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 The robotic arm emerges as a subject of paramount significance within the 

industrial landscape, particularly in addressing the complexities of its 

kinematics. A significant research challenge lies in resolving the inverse 

kinematics of multiple degree of freedom (M-DOF) robotic arms. The 

inverse kinematics of M-DOF robotic arms pose a challenging problem to 

resolve, thus it involves consideration of singularities which affect the arm 

robot movement. This study aims a novel approach utilizing deep 

reinforcement learning (DRL) to tackle the inverse kinematic problem of the 

6-DOF PUMA manipulator as a representative case within the M-DOF 

manipulator. The research employs Jacobian matrix for the kinematics 

system that can solve the singularity, and deep deterministic policy gradient 

(DDPG) as the kinematics solver. This chosen technique offers enhancing 

speed and ensuring stability. The results of inverse kinematic solution using 

DDPG were experimentally validated on a 6-DOF PUMA arm robot. The 

DDPG successfully solves inverse kinematic solution and avoids the 

singularity with 1,000 episodes and yielding a commendable total reward of 

1,018. 
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1. INTRODUCTION 

Arm robot manipulators hold a paramount position in the industrial landscape, and their applications 

are pervasive and diverse. The adaptability of these robotic arms, particularly their end-effectors, allows for 

customization to suit various tasks, such as gripping, magnetizing, and grinding [1]. Their extensive utility 

spans crucial industries, including automobile and aircraft manufacturing, medical equipment, and beyond. 

As a poignant example, the da Vinci surgical robot exemplifies the deployment of robotic arms for precise 

medical procedures [2]–[4]. Within the realm of robotic arm control, an urgent research area revolves around 

kinematics, encompassing forward kinematics and inverse kinematics. Forward kinematics entails 

determining the coordinate values of the end-effector, typically in a 3D cartesian space, based on the joint 

angles of the robotic arm [5], [6]. Conversely, inverse kinematics seeks to ascertain the exact joint angles 

necessary to achieve a desired end-effector coordinate [7]. These kinematic aspects are of utmost importance, 

as they underpin the decision-making process of robotic arms in reaching desired end-effector coordinates 

efficiently [8]. 

In general, inverse kinematics solutions are divided into two types: analytical solutions and 

numerical solutions. Analytical solutions represent a quick and efficient calculation of the inverse kinematics 

of a manipulator robot from joint angles to produce the desired end-effector configuration. Most industrial 
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manipulator robots have analytical solutions obtained using geometric and algebraic identities, solving a set 

of nonlinear algebraic equations related to defining the inverse kinematics problem [9]. The research 

conducted by [5] addressed the inverse kinematics problem of a tetrix manipulator using a closed-form 

solution. Additionally, research by Artemiadis [10] solved the inverse kinematics of a redundant manipulator 

robot. Shabeeb [11] employed a closed-form approach to solve the inverse kinematics problem of a 5 degree 

of freedom (DOF)-based manipulator robot. One of the primary advantages of closed-form solutions is their 

ability to compute rapidly and efficiently for each joint angle contributing to the end-effector position [8], 

[12]. However, the limitation of using closed-form solutions lies in their dependence on the geometric 

configuration of the robot manipulator, making no method universally applicable to solve this kinematic 

problem [13]. 

Numerical solutions rely on interactive procedures to solve the inverse kinematics of manipulator 

robots [14]. In numerical solutions, computations are carried out by considering stability and efficiency to 

obtain appropriate approximations of values [9], [12]. Generally, one of the widely used numerical methods 

in the field of robotics is artificial intelligence (AI). One of the primary goals in AI is to create fully 

autonomous agents that interact with their environment to learn different behaviours over time through trial 

and error. Numerical methods based on AI frameworks built upon mathematical frameworks for autonomous 

learning driven by experience include deep reinforcement learning (DRL) [15]. In the field of robotics, 

reinforcement learning has been applied to various types of robots, including mobile robots [16], [17], aerial 

robots [18], bipedal robots [19]–[21], humanoid robots [22], arm manipulator robots [23], [24]. Many papers 

employed DRL for arm robot manipulator, such as Kim et al. [25] employed robot arm markov decision 

process (RAMDP) with both 2-DOF and 3-DOF robot manipulators using twin delayed deep deterministic 

policy gradient (DDPG) (TD3) and [26] utilized soft-actor-critic (SAC) to control the movement of two 7 

DOF robotic arms. 

This study proposes the DDPG algorithm for the 6-DoF PUMA 560 robotic arm, a widely acclaimed 

solution for inverse kinematic problems within robotic arms [26], [27]. The DDPG algorithm employs a 

deterministic policy, contributing to enhanced stability in the learning process. The utilization of a 

deterministic policy ensures that the generated actions consistently fall within a specific range, leading to 

faster convergence. Effectively handles actions in continuous domains, allowing the agent to make precise 

choices within a continuous action spectrum. DDPG proficiently addresses high-dimensional data, enabling 

the agent to navigate a vast or high-dimensional action space, particularly in scenarios involving numerous 

variables or parameters, with high precision [28], [29]. Considering these strengths, the DDPG algorithm will 

serve as the agent in resolving the inverse kinematics of the 6-DOF PUMA 560 robotic arm. The success of 

these implementations will be rigorously evaluated.  

 

 

2. MATERIAL AND METHOD 

2.1.  Deep deterministic policy gradient for inverse kinematic 

DDPG is subset of the reinforcement learning algorithm, which operates through iterative 

exploration of the problem space, gathering insights, and selecting appropriate actions. In this context, it is 

employed to address the inverse kinematics problem by assessing the current state of the robotic system and 

determining joint configurations to achieve the precise end-effector pose. Reinforcement learning serves as a 

practical tool for solving sequential decision problems that can be modeled as Markov decision problems 

(MDPs) [30], [31]. MDPs are simply formulated in Markovian Processes. The Markov property implies that 

the next occurring process depends solely on the current observation outcomes. This results in the agent not 

referencing previous observation outcomes. A Markov decision process consists of 5 tuples (𝑆, 𝐴, 𝑃̂, 𝑅, 𝛾) 

[32]. The notation of 𝑆 represents states, which is a finite set of conditions achievable by the environment. 

The variable 𝐴 represents actions, which is a finite set of possible actions that the agent may choose. 𝑃̂ is the 

state transition function, which is the probability function of state transitions. 𝑅 is the reward function and 𝛾 

is the discount factor. 

DDPG employs an actor-critic architecture. The actor-critic architecture combines a value function 

with an explicit representation of the policy. The "actor" (policy) learns by receiving feedback from the 

"critic" (value function). In doing so, these methods trade-off between reducing the variance of the policy 

gradient and introducing bias from the value function methods [33]. The actor network 𝜇(𝑠; 𝜃𝜇) serves as the 

policy and generates actions to be taken. The critic network 𝑄(𝑠, 𝑎; 𝜃𝑄) acts as the Q-function and takes 

actions and states as input. The output of the critic provides an estimate of the reward for a particular action 

in that state. The target Q-network or target critic network, has parameter 𝜃𝑄
′
.The target policy network or 

target actor network, with has parameter 𝜃𝜇
′
.These target networks are updated at each step through "soft 

updates," gradually tracking the learned networks. The updates are performed as follows: 
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𝜃𝑄
′
← 𝜏𝜃𝑄 + (1− 𝜏)𝜃𝑄

′
 (1) 

 

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
 (2) 

 

Here, 𝜏 represents the smoothing factor. 

In addition to the target network, DDPG utilizes the replay buffer. The replay buffer is employed to 

sample experiences for updating the neural network weights. It temporarily stores the experience data that 

occurs during the agent's interaction with the environment. This replay buffer technique supports DDPG in 

learning offline, enabling it to learn action policies without directly interacting with the environment. This is 

beneficial for avoiding high computational costs during interaction with the environment. The DDPG 

algorithm uses mini-batch, which are small subsets of experiences randomly selected from the replay buffer. 

By using mini-batch, neural network updates can be performed efficiently. Mini-batch are used to update 

both the actor and critic networks. During network training, a random mini-batch is taken from the buffer, 

and then the target Q-value is computed using (3): 

 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′(𝑠𝑖+1, 𝜇

′(𝑠𝑖+1; 𝜃
𝜇′); 𝜃𝑄

′
) (3) 

 

Subsequently, both the critic and actor networks are updated. On one hand, the critic is updated by minimizing 

the mean squared loss between the updated Q-values and the original Q-values using the liss as (4): 

 

𝐿 =
1

𝑁
∑ (𝑦𝑖 −𝑄(𝑠𝑖 , 𝑎𝑖 ; 𝜃

𝑄))2𝑖  (4) 

 

On the other hand, the actor policy is updated using the sampled policy gradient as (5): 

 

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ∇𝑎𝑄(𝑠, 𝑎; 𝜃

𝑄)| ∇𝜃𝜇𝜇(𝑠|𝜃
𝜇)|𝑠=𝑠𝑡𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)

⬚
𝑖  (5) 

 

2.2.  The 6-DoF PUMA 560 manipulator 

This research endeavors to construct a model or environment for the 6-DOF PUMA 560. The 

system environment to be developed will entail an analytical solution or closed-form inverse kinematics for 

the M-DOF robotic arm, focusing on the homogeneous-based transformation. The mechanism governing the 

motion of the wrist joint is commonly referred to as a spherical wrist. Each joint possesses unique rotation 

limits and ranges. The model and configuration of the robot PUMA 560 is constructed based on a consensus 

of several PUMA robot parameters [34], [35]. the transformation matrix equation between the end-effector 

and the main coordinate frame 𝑇6
0 , is defined as: 

 

𝑇6
0 =  𝐴1

0  𝐴23 𝐴4
3  𝐴5

4 𝐴  6
5 = [ 𝑅6

0 𝑜6
0

0 1
] (6) 

 

𝑇6
0 =  [ 𝑅6

0 𝑝6
0

0 1
] =  [

𝑟11
𝑟21
𝑟31
0

𝑟12
𝑟22
𝑟32
0

𝑟13
𝑟23
𝑟33
0

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

] (7) 

 

Based on (6), the inverse kinematics equation for the PUMA 560 robot defines the following parameters: 

 
𝑟12 = 𝑜𝑥,
𝑟22 = 𝑜𝑦̂ ,
𝑟32 =  𝑜𝑧̂ ,

 

𝑟13 = 𝑎𝑥 ,
𝑟23 = 𝑎𝑦̂ ,
𝑟33 = 𝑎𝑧̂ ,

 

𝑟13 = 𝑎𝑥,
𝑟23 = 𝑎𝑦̂ ,
𝑟33 =  𝑎𝑧̂ ,

𝑝𝑥 = 𝑝𝑥
𝑝𝑦 = 𝑝𝑦̂

𝑝𝑧 − 𝑑1 = 𝑝𝑧̂

 (8) 

 

The inverse kinematics solution for the joint angle 𝑞1, begins by defining: 

 

𝑟𝑞1 = +√𝑝𝑥
2 + 𝑝𝑦̂

2 (9) 

 

𝜗𝑞1 = tan−1
𝑝𝑦̂

𝑝𝑥̂
  (10) 

 

The inverse kinematics solution for 𝑞1, if the shoulder configuration of the PUMA 560 robot is right-handed, 

is as (11): 
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𝑞1 = tan
−1 𝑝𝑦̂

𝑝𝑥̂
+ 𝜋 − sin−1

𝑑3

𝑟𝑞1
 (11) 

 

Another inverse kinematics solution for 𝑞1, if the shoulder configuration of the PUMA 560 robot is  

left-handed, is as (12):  

 

𝑞1 = tan
−1 𝑝𝑦̂

𝑝𝑥̂
+ sin−1

𝑑3

𝑟𝑞1
 (12) 

 

The inverse kinematics solution for the PUMA 560 robot’s joint 𝑞2, is related to the elbow 

configuration of the PUMA 560 robot, namely, elbow-up and elbow-down. The derivation of the inverse 

kinematics solution for joint 𝑞2 begins by defining the following notations: 

 

𝑉114 = −𝑠23𝑑4 + 𝑐23𝑎3 + 𝑎2𝑐2 (13) 

 

𝑟𝑞2 sin 𝜗𝑞2 = 𝑝𝑧̂ (14) 

 

𝑟𝑞2 cos𝜗𝑞2 = 𝑉114, 𝑟𝑞2 > 0 (15) 

 

Thus: 

 

𝑟𝑞2 = +√𝑉114
2 + 𝑝𝑧̂

2 (16) 

 

𝜗𝑞2 = tan−1
𝑝𝑧̂
𝑉114

 (17) 

 

𝜑 = cos−1
𝑎2
2− 𝑑4

2−𝑎3
2+𝑉114

2 +𝑝𝑧̂
2

2𝑎2𝑟𝑞2
 (18) 

 

The inverse kinematics solution for 𝑞2, is as (19): 

 

𝑞2 = tan
−1 𝑝𝑧̂

𝑉114
+𝜑 (19) 

 

The first inverse kinematics solution in (19) is implemented for the elbow-up condition. The elbow-down 

configuration has a reverse value; therefore, the other inverse kinematics solution is defined as (20): 

 

𝑞2 = tan
−1 𝑝𝑧̂

𝑉114
−𝜑 (20) 

 

The inverse kinematics solutions 𝑞2 for the PUMA 560 robot in (19) and (20) can experience singularity 

when the value of φ is zero. The solution to the inverse kinematics problem for 𝑞3 is as (21):  

 

𝑞3 = tan
−1 𝑎3

𝑑4
− tan−1

𝑐2𝑉114+𝑠2𝑝𝑧̂−𝑎2

𝑐2𝑝𝑧̂−𝑠2𝑉114
 (21) 

 

Then, the end-effector of the PUMA 560 robot comprises 3 spherical wrist joints. Therefore, the 

solutions for 𝑞4, 𝑞5, and 𝑞6 are interrelated. Before defining the wrist joint solutions, it is necessary to define 

some notations based on (7), as follows: 

 

𝑉323 = 𝑐1𝑎𝑦̂ − 𝑠1𝑎𝑥 (22) 

 

𝑉113 = 𝑐1𝑎𝑥 + 𝑠1𝑎𝑦̂ (23) 

 

𝑉313 = 𝑐23𝑉113 + 𝑠23𝑎𝑧̂ (24) 

 

From (22), (23), (24), we define the following: 

 

𝑠4 = −
1

𝑠5
𝑉323 (25) 
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𝑐4 = −
1

𝑠5
𝑉313 (26) 

 

The inverse kinematics solution for the fourth joint, 𝑞4, is as (27): 

 

𝑞4  =

{
 

 tan
−1 −𝑉323

−𝑉313
,    𝑖𝑓 𝑠5 > 0

tan−1
𝑉323

𝑉313
,      𝑖𝑓 𝑠5 < 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,   𝑖𝑓 𝑠5 = 0

. (27) 

 

There are two inverse kinematics solutions for PUMA 560 𝑞4 in (27), and they are closely related to 

the value of 𝑠5. The inverse kinematics value of PUMA 560 𝑞4 is undefined when 𝑠5 = 0. This is due to 

singularity occurring at the joint. The value of 𝑠5 can be defined as follows: 

 

𝑠5 = −𝑐4𝑉313 − 𝑠4𝑉323 (28) 

 

𝑐5 = −𝑠23𝑉113 + 𝑐23𝑎𝑧̂ (29) 

 

As a result, the joint value 𝑞5 is obtained as follows: 

 

𝑞5 = tan
−1 𝑠5

𝑐5
 (30) 

 

The inverse kinematics solution for PUMA 560 joint 𝑞6 is solved by first defining the following notations: 

 

𝑉412 = 𝑐4𝑉312 − 𝑠4𝑉132 (31) 

 

𝑉422 = 𝑉332 (32) 

 

𝑉432 = 𝑠4𝑉312 + 𝑐4𝑉132, (33)  

 

𝑉312 = 𝑐23𝑉112 + 𝑠23𝑝𝑧̂ (34) 

 

𝑉332 = −𝑠23𝑉112 + 𝑐23𝑜𝑧̂ (35) 

 

𝑉132 = 𝑠1𝑝𝑥 − 𝑐1𝑝𝑦̂ (36) 

 

𝑉112 = 𝑐1 + 𝑠1𝑝𝑦̂ (37) 

 

Next, 𝑠6 and 𝑐6 can be defined as: 

 

𝑠6 = −𝑐5𝑉412 − 𝑠5𝑉422 (38) 

 

𝑐6 = −𝑉432 (39) 

 

Thus, 𝑞6 can be obtained as (40): 

 

𝑞6 = tan
−1 𝑠6

𝑐6
 (40) 

 

2.3.  Singularity avoidance of 6-DoF PUMA 560 manipulator 

The robotic arm system is characterized as a resolved-rate closed-loop system [34]. Resolved-rate 

closed-loop motion pertains to a control methodology that manipulates joint velocities on the robot to achieve 

a desired motion at a specific resolution level. This approach is primarily employed in robotics to address 

potential error accumulations during robot movements. Specifically, resolved-rate motion involves 

calculating the joint velocities necessary to reach a particular pose or position in the task space. These 

velocities are computed by considering the disparity between the desired pose and the actual pose of the 

robot. By comprehending this disparity, resolved-rate motion allows the robot to make precise adjustments to 

joint velocities, ensuring the attainment of the desired motion objectives with improved positional accuracy. 

The resolved-rate closed-loop system for the robotic arm is precisely defined as such (41): 
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𝑞̇∗(𝑘) = 𝐽(𝑞(𝑘))
−1
(𝑝∗(𝑘)⊝𝒦(𝑞(𝑘))). (41) 

 

In (41) defines the desired joint velocity 𝑞̇∗(𝑘) as the inverse of the Jacobian matrix at time k, multiplied by 

the difference between the desired pose 𝑝∗(𝑘) and the actual pose 𝒦(𝑞(𝑘)). The symbols used are as 

follows: 𝑞̇∗(𝑘) represents the desired joint velocity at time k, 𝐽(𝑞(𝑘))
−1

 is the inverse of the Jacobian matrix 

at time k, 𝑝∗(𝑘)is the desired pose or 𝑝𝑡𝑎𝑟𝑔𝑒𝑡, 𝒦(𝑞(𝑘)) is the actual pose or 𝑝𝑒𝑒 , and ((𝑝∗(𝑘)⊝ 𝒦(𝑞(𝑘))) 

signifies the difference between the desired pose 𝑝∗(𝑘) and the actual pose 𝒦(𝑞(𝑘)), where the symbol ⊖ 

denotes the difference operation. The system is further defined by (42): 

 

𝑞̇∗(𝑘 + 1) = 𝑞(𝑘) + 𝐾𝑝𝛿𝑡𝑞̇∗(𝑘) (42) 

 

In this (42), 𝑞̇∗(𝑘 + 1)) represents the desired joint velocity at time k+1, 𝑞(𝑘) is the actual joint 

position at time k, 𝐾𝑝 is the proportional gain controlling the system's response to the difference between the 

desired and actual poses, and δt is the time interval between two iterations. Utilizing (41) and (42), the 

change in joint velocity is calculated based on the difference between the desired and actual poses. A closed-

loop control loop is employed to mitigate error accumulation, ensuring more accurate movements, and 

addressing undesired motion issues. Figure 1 shows the resolved-rate closed-loop system that remains inverse 

kinematic arm robot system with singularity avoidance.  

 

 

 
 

Figure 1. The resolved-rate closed-loop system of the PUMA 560 

 

 

The resolved-rate closed-loop system of this robotic arm is indicated to be capable of overcoming 

singularity. The presence of the Jacobian matrix, 𝐽(𝑞(𝑘))
−1

, in the system is crucial for avoiding singularity. 

Singularity occurs when the Jacobian matrix loses or does not have an inverse, potentially causing issues 

when executing (41). Initially, this study considers a scenario where the Jacobian matrix does not become 

singular to preempt singularity conditions, ensuring that singularity in the inverse kinematics of the 6-DOF 

PUMA 560, can be avoided. The study then defines a singularity avoidance formulation for the inverse 

kinematics of the M-DOF manipulator robot, specifically the 6-DOF PUMA 560, as follows: 

 

Singularity avoidance in inverse kinematics of M-DOF 6-DOF PUMA 560 

Theorem 1. If 𝐽(𝑞)−1 is a singular matrix for all scalar ∀𝑝, such that there exists 𝐽(𝑞) = (𝐽(𝑞) + 𝑝𝐼)−1 

that is nonsingular for ∃𝑝. 

 

The statement asserts that if the inverse of the Jacobian matrix 𝐽(𝑞)−1 becomes singular for a certain 

value of p, then there may exist another value of p such that the matrix 𝐽(𝑞) = (𝐽(𝑞) + 𝑝𝐼)−1 does not 

become singular. To ensure that the matrix 𝐽(𝑞) = (𝐽(𝑞) + 𝑝𝐼)−1 is nonsingular, it is necessary to ensure that 

the matrix has a nonzero determinant. If the determinant of the matrix is nonzero, then the matrix has an 

inverse, and the matrix is nonsingular. 

 

2.4.  Implementation 

The second phase commences with the design and subsequent implementation of the DDPG agent 

on 6-DOF PUMA 560 robotic arm. the PUMA 560 robotic arm. Therefore, actions in this system can be 

defined as follows: 
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𝐴 = [𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6]. (43) 

 

Where, 𝑞𝑖, represents the joint values. After DDPG issues a specific action to the environment, it receives 

feedback in the form of observations and rewards. The rewards are defined as two types: 

‒ Encouraging reward, defined as (44): 

 

𝑅1 = {
       0,   𝑖𝑓  ‖𝑝𝑒𝑒 − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡‖ < 0.5

−1,   𝑖𝑓 ‖𝑝𝑒𝑒 − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡‖ > 0.6
 (44) 

 

‒ Terminating reward, defined as (45):  

 

𝑅2 =  ‖𝑝𝑒𝑒 − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡‖ ≤ 0.5 (45) 

 

where, 𝑝𝑒𝑒  represents the actual coordinates of the PUMA 560 end-effector, and 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 represents the target 

coordinates. The system diagram is depicted in Figure 2. Within the artificial neural network segment of 

DDPG (DDPG network), there exist two distinct networks, such as the actor network and the critic network. 

The hyperparameter of DDPG agent is set as in Table 1. 

 

 

 
 

Figure 2. DDPG for inverse kinematic system 

 

 

Table 1. Hyperparameter DDPG 
Parameter Value 

Discount factor 0.99 

Mini-batch 250 

Reply buffer (R) 10−6 

Target smooth factor 10−3 

 

 

The learning process undertaken by the PUMA 560 robot with the DDPG controller is structured 

over k = 1,000 episodes. The evaluation of the control outcomes of the PUMA 560 robot is conducted 

through accuracy. The accuracy of the robot's movements will be assessed based on the actual pose of the 

end-effector and the desired pose. Algorithmic evaluation will be carried out considering the average reward 

and episode reward generated during the learning process. The average reward represents the mean reward 

obtained by the robot across the total episodes during the learning process. Episode reward is the reward 

generated by the agent in each episode throughout the learning process. The pseudocode for DDPG in 

solving the inverse kinematics of the 6-DOF PUMA 560 robotic arm, is outlined in Algorithm 1.  

 

Algorithm 1. Pseudo-code DDPG for inverse kinematic solution 
Initialisation desired pose 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 

Initialisation joint 𝐴 = [𝑞1, 𝑞2 , 𝑞3 , 𝑞4, 𝑞5 , 𝑞6] 
Initialisation actor network 𝜇(𝑠|𝜃𝜇) 
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Initialisation parameter target, weight of actor network: 

𝜃𝜇 ∈ 𝑅,𝑤𝜇 = {𝑤𝜇|−0,5 ≤ 𝑤𝜇 ≤ 0,5, 𝑤𝜇 ∈ 𝑅}, Na. 
Initialisation critic network 𝑄(𝑠, 𝑎|𝜃𝑄)  
Initialisation parameter target, weight of critic network: 

𝜃𝑄 ∈ 𝑅, 𝑤𝑄 = {𝑤𝑄|−0,5 ≤ 𝑤𝑄 ≤ 0,5, 𝑤𝑄 ∈ 𝑅}, N𝑐  

Update: 𝜃𝑄
′
← 𝜃𝑄 , 𝜃𝜇

′
← 𝜃𝜇 

Initialisation parameter of DDPG: 𝛾, 𝜏 ≪ 1, 𝑅, 𝑀𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ. 
For episode =1, do 

  For t = 1, do 

 select action 𝐴 = [𝑞1, 𝑞2 , 𝑞3 , 𝑞4, 𝑞5 , 𝑞6], and 

A =  𝜇(𝑠𝑡|𝜃
𝜇) + 𝑁𝑡 

receive 𝑆, 𝑎𝑛𝑑 𝑅: 
𝑆 = [𝐴𝑡 , 𝐴𝑡+1] ∈ 𝑅

12, 

𝑅1 = {
       0,   𝑖𝑓  ‖𝑝𝑒𝑒 − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡‖ < 0.5

−1,   𝑖𝑓 ‖𝑝𝑒𝑒 − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡‖ > 0.6
. 

Store experience in R. 

Random sample from mini-batch and set 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′(𝑠𝑖+1,𝜇

′(𝑠𝑖+1|𝜃
𝜇′)|𝜃𝑄

′
) 

Estimate Critic network loss, L 

Estimate actor network with policy gradient, ∇𝜃𝜇𝐽 

update target parameter critic network, 𝜃𝑄
′
, and actor network 𝜃𝜇

′
 

‘check if done’ with terminating reward: 𝑅2 = ‖𝑝𝑒𝑒 − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡‖ ≤ 0.05. 
  End for 

End for 

 

2.5.  Evaluation for deep deterministic policy gradient 

The parameters used to evaluate the performance of the DDPG and improved-DDPG algorithm 

includes episode reward (𝐸𝑅), average reward (𝐴𝑅), and total reward (𝑇𝑅).  
‒ The episode reward (𝐸𝑅), represents the value of 𝑅1 generated by the system in each episode, k. 

‒ The average reward (𝐴𝑅), is the average reward generated over a specific episode, given in (46): 
 

𝐴𝑅 =
∑ 𝐸𝑅
𝑘′
𝑘=1

𝑘′
. (46) 

 

where, 𝑘′ is the current or actual episode.  

‒ The total reward (𝑇𝑅) is the cumulative reward generated by the system from the beginning to the end of 

the episode: 
 

𝑇𝑅 =  ∑ 𝑅1𝐾=1000
𝑘=1 .  (47) 

 

where, 𝐾 is the final episode.  
 

 

3. RESULTS AND DISCUSSION 

3.1.  Evaluation of deep deterministic policy gradient for 6-DOF PUMA 560 

Evaluation of the design of DDPG agents and its implementation in the inverse kinematics 

environment of the 6-DOF PUMA 560 robotic arm. The results of the inverse kinematics learning of 6-DOF 

PUMA 560 robotic arm with DDPG is conducted for a total of 1000 episodes. Figures 3 and 4 show the 

reward and average reward results of the DDPG agent for the inverse kinematics solution of 6-DOF  

PUMA 560. Based on Figures 3 and 4, it is evident that the inverse kinematics solution process for the 6-

DOF PUMA 560 robotic arm, results in an increase in reward below the 500th episode. The total reward 

generated from the DDPG implementation is 1,118.  
 

3.2.  Proof of singularity avoidance for 6-DOF PUMA 560 

The proof provided demonstrates the singularity avoidance in the inverse kinematics of a multi-

degree-of-freedom robotic arm, specifically in the context of a 6-degree-of-freedom PUMA 560 robotic arm. 

The proof of singularity avoidanve the 6-DOF PUMA 560 will be examined based on the determinant value 

and rank, that are derived from the Jacobian matrix. This proof is formulated in proof of singularity 

avoidance in inverse kinematics of M-DOF 6-DOF PUMA 560.  

 

Proof of singularity avoidance in inverse kinematics of M-DOF 6-DOF PUMA 560 

Proof. 

If there be a Jacobian matrix Jacobian 𝐽(𝑞) ∈ 𝑅6𝑥6, as follow: 
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𝐽(𝑞) =  

[
 
 
 
 
 
   0.1500     −0.8636 −0.4318
0.0203      0.0000    0.0000
0.0000
0.0000
0.0000
1.0000

     0.0203
     0.0000
  −1.0000
     0.0000

   0.0203
   0.0000
−1.0000
   0.0000

    

0.0000    0.0000 0.0000
0.0000    0.0000 0.0000
0.0000
0.0000
0.0000
1.0000

   0.0000
   0.0000
−1.0000
   0.0000

0.0000
0.0000
0.0000
1.0000]

 
 
 
 
 

, 

 

We obtain, that det(𝐽(𝑞)) = 0, and rank (𝐽(𝑞)) = 5, hence 𝐽(𝑞) is a singular matrix. 

If the scalar value 𝑝, where 𝑝 ≪ 0, and an identity matrix I, to satisfy 𝑝𝐼 in the formulation 𝐽(𝑞) + 𝑝𝐼, so, 

we obtain: 

 

𝑝𝐼 =

[
 
 
 
 
 
0.0873 0.0000 0.0000
0.0000 0.0873 0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000

0.0873
0.0000
0.0000
0.0000

    

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000
0.0873
0.0000
0.0000

0.0000
0.0000
0.0873
0.0000

0.0000
0.0000
0.0000
0.0873]

 
 
 
 
 

 . 

 

Then, we obtain 𝐽(𝑞) + 𝑝𝐼 as follows: 

 

𝐽(𝑞) + 𝑝𝐼 =

[
 
 
 
 
 
0.2373 −0.8636 −0.4318
0.0203     0.0873    0.0000
0.0000
0.0000
0.0000
1.0000

   0.0203
   0.0000
  −1.0000   
  0.0000

   0.1076
   0.0000
−1.0000
   0.0000

    

0.0000    0.0000 0.0000
0.0000    0.0000 0.0000
0.0000
0.0873
0.0000
1.0000

   0.0000
   0.0000
−0.9127
   0.0000

0.0000
0.0000
0.0000
1.0873]

 
 
 
 
 

. 

 

Det(𝐽(𝑞) + 𝑝𝐼) = −3.4116𝑒 − 04, rank (𝐽(𝑞) + 𝑝𝐼) = 6, hence 𝐽(𝑞) + 𝑝𝐼 is a non-singular matrix. 

Based on the above results, it is found that 𝐽(𝑞)−1 is a singular matrix, whereas 𝐽(𝑞) = (𝐽(𝑞) + 𝑝𝐼)−1 is a 

nonsingular matrix. Therefore, Theorem 1 is proven for a 𝑝 ≪ 0 in (𝐽(𝑞) + 𝑝𝐼)−1 

 

The proof begins by examining a Jacobian matrix 𝐽(𝑞)  ∈ 𝑅6𝑥6 representing the robot arm's 

kinematics. The determinant and rank of 𝐽(𝑞) are calculated, indicating that it is a singular matrix. Then, a 

scalar value 𝑝 is introduced, where 𝑝 ≪ 0, along with an identity matrix 𝐼, to form 𝑝𝐼 in the equation 
(𝐽(𝑞) + 𝑝𝐼). The resulting matrix 𝑝𝐼 is computed accordingly. Subsequently, 𝑝𝐼 is added to 𝐽(𝑞) to obtain 

(𝐽(𝑞) + 𝑝𝐼) and its determinant and rank are computed. The results show that 𝐽(𝑞) = (𝐽(𝑞) + 𝑝𝐼)−1 is non-

singular, despite 𝐽(𝑞) being singular. Based on these findings, it is concluded that 𝐽(𝑞)−1 is a singular matrix, 

(𝐽(𝑞) + 𝑝𝐼)−1 becomes non-singular for very small values of p. This proof supports the claim made in 

Theorem 1 regarding singularity avoidance in the robotic arm's inverse kinematics.  
 

 

  
 

Figure 3. Reward for inverse kinematics solution of 

the 6-DOF PUMA 560 using DDPG 

 

Figure 4. Average reward for inverse kinematics 

solution of the 6-DOF PUMA 560 using DDPG 
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4. CONCLUSION 

This research demonstrates the performance of the DDPG algorithm in solving the inverse 

kinematics solution of a multi-degree-of-freedom robotic arm, with a case study involving the 6-DOF PUMA 

560 robotic arm using the DDPG algorithm. Based on the conducted tests, the following conclusion is drawn 

that the implementation of the DDPG algorithm to solve the inverse kinematics solution of the multi-degree-

of-freedom robotic arm, with a case study involving the 6-DOF PUMA 560 robotic arm, is successfully 

executed. The system’s implementation has effectively learned to solve the inverse kinematics solution of the 

multi-degree-of-freedom robotic arm, with a case study involving the 6-DOF PUMA 560 robotic arm. It 

produces a total reward of 1,118. The DDPG algorithm has successfully completed the learning process and 

avoided singularity within 1,000 episodes of the learning process. 
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