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 Deep learning coupled with transfer learning, which involves reusing a 

pretrained model's network structure and parameter values, offers a rapid 

and accurate solution for image segmentation. Differing approaches exist in 

updating transferred parameters during training. In some studies, parameters 

remain frozen or untrainable (referred to as TL-S1), while in others, they act 

as trainable initial values updated from the first iteration (TL-S2). We 

introduce a new state-of-the-art transfer learning scenario (TL-S3), where 

parameters initially remain unchanged and update only after a specified 

cutoff time. Our research focuses on comparing the performance of these 

scenarios, a dimension yet unexplored in the literature. We simulate on three 

architectures (Dense-UNet-121, Dense-UNet-169, and Dense-UNet-201) 

using an ultrasound-based dataset with the left ventricular wall as the region 

of interest. The results reveal that the TL-S3 consistently outperforms the 

previous state-of-the-art scenarios, i.e., TL-S1 and TL-S2, achieving correct 

classification ratios (CCR) above 0.99 during training with noticeable 

performance spikes post-cutoff. Notably, two out of three top-performing 

models in the validation data also originate from TL-S3. Finally, the best 

model is the Dense-UNet-121 with TL-S3 and a 20% cutoff. It achieves the 

highest CCR for training 0.9950, validation 0.9699, and testing data 0.9695, 

confirming its excellence. 
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1. INTRODUCTION 

Image segmentation is a crucial task in image and video processing. This process involves dividing 

the image into multiple segments or objects by assigning class labels to each pixel [1]. Its applications are 

widespread and encompass medical imaging [2]–[4], remote sensing [5]–[7], and the development of 

autonomous vehicles [8]–[10]. Amid various segmentation methods, deep learning emerges as a promising 

approach [11]–[13]. They decompose complex mappings into a sequence of simpler ones, each described by 

different layers [14]. The input is presented in a visible layer, and subsequent hidden layers extract abstract 

features from it. The refinement of these layers is driven by the results of the training process, rather than 

manual intervention [15]. With a large number of layers, they can accurately represent input features and 

effectively perform complex tasks like image segmentation, natural language processing, or stock price 

prediction [16]. Due to this benefit, deep learning is better than traditional machine learning methods, which 

still rely on domain expertise for feature extraction.  

Deep learning implementation, however, requires a large amount of training data and may require a 

while to complete [17]. This presents difficulties, particularly in the medical domain where labeled datasets 

https://creativecommons.org/licenses/by-sa/4.0/
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are scarce [18]. To overcome this issue, transfer learning can be coupled with deep learning approach [17]. 

Reusing pre-trained network components, such as the structure and parameter values, is part of this process. 

To be more precise, the network is typically divided into two parts: the part receiving transfer learning and 

the part not receiving it. The first, leveraging transfer learning, will be structurally identical with parameter 

values transferred from a pre-trained model. The source model is typically trained on a larger dataset, which 

may be related or entirely different. The next section is a non-transferred layer, meaning its parameter values 

are initialized and updated during training. 

Furthermore, variations exist in how parameter values are handled in layers affected by transfer 

learning. These values can be "frozen" (non-trainable) and maintained in that state, or they can be "unfrozen" 

(trainable) and updated as the training progresses. Some studies treat them as non-trainable parameters  

[19]–[22]. On the other hand, some researchers utilize transfer learning values for initialization and updating 

them immediately in the first training iteration [23], [24]. Unfortunately, to the best of our knowledge, no 

research has evaluated the effectiveness of these two scenarios simultaneously. The majority of the articles 

only contrasted one scenario of transfer learning with a model that did not employ transfer learning [19], 

[21]. Furthermore, a lot of applications only construct a transfer learning model without contrasting it with 

any other models [18]. This leads to a gap in knowledge that requires research. Therefore, this study aims to 

compare those two parameter update scenarios, as well as introduce a new state-of-the-art transfer learning 

scenario. This scenario involves updating the newly transferred parameter values only after a specific time 

point is reached. 

Dense-UNet, a deep learning architecture that hybridizes Unet [4] and DenseNet [25], was 

employed in this investigation. This architecture was implemented to limit the number of model parameters, 

maximize information flow between network layers, and address vanishing gradient concerns due to its 

feature reuse and dense connections at each stage [26]. The encoder and the decoder are the two primary 

components of this architecture in general. The encoder, also known as the contraction path, is responsible 

for applying transfer learning from a pre-trained model and extracting features. The second component, 

known as the expanding path or decoder, is amid reconfiguring features and boosting spatial resolution 

through the use of upsampling operators [4], [27]. These two paths are connected via skip connections, in 

which the feature maps from the encoder are bypassed and concatenated with the decoder results at specific 

positions [28].  

The simulation will be conducted on an ultrasound-based cardiac assessment dataset. Ultrasound, 

known for its accessibility, affordability, and absence of radiation exposure, addresses key healthcare concerns 

[29]. However, due to increased noise and decreased contrast, observing certain cardiac features can be 

challenging, as they are typically difficult to determine and interpret [30]. Therefore, automatic segmentation 

is urgently required for assistance in identifying the region of interest in ultrasound-based images. 

Nevertheless, in contrast to other non-invasive imaging modalities like magnetic resonance imaging (MRI) 

and computed tomography scan (CT-scan), research on automatic segmentation in ultrasound, particularly 

utilizing deep learning, has been very limited in recent years [31]. To overcome this problem, we employ a 

publicly available dataset from Hamad Medical Corporation, Qatar University, and Tampere University 

known as the HMC-QU dataset, accessible at https://www.kaggle.com/datasets/aysendegerli/hmcqu-dataset. 

This dataset encompasses ultrasound-based assessments featuring diverse patients and viewpoint types. 

Furthermore, the ground truth is supplied, with the left ventricular wall (LVW) serving as the region of 

interest (ROI). This is essential to us because LVW movement and structure analysis serves as an early 

indicator of various heart problems, including myocardial infarction and hypertrophic cardiomyopathy [30], 

[32]. This dataset has been used in several earlier investigations, either for segmentation or for the 

identification of structural and movement anomalies [33]–[37]. While deep learning remains the dominant 

option, none of these studies has explored the use of transfer learning to the extent that we propose. 

Therefore, our research provides practical benefits for the development of ultrasound-based cardiac image 

processing in addition to theoretical benefits for deep learning transfer learning scenarios. 

 

 

2. METHOD 

2.1.  Dense-UNet architecture 

Dense-UNet is a modified U-Net architecture that incorporates dense blocks and transition layers 

into its structure, drawing inspiration from the DenseNet architecture introduced by [25]. Their layer-to-layer 

linkages are the main distinction between standard block layers and dense blocks. Each layer in a dense block 

obtains feature mappings from every layer before it via some concatenation [25]. This feature reuse 

minimizes the addition of excessive features in each layer, consequently reducing the required parameters. 

However, it necessitates that the dimensions of feature maps remain unchanged due to concatenation-based 

merging. This limitation impedes the implementation of a pooling procedure, which is generally resolved by 
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adding a transition layer. In the original configuration, this transition layer consists of 2×2 average pooling 

preceded by 1×1 convolution. 

Figure 1 illustrates the structure of the nine-stage Dense-UNet. A 7×7 convolution is employed in 

the first step to process the input dimensions from 224×224 to 112×112. This process continues with the first 

transition layer, leading us to the first dense block in the second stage. Within a dense block, layer 

configurations include batch normalization (BN), rectified linear unit (ReLU) activation, 3×3 convolution, 

another BN, ReLU activation, and 1×1 convolution. This sequence is repeated several times depending on 

the architectural construction. Subsequently, the second transition layer guides us to the third stage (second 

dense block). We will continue this process until we reach the fourth dense block in the fifth stage when we 

have 7×7 feature maps. The next step involves starting 2×2 upsampling and concatenating the result with the 

final feature maps from the fourth stage. Their results will serve as the input for the fifth dense block, which 

has the same layer configuration as its mirrored version (third dense block). This provision continues until we 

reach the ninth stage, concluding with a sigmoid activation layer and a resulting output of 224×224. 

Determining how many layers are present in each dense block is another crucial factor. The number 

of layers in this study, ranging from stage one to stage five, follows the DenseNet-121, DenseNet-169, and 

DenseNet-201 structure of the original DenseNet versions [25]. The sixth to ninth stages replicate this 

structure by mirroring the number of layers. Under these conditions, the three Dense-UNet architectures in 

this study are named Dense-UNet-121, Dense-UNet-169, and Dense-UNet-201. 

 

 

 
 

Figure 1. Dense-UNet structure with nine processing stages 

 

 

2.2.  Transfer learning 

Transfer learning is a concept in learning that attempts to enhance model performance by employing 

knowledge acquired from a learning task in one domain (the source domain) to improve performance in a 

different area (the target domain). Addressing data inadequacy in the target domain is one of the many 

benefits of this method [17], [38], [39]. It will mitigate this issue by relaxing the assumption that training and 

testing data must originate from the identical domain. Transfer learning in deep learning refers to pre-training 

a network on a source domain, frequently a larger dataset like ImageNet [40]. This process leads to a model 

with optimized parameter values representing previously acquired knowledge. These parameter values are 

subsequently transferred to another network created particularly for the target dataset. Notably, the two 

networks are often dissimilar. As a result, the new model incorporates layers that receive the transfer learning 

results alongside layers that do not. In the Dense-UNet architecture discussed earlier, we can determine that 

the portion designated for transfer learning is the initial half known as the encoder, encompassing the first to 

fifth stages. If the architecture has M layers and the encoder consists of 𝐾 layers (𝐾 < 𝑀), the first 𝐾 layers 

will receive the parameter values from the pre-trained model. Furthermore, the other layers will be initialized 

using either fixed or random numbers [41]. After that, there are different scenarios for how we handle the 

transferred parameters:  

‒ Scenario 1: freeze scenario (TL-S1). Transferred parameters are regarded as untrainable since their values 

remain unchanged while they are being trained, essentially freezing them. Layers not undergoing transfer 

learning will be initialized and updated from the first iteration until the completion of training. 

‒ Scenario 2: unfreeze scenario (TL-S2). In this scenario transfer learning parameter values act as 

initializations and are changed in real time throughout training. Thus, all parameters are deemed trainable, 
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regardless of whether they are in layers with or without transfer learning. The initialization procedure is 

where the differences arise: non-transferred layers begin with glorot uniform initialization, whereas other 

layers start with values from a pre-trained model. 

‒ Scenario 3: freeze-unfreeze scenario (TL-S3). Parameters in layers affected by transfer learning will 

remain unchanged for an initial portion of the training process. In other words, only the parameters in 

layers not affected by transfer learning will be updated, while those influenced by transfer learning will be 

frozen. After reaching a pre-defined epoch threshold, the transfer learning layer is unfrozen, and training 

continues across all layers. The transfer learning cutoff will be explored at various stages, including 20%, 

40%, 60%, and 80% of the total training epochs. This exploration will clarify how the timing of the 

transition impacts the final outcome. 

In this study, we will simulate the three scenarios that are depicted in Figure 2. 

 

 

 
 

Figure 2. Three parameter updating scenarios in transfer learning 

 

 

2.3.  Optimization technique 

In architectures like Dense-UNet, “trainable parameters” encompass weights and biases in 

convolution layers, as well as scale and shift parameters in BN layers. During training, these parameters are 

optimized, commencing with initial values generated by glorot-uniform initialization [42]. This technique 

uses a uniform distribution with an interval limit of [−𝑎, 𝑎], where 𝑎 is calculated employing (1). The values 

of 𝑛𝑖𝑛 and 𝑛𝑜𝑢𝑡 represent the number of input and output units of the layer, respectively. 

 

𝑎 =
√6

√𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
 (1) 

 

Next, the adaptive moment (Adam) technique proposed in [43] will be utilized for updating the 

initial value iteratively. This method updates parameter values using bias-corrected values of gradients' first 

and second moments estimations. Algorithm 1 illustrates the procedure. The first component that must be 

calculated is the gradient of the loss function with respect to the model parameters, denoted by 𝑔𝑡 where 𝑡 is 

the index of iteration performed. The binary cross-entropy loss function as in (2) was selected to suit the 

binary classification task. 

 

𝐿𝑖 = −[𝑐𝑖 𝑙𝑜𝑔(𝑝(𝑐𝑖)) + (1 − 𝑐𝑖) 𝑙𝑜𝑔(1 − 𝑝(𝑐𝑖))]q (2) 
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Algorithm 1. Adam Optimization 

Require: 𝛽1, 𝛽2, 𝜂, 𝜀: Hyperparameter  

Require: 𝑓𝑡(𝜃𝑡−1): Stochastic objective function as in (2) with trainable parameter 𝜃𝑡−1 at time-step 𝑡 − 1 

Require: 𝜃0: Initial parameter vector generated from glorot uniform 

     𝑚0 ← 0 (Initialize 1st moment vector) 

     𝑣0 ← 0 (Initialize 2nd moment vector) 

     𝑡 ← 0 (Initialize time-step) 

     While 𝜃𝑡 not converged do 

          𝑡 ← 𝑡 + 1 

          Get gradients w.r.t. stochastic objective at timestep 𝑡 using (3): 

𝑔𝑡 = 𝛻𝜃𝑓𝑡(𝜃𝑡−1) (3) 

          Update biased 1st moment estimate using (4): 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (4) 

          Update biased 2nd moment estimate using (5): 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (5) 

          Compute bias-corrected 1st moment estimate using (6): 

𝑚̂𝑡 =
1

1−(𝛽1)
𝑡𝑚𝑡 (6) 

          Compute bias-corrected 2nd moment estimate using (7): 

𝑣̂𝑡 =
1

1−(𝛽2)
𝑡 𝑣𝑡 (7) 

          Update parameters using (8): 

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

√𝑣̂𝑡+𝜀
𝑚̂𝑡 (8) 

     End while 

     Return 𝜃𝑡 (Resulting parameters) 

 

The loss for the 𝑖𝑡ℎ pixel, denoted as 𝐿𝑖, is defined for 𝑖 = 1, . . . , 𝑁 with 𝑁 representing the total 

pixels in the output image. The actual classification class of 𝑖𝑡ℎ pixel is notated by 𝑐𝑖 ∈ {0,1}, in which  

𝑐𝑖 = 0 is for the background and 𝑐𝑖 = 1 is for the ROI. Lastly,𝑝(𝑐𝑖) is the predicted probability of belonging 

to class 𝑐𝑖 calculated by the model. After finding the 𝑔𝑡, we are able to calculate the exponentially weighted 

moving average of the gradient (𝑚𝑡) and squared gradient (𝑣𝑡). This step demands us to configure the 

hyperparameter values 𝛽1, 𝛽2 ∈ [0,1) as the exponential decay rates for the moment estimates. We then 

utilize the bias-corrected versions of 𝑚𝑡 and 𝑣𝑡 along with 𝜂 and 𝜀 to update parameter values from 𝜃𝑡−1 to 

𝜃𝑡. We also set the hyperparameter values at 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜂 = 10−6, and 𝜀 = 10−8. 

 

2.4.  Evaluation metric 

This study utilizes the correct classification ratio (CCR) to evaluate the model performances. This 

metric is demonstrated in (9). 𝐺𝑇𝑗 represents the ground truth area for class 𝑗, while 𝑆𝑒𝑔𝑗 depicts the model's 

corresponding segmentation area. Class 𝑗 = 0 is designated for the background (non-ROI) and 𝑗 = 1 is for 

the LVW area (ROI).|𝐺𝑇𝑗 ∩ 𝑆𝑒𝑔𝑗| denotes the number of pixels from class 𝑗 which are accurately classified 

by the model. |𝐺𝑇| can be measured by counting the number of pixels from the union of the 𝐺𝑇0 and 𝐺𝑇1 

areas. The CCR values vary between 0 and 1. All pixels are appropriately categorized and our segmentation 

precisely matches the ground truth if the CCR value is one. A decreasing CCR indicates deteriorating 

segmentation results. 

 

CCR = ∑
|𝐺𝑇𝑗∩𝑆𝑒𝑔𝑗|

|𝐺𝑇|

1
𝑗=0  (9) 

 

2.5.  Dataset and experimental setup 

An online echocardiogram (ECG) dataset made available by HMC-QU was employed in this study. 

Specifically, we concentrated on a subset of the dataset that included 109 ECG video recordings that had 

224×224 pixels ground truth available. These videos presented the apical 4-chamber view at a resolution of 

636×422 pixels. They had a frame rate of 25 frames per second and ranged in duration from 1 to 3 seconds. 

The videos were randomly divided into training, validation, and testing sets (80%:10%:10%), 

resulting in 87 training videos, 11 for validation, and 11 for testing. The images were then extracted and fed 

into preprocessing. They were center-cropped to 422×422 pixels and resized to 224×224 pixels. The red, 

green, and blue channels' color intensities were then extracted into three matrices. The matrix elements, 

initially ranging from 0 to 255, were normalized to a 0-to-1 range, serving as input for the deep learning 

architecture. 
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The training utilized a batch size of 10, with 10 images selected at random for each iteration. Each 

epoch concluded after processing all images, and this procedure was repeated for 100 epochs. The 

experiment was conducted on Google Colab using an NVIDIA V100 GPU, with Python 3 and the Keras 

framework chosen for their effectiveness and executability. 

 

 

3. RESULTS AND DISCUSSION 

Figure 3 displays an example of many ultrasound pictures processed during this study. The original 

photographs that were selected at random are presented in the first row, and the ground truth for those images 

is displayed in the second row. The combined result, which displays the location of the LVW area 

determined by the ground truth, can be examined in the third row. The models use ground truth as a reference 

during training to effectively learn and recognize LVW characteristics. 

 

 

 
 

Figure 3. Some examples of ultrasound-based images and their ground truth (mask) 

 

 

Table 1 summarizes the training durations (in seconds), loss values, and CCR for the three  

Dense-UNet architectures with various transfer learning scenarios. Notably, across all architectures, the 

suggested third scenario (TL-S3) consistently outperforms models without transfer learning (NoTL), TL-S1, 

and TL-S2. The models under TL-S3 achieve a remarkable CCR exceeding 0.99, a level not attained by 

models from other scenarios. Furthermore, TL-S3 models demonstrate far lower losses than the others, with 

reductions ranging from 82% to 97%. 

 

 

Table 1. The performance results of Dense-UNet models 
Architecture Transfer Learning 

Scenario 

Training Validation Duration 

(in second) Loss CCR Loss CCR 

Dense-UNet-121 No TL 0.2338 0.9772 0.2461 0.9685 2,983 
TL-S1 0.0918 0.9815 0.1166 0.9685 1,955 

TL-S2 0.1509 0.9849 0.1793 0.9679 2,966 

TL-S3 20%-F 0.0095 0.9950 0.2063 0.9699 2,857 
TL-S3 40%-F 0.0106 0.9948 0.1765 0.9694 2,666 

TL-S3 60%-F 0.0169 0.9925 0.1369 0.9677 2,455 

TL-S3 80%-F 0.0169 0.9925 0.1282 0.9692 2,250 
Dense-UNet-169 No TL 0.2491 0.9777 0.2610 0.9679 3,849 

TL-S1 0.1639 0.9780 0.1763 0.9694 2,383 

TL-S2 0.1555 0.9854 0.1886 0.9674 3,838 
TL-S3 20%-F 0.0095 0.9950 0.2074 0.9678 2,752 

TL-S3 40%-F 0.0101 0.9949 0.2038 0.9678 2,552 

TL-S3 60%-F 0.0110 0.9946 0.1823 0.9689 2,373 
TL-S3 80%-F 0.0198 0.9913 0.1321 0.9667 2,170 

Dense-UNet-201 No TL 0.1391 0.9833 0.1648 0.9694 4,874 

TL-S1 0.2200 0.9746 0.2282 0.9683 3,112 
TL-S2 0.2872 0.9791 0.3048 0.9669 4,893 

TL-S3 20%-F 0.0100 0.9949 0.1905 0.9684 4,668 

TL-S3 40%-F 0.0108 0.9947 0.1691 0.9680 4,327 
TL-S3 60%-F 0.0115 0.9945 0.1804 0.9687 3,989 

TL-S3 80%-F 0.0204 0.9910 0.1085 0.9679 3,707 

No TL: Without transfer learning; TL-S1: Transfer learning scenario 1 (freeze scenario); TL-S2: Transfer learning 

scenario 2 (unfreeze scenario); TL-S3 20%, 40%, 60%, 80%-F: Transfer learning scenario 3 (freeze-unfreeze scena-

rio with non-freezing start cutoffs being 20%, 40%, 60%, and 80% of the total epoch, respectively). 
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Investigation reveals that when transfer learning parameters are unfrozen after the cutoff, the TL-S3 

models perform noticeably better. TL-S3 20%-F models, for example, exhibit better performance spikes after 

20 epochs, whereas TL-S3 40%-F models show better performance surges after 40 epochs. The TL-S3  

60%-F and TL-S3 80%-F models also exhibit this pattern. The learning curve provides a visual 

representation of this circumstance, with Figures 4(a) to 4(c) representing CCR and Figures 5(a) to 5(c) 

representing loss. It validates the hypothesis that temporarily freezing transfer learning layers enables the 

model to adapt to the current case's characteristics without disrupting the robust feature extraction of pre-

trained layers. After the non-transfer learning layer stabilizes, unfreezing the transfer learning layer boosts 

performance by iteratively updating all parameters. This performance jump occurs shortly after the cutoff. 

 

 

   
(a) (b) (c) 

 

Figure 4. Learning curve for CCR values: (a) Dense-UNet-121, (b) Dense-UNet-169, and (c) Dense-UNet-201 

 

 

   
(a) (b) (c) 

 

Figure 5. Learning curve for loss values: (a) Dense-UNet-121, (b) Dense-UNet-169, and (c) Dense-UNet-201 

 

 

The average CCR increase for TL-S3 models during the next twenty epochs was 0.0216, compared 

to 0.0048 for other scenarios. This approximately five-fold difference highlights how much preferable the 

TL-S3 scenario is. We discover that the TL-S3 20%-F scenario corresponds to the best-performing model 

during training in each Dense-UNet architecture. Dense-UNet-121, 169, and 201 with this scenario had CCR 

values of 0.9950, 0.9950, and 0.9949, respectively, placing them among the top three in terms of both CCR 

and loss. With a CCR of 0.9699, the Dense-UNet-121 model with TL-S3 20%-F also leads in validation. 

Dense-UNet-121 with TL-S3 40%-F and Dense-UNet-169 with TL-S1 are the second and third-best models, 

respectively, with CCR values of 0.9694. TL-S3 scenario models were able to maintain two of the top three 

positions in this instance. Then, a different testing dataset was employed to further evaluate these three 

models, which were determined to be the best options. Once more, the model with the greatest CCR of 

0.9695 was Dense-UNet-121 with TL-S3 20%-F. It performed better than Dense-UNet-121 with TL-S3  

40%-F and Dense-UNet-169 with TL-S1, which had CCR values of 0.9685 and 0.9681, respectively. The 

results demonstrate the strong segmentation capabilities of Dense-UNet-121, confirming its superior 

performance with TL-S3 20%-F. It continuously achieves the greatest CCR (0.9950, 0.9699, and 0.9695, 

respectively) across training, validation, and testing datasets.  

When comparing models with and without transfer learning, models with transfer learning generally 

demonstrate faster training times. Dense-UNet-201 TL-S2 is an exception, taking 19 seconds longer than 
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Dense-UNet-201 without transfer learning. In other circumstances, transfer learning steadily quickens the 

training process. Second, we anticipated that TL-S1 would demonstrate the most rapid training time. The 

rationale behind this approach stemmed from the observation that TL-S1 requires fewer learned parameters 

than TL-S2 and TL-S3. Nevertheless, our research indicates that this hypothesis is valid exclusively when 

comparing TL-S1 and TL-S2. Interestingly, certain of the models in the TL-S3 scenario required less training 

time than those in TL-S1. This result provides an interesting novel perspective to our investigation, indicating 

that the special parameter update approach employed by TL-S3 may help enhance the effectiveness of 

training. We additionally discover that among TL-S3 models, the training period varies depending on the 

cutoff position selection. The earlier the transition from non-trainable (freeze) to trainable (unfreeze) status 

occurs, the longer the training duration. This condition is attributed to the increasing proportion of epochs 

with a full-scale trainable parameter set. In terms of processing time, our best model, the Dense-UNet-121 

with TL-S3 20%-F, also performed well. With 2,857 seconds of duration, it is faster than 52% of other 

models. 

Lastly, Figure 6 provides a visualization of data segmentation testing with our best model. The 

original photos are displayed in the top row, and a comparison of the ROI contour generated by the model 

(red line) and the ground truth (blue line) is presented in the bottom row. This figure illustrates how the 

model can segment data from a new dataset that was not utilized during training. 

 

 

 
 

Figure 6. Segmentation results produced by the best model 

 

 

4. CONCLUSION 

This study provides several important conclusions. Firstly, during training, the TL-S3 scenario 

consistently outperforms other scenarios, achieving CCRs over 0.99 and losses under 0.0205. This 

superiority is explained by TL-S3's learning curve exhibiting a performance increase after surpassing the 

freezing cutoff. Five times higher than the rest, the average CCR increase in the 20 epochs post-cutoff is 

0.0216. Furthermore, the excellence of TL-S3 extends to validation process, securing top positions in terms 

of the highest CCR. In summary, the Dense-UNet-121 model with TL-S3 20%-F is deemed the best, 

achieving a training duration of 2,857 seconds and attaining the highest CCR values for training, validation, 

and testing data (0.9950, 0.9699, and 0.9695, respectively). This study establishes opportunities for further 

research on the TL-S3 scenario by raising two crucial issues: first, determining the optimal transition point 

from 'untrainable' to 'trainable' status, and second, exploring how distinct training parameter adjustments can 

be made for each layer impacted by transfer learning. These investigations are expected to enhance the 

robustness and performance of the deep learning model with transfer learning. 
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