a reduced set of recent observations (last month) led to
more accurate estimations.
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