
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 14, No. 4, August 2025, pp. 2899~2908 

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i4.pp2899-2908      2899 

 

Journal homepage: http://ijai.iaescore.com 

Prediction of side effects of drug resistant tuberculosis drugs 

using multi-label random forest 
 

 

Siti Syahidatul Helma1,4, Wisnu Ananta Kusuma1, Mushthofa Mushthofa1, Diah Handayani2,3 
1Department of Computer Science, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor, Bogor, Indonesia 

2Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia 
3Central Friendship General Hospital, Jakarta, Indonesia 

4Department of Information Technology, Caltex Riau Polytechnic, Pekanbaru, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 5, 2024 

Revised Apr 8, 2025 

Accepted Jun 8, 2025 

 

 Drug-resistant tuberculosis (DR-TB) has become a concern because anti-

tuberculosis drugs (ATD) used to treat it can cause side effects in patients. This 

study aimed to predict the potential side effects of ATD using a multi-label 

classification approach with a random forest (RF) algorithm. This study used 

660 medical record data, including the 14 ATD treatments prescribed to the 

patients and the six side effects experienced by patients. The model was 

trained using the best parameters based on the hyperparameter tuning process. 

The results show that the RF multi-label algorithm can be an alternative for 

building ATD side effect prediction models because it produces the most 

optimal performance value compared to the decision tree (DT) and extreme 

gradient boosting (XGBoost). The area under the curve (AUC) score of all RF 

multi-label models is above 0.8, which means that all RF multi-label models 

are considered acceptable and applicable for ATD side effect prediction. In 

addition, eight features influenced the models based on the average feature 

importance score of the RF models. This study is expected to help predict the 

side effects of ATD used to treat DR-TB based on ATD treatment and 

determine the most promising tree-based machine learning algorithm for 

predicting ATD side effects. 
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1. INTRODUCTION 

Tuberculosis (TB) has been declared by the World Health Organization (WHO) as one of  

the deadliest diseases in the world and a threat to public health. It has become a high priority challenging to 

treat TB, especially drug-resistant tuberculosis (DR-TB) [1]. DR-TB causes problems in terms of tolerance to 

anti-tuberculosis drugs (ATD), and it was predicted that there were 465,000 DR-TB cases in 2019 [2]. The 

treatment of DR-TB is complicated because it is necessary to monitor and manage side effects properly, 

which affects patient adherence [3], [4]. Each individual has various responses in the DR-TB treatment 

therapy process with ATD. However, treatment cannot be stopped because of reactions from the drugs 

consumed. During DR-TB treatment therapy, it is necessary to monitor side effects because all ATD can 

potentially cause various side effects in patients [5]. 

Regular clinical monitoring, laboratory analysis, and a multidisciplinary approach are essential for 

the follow-up treatment of DR-TB patients [6]. Computational approaches can be used to monitor the side 

effects of drugs, including their predictions. This study used DR-TB data from the Indonesian TB 

https://creativecommons.org/licenses/by-sa/4.0/
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information system (SITB). A previous study by Zhao et al. [7] on drug side effect prediction was published 

using five types of heterogeneous drug information. This study limited the side effect prediction problem to 

binary classification using random forest (RF) to determine whether a drug and its side effects were 

associated. If the resulting prediction is positive, the drug is considered to have a side effect and vice versa. 

Authors in [8], [9] modelled the side effect prediction problem as a multi-label classification task because 

each drug can potentially have more than one side effect. Multi-label learning provides a potential solution if 

each sample in the dataset has more than one label [10]. 

The study by Kouchaki et al. [10] on TB drug resistance classification and mutation ranking with 

multi-label RF produced better performance than single-label RF, where multi-label RF can improve the 

performance of conventional clinical methods by 18.10% compared to single-label RF, which is only 0.91%. 

Research by Zhao et al. [7], which used a binary classification approach with the RF algorithm to predict 

drug side effects, did not yet reflect the multiple side effects that the drug might have. Therefore, this study 

used a multi-label classification approach to build an ATD side effects prediction model using RF [10]. We 

also used decision tree (DT) and extreme gradient boosting (XGBoost). These algorithms are widely used 

because they can produce realistic outputs and are easy to interpret and intuitive [11], [12]. This study aimed 

to predict the side effects of ATD based on an ATD treatment regimen with a multi-label problem 

transformation approach using the RF algorithm compared with DT and XGBoost. The results of this study 

are expected to help identify the side effects of DR-TB drugs and determine the most suitable and accurate 

tree-based machine learning algorithms for predicting ATD side effects. 

 

 

2. METHOD 

The research was divided into several main stages, as Figure 1 depicts. The first stage was the 

collection of research data that formed the basis of the analysis. The collected data is processed through a 

preprocessing stage to ensure data quality. The data modeling and hyperparameter tuning stages are 

performed using three tree-based learning algorithms. The last stage includes calculating and analyzing 

model performance to obtain optimal results. 

 

 

 
 

Figure 1. Research methodology 

 

 

2.1.  Research data 

This study used secondary data from SITB and the medical records of DR-TB patients from the 

Persahabatan National Respiratory Referral Hospital in Jakarta from January 2018 to December 2021. This 

study was approved by the Hospital and Ethics Committee of the Faculty of Medicine, University of 

Indonesia (ethics number: KET-1326/UN2/F1/ETIK/PPM.00.02/2022). The dataset is divided into two parts: 

each drug given represent data features consist of clofazimine (Cfz); bedaquiline (Bdq); kanamycin (Km); 

levofloxacin (Lfx); moxifloxacin (Mfx); linezolid (Lzd); cycloserine (Cs); ethambutol (E); isoniazid (H); 

ethionamide (Eto); delamanid (Dlm); pyrazinamide (Z); P-aminosalicylic acid (PAS); and also streptomycin 

(S) and each side effect represent data labels or classes consist of gastrointestinal; neuropsychiatric; 

cardiovascular; musculoskeletal; anemia; and other side effects. 

 

2.2.  Data preprocessing 

Data preprocessing aims to form a numerical feature vector to be used as input data for machine 

learning models [13]. The preprocessing flow is illustrated in Figure 2. The existing data were then cleaned 

by referring to the results obtained during the exploratory data analysis stage. The data transformation stage 
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was then performed to obtain numerical values using the one-hot encoding technique, which produced a 

binary data array for each feature and label. Binary data consisted of a value of 1, indicating that the patient 

received each drug and had side effects, and a value of 0, indicating that the patient did not receive the drug 

and had no side effects. 

 

 

 
 

Figure 2. Flow of preprocessing to obtain features and labels 

 

 

2.3.  Multi-label random forest modeling 

Multilabel classification is a part of supervised learning that aims to map each dataset into more than 

one label or class [14]. There are several techniques for multi-label classification using problem 

transformation methods, namely, classifier chain (CC), binary relevance (BR), and label powerset (LP) [15]. 

In this study, given a set of m ATD, where 𝐷 = {𝑑1, … , 𝑑𝑚}, with 𝑑𝑖, 𝑖 = 1, … , 𝑚, and there is a set of  

n side effect labels, where 𝐸 = {𝑒1, … , 𝑒𝑛}, with 𝑒𝑗, 𝑗 = 1, … , 𝑛. Each record in D is associated with one or 

more side effect labels in L. 

RF is an ensemble classification method based on building multiple independent DT classifiers on 

different subsets of a dataset by considering the combination of each classification output to improve the final 

prediction performance [16]. The RF model can be extended to study and predict side effects of TB drugs by 

considering a combined score (Gini index). The process of calculating the Gini index, as shown in (1), is 

performed by calculating each DT for each pair (𝑓, 𝑥) of feature (𝑓) and value 𝑥 (feature value) with label 𝑦 

(side effects) at node (𝑡) [10]. 

 

Gini index 𝐺𝐼𝐽(𝑡, 𝑓, 𝑥) = ∑ 𝐺𝐼𝑦(𝑡, 𝑓, 𝑥)𝑦∈𝑌  (1) 

 

The 𝑦 variable represents the number of labels or side effects in the analysis. The 𝐺𝐼𝐽  and  𝐺𝐼𝑦 are 

the combined and per-label Gini indices, respectively. These two indices play an important role in calculating 

the importance of features. The calculation is calculated by averaging the impurity reduction associated with 

each feature. 

To improve the final prediction performance, Figure 3 shows that RF combines the output of each 

selected independent tree using voting or majority techniques. The dataset was divided into training data that 

were used for training and model validation, and test data that were used to test the model. The training process 

was conducted using a cross-validation technique with k=5 to evaluate the performance of the model [17]. 
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Figure 3. Illustration of the RF model 
 

 

2.4.  Hyperparameter tuning 

This study uses a grid search technique to perform hyperparameter tuning. Grid search works by trying 

all possible combinations based on predefined parameter values. This process aims to select optimal parameters 

that support maximum model performance [18]. Several parameters are required to build models. A list of tested 

hyperparameters is provided in https://drive.google.com/file/d/1BhXOypkGJAXr4hIiJXlhLMfJxwwiU2w7/view. 
 

2.5.  Model evaluation 

The parameters used to calculate model performance were based on accuracy, recall, precision,  

F-score, Fβ, and Hamming loss values. Accuracy is a metric used to measure the correctness ratio [19]. 𝑝 is 

the number of training data to be tested, and 𝑌𝑖 and ℎ(𝑥𝑖)are the actual and predicted data labels, respectively. 

The intersection of 𝑌𝑖 with ℎ(𝑥𝑖) represents the correct predicted label, and the union of 𝑌𝑖 with ℎ(𝑥𝑖) 

represents the combination of the predicted label and actual label [20] as in (2). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑝
∑

|𝑌𝐼∩ ℎ(𝑥𝑖)|

|𝑌𝐼∩ ℎ(𝑥𝑖)|

𝑝
𝑖=1  (2) 

 

Recall is the accuracy of the model in predicting positive classes by minimizing mispredicted positive data, 

and precision is the accuracy of the model in predicting positive classes by minimizing mispredicted negative 

data, where 𝑛 is the number of test data to be tested, 𝑌𝑖, 𝑍𝑖, and the intersection of 𝑌𝑖 and 𝑍𝑖 are the actual data 

label, the predicted data label, and the intersection of 𝑌𝑖 with 𝑍𝑖  indicates the label correctly predicted by the 

model [20]. The recall and precision in (3) and (4), respectively, are as follows: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
1

𝑛
∑

|𝑌𝐼∩ 𝑍𝑖|

|𝑌𝐼|

𝑛
𝑖=1  (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑛
∑

|𝑌𝐼∩ 𝑍𝑖|

|𝑍𝐼|

𝑛
𝑖=1  (4) 

 

As shown in (5), the F1-score is a weighted average comparison of the precision and recall values used to 

measure the overall minority class performance [21], where 𝐿 is the label in the multi-label model. The  

F1-score considers each output label [14]. The performance is good if it exhibits a high average class value [15]. 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
1

𝐿
×

2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5) 

 

𝐹𝛽 is a metric that measures the weighted harmonic mean of recall or precision. The value of β determines the 

weights of the recall and precision. If the recall value is greater, β>1. Conversely, if the precision value is 

greater, β<1 [22]. In the case of side effect prediction, minimizing the false-negative value is considered 

more important than minimizing the false-positive value. Therefore, more weight was given to recall using  

β=2 to emphasize the importance of fewer false-negative occurrences. The 𝐹𝛽 formula is given by (6) [23]. 

 

𝐹𝛽 =  
1

𝑛
∑ [(1 + 𝛽2)

2|𝑌𝑖∩𝑍𝑖|

𝛽2 |𝑌𝑖|+ |𝑍𝑖|
]𝑛

𝑖=1  (6) 

 

The Hamming loss (7) calculates how many labels should not belong to an instance but are predicted to 

belong to that instance or vice versa. The fewer the mispredicted labels, the smaller the Hamming loss value, 

which indicates a better performance of the multi-label learning model [24]. 
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𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =  
1

𝑚𝑙
∑ ∑  ⟦ℎ𝑖𝑗 ≠  𝑦𝑖𝑗⟧𝑙

𝑗=1
𝑚
𝑖=1  (7) 

 

2.6.  Analysis of important features of the model 

The overall feature importance is calculated based on the decrease in impurity of the nodes in the 

model. This decrease is weighted according to the probability of reaching a particular node. The impurity 

value of the node was then reduced until it reached tree level. The higher the feature score, the greater the 

feature importance in the RF model [25]. 
 
 

3. RESULTS AND DISCUSSION 

3.1.  Data preprocessing 

We combined two datasets based on SITB and side effect data from medical records, there were 660 

subjects eligible for this study, with a mean age of 43 years (CI: 41.791, 44.018), and 368 (55.8%) were 

male. The 14 drugs were used in combination as a regimen. Each drug was inputted as a feature, and the side 

effects were classified into six types of side effects. 
 

3.2.  Multi-label modeling 

Multi-label modeling was applied to the RF, DT, and XGBoost algorithms. The initial modeling 

uses the default parameters of each algorithm. Then, modeling is applied using the parameters that have been 

determined. At this stage, modeling uses 80% of the data from the total dataset. The optimal parameters for 

each multi-label model are listed in Table 1. 

Based on the tuning results, we found that each RF multi-label model had different sets of optimal 

parameters. The difference in parameters lies in the value of n_estimators RF, which is 50 in RF-CC and 25 

in RF-BR and RF-LP, respectively. The max_features parameter is sqrt in RF-CC and RF-BR and none in 

RF-LP. The min_samples_split parameter is 2 for RF-CC and RF-BR and 10 for RF-LP. Another difference 

is in the max_leaf_nodes parameter, which is three for RF-CC and RF-BR, and six for RF-LP. The only 

difference in the best parameters in the DT model is the min_samples_leaf parameter, which is 5 in DT-CC 

and DT-BR and 4 in DT-LP, and the best parameters are the same in all XGBoost models. 
 
 

Table 1. List of best parameters in RF, DT, and XGBoost multi-label models 
Classifier Hyperparameter Multi-label model 

Classifier chain Binary relevance Label powerset 

RF n_estimators 50 25 25 

max_depth none none none 

min_samples split 2 2 10 
max_features sqrt sqrt none 

max_leaf_nodes 3 3 6 

class weight none none none 
DT max_features sqrt sqrt sqrt 

max_depth none none none 

min_samples_leaf 5 5 4 
XGBoost max_depth 5 5 5 

min_child_weight 1 1 1 

subsample 0.1 0.1 0.1 
colsample_bytree 1 1 1 

gamma 0 0 0 

learning rate 0.2 0.2 0.2 

 

 

3.3.  Model performance evaluation 

The best parameters obtained are applied to each type of multi-label model. This process is to ensure 

optimal model performance. The results of training the models with the best parameters are compared across 

the board. Table 2 shows the performance values for each model based on the predefined metrics. 

Based on the performance of model training as shown in Table 2, the best accuracy was found in the 

RF-CC model, and the lowest accuracy was found in the DT-CC model. The precision of all models was 

similar, demonstrating their ability to produce low false-positives. The DT-BR model had the highest 

precision, indicating that it had the highest probability of correctly predicting positive side effects 

(side effects) against adverse side effects (side effects do not occur). Recall indicates the capability to 

minimize positive labels (side effects) that are incorrectly predicted as negative labels. The best recall was 

found in the RF-LP model, indicating that it has the highest probability of correctly predicting side effects by 

measuring the percentage of side effects that occur (true-positives) from all side effects that occur  

(true positives+false negatives). In comparison, the XGBoost-BR model had the lowest recall, which 

indicates that it has a reasonably poor ability to predict compared with the other models. 
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Table 2. Model performance with best parameters 
Multi-label model performance (%) 

Multi-label Classifier Accuracy Precision Recall F1 score 𝐹𝛽 Hamming loss 

CC RF 74.46 72.17 87.64 79.14 84.03 25.53 

DT 72.25 71.39 83.67 76.94 80.81 27.75 

XGBoost 73.61 72.13 85.34 78.12 82.28 26.39 
BR RF 74.40 72.08 87.70 79.11 84.04 25.60 

DT 73.96 73.11 83.77 78.05 81.38 26.04 

XGBoost 72.70 72.32 82.24 76.89 79.99 27.30 
LP RF 74.12 70.89 90.30 79.41 85.60 25.88 

DT 72.95 70.87 87.20 78.08 83.27 27.05 

XGBoost 73.42 71.20 87.35 78.43 83.54 26.58 

 

 

Based on the performance metrics, the RF model outperformed the other models with the exception 

of precision. RF had the lowest precision in the RF-LP model but also produced the highest recall among the 

other models. The F1-score is used to measure the model's ability, which combines precision and recall to 

overcome false-positives and false-negatives [26]. The best F1-score was obtained using the RF-LP model. 

This study found the best Hamming loss in RF-CC, indicating that the model correctly predicted each side 

effect as an actual label [27]. In predicting side effects, low false-negative values are more likely than  

false-positive values; therefore, the 𝐹𝛽 metric uses β=2 to give more weight to recall [28], where the model is 

concerned with reducing false-negatives rather than false-positive errors. In this study, the best 𝐹𝛽 value was 

also found in the RF-LP model, which means that it can minimize false-negative values. 

The best accuracy and Hamming loss were obtained for RF-CC. The best precision was observed for 

DT-BR, whereas the lowest precision was observed for DT-LP. The best recall, F1-score, and 𝐹𝛽 were found 

in RF-LP. The RF model was the best overall and optimal because it produced the best evaluation value 

among the models. Further analysis was conducted by evaluating the receiver operating characteristic (ROC) 

curve for each RF model illustrated in Figure 4. The area under the curve (AUC) values from the ROC curve 

of each RF model were not significantly different, and all three had scores >0.8. It can be concluded that the 

overall RF multi-label models are considered good or excellent [29] and can be applied for further ATD  

side effect prediction. 
 

 

 
 

Figure 4. ROC curve of multi-label RF model 
 
 

3.4.  Prediction of ATD side effects with RF model 

The RF multi-label model was used to predict The ATD side effects. Predictions were performed on 

20% of the test data taken from the total dataset. This test data evaluated the model's ability to recognize 

ATD side effects. The model prediction performance results were thoroughly analyzed. The prediction 

performances are presented in Table 3 to illustrate the evaluation results. 

The performance of the ATD side effect prediction results using RF-CC and RF-BR produced the 

same values for all the metrics. The ATD side effect prediction results of the RF-LP were slightly higher than 

those of the other RF models for the F1-score, recall, and Fβ metrics, and the accuracy, precision, and 

Hamming loss metrics were slightly lower than those of the other RF multi-label models. The performance 

results of the ATD side effect prediction in the multi-label RF-LP testing model are similar to those of the 

previous RF-LP training model, which excels in recall, F1-score, and 𝐹𝛽. 
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Table 3. Side effect prediction performance with RF multi-label model 
Side effect prediction performance with RF multi-label model 

Multi-label Accuracy (%) Precision (%) Recall (%) F1 Score (%) 𝐹𝛽 (%) Hamming loss (%) 

CC 73.49 71.59 86.30 78.26 82.90 26.52 

BR 73.49 71.59 86.30 78.26 82.90 26.52 
LP 72.98 70.00 89.50 78.56 84.78 27.02 

 

 

3.5.  Analysis of important features of the RF multi-label model 

The essential features of the ATD side effect prediction model were analyzed by applying the 

feature_importance_ function in the RF sklearn package in Python. In the ATD side effect prediction model, 

feature analysis can be used to determine the level of importance or influence of features (ATD side effects). 

Figure 5 shows the feature importance of each RF multi-label model. Based on the average feature 

importance score of the three RF multi-label models, eight features had the highest level of impact with an 

average score value greater than or equal to 0.1, namely Cfz, Bdq, and Km with a score of 0.2, as well as Lfx, 

Mfx, Lzd, Cs, and E with an average score of 0.1. The features that have a low level of impact with an 

average score below 0.1 are H, Eto, Dlm, Z, PAS, and S. 
 

 

 
 

Figure 5. Feature importance of RF multi-label model 
 

 

Based on feature important, Cfz, Bdq, Km were drugs that have the highest important score in the 

RF-CC and RF-LP model, and also Lfx in RF-BR model. These findings were consistent with the finding 

that Cfz causes skin discoloration and gastrointestinal disorders [30], [31]. Bdq is associated with QTc 

interval prolongation in cardiovascular [32], neurological and gastrointestinal disorders [33]. Another severe 

side effect is ototoxicity caused by Km, which could lead to hearing loss. In this study, km also had high 

feature importance; even in the new guidelines, this drug was no longer used [34]. Long-term Lfx treatment 

has many side effects, including paralysis involving tendons, muscles, joints, nerves, and neuropsychiatric 

disorders, hepatotoxicity and cardiovascular disorders through QTc prolongation, and phototoxic reactions 

such as skin redness and severe bullous eruptions [35], [36]. Mfx can cause visual disturbances in the form of 

uveitis (inflammation of the uveal layer) [37], liver disorders such as acute liver failure (acute liver injury) 

  

 
Description:  

Cfz = Clofazimine; Bdq = Bedaquiline; Km = Kanamycin; Lfx = Levofloxacin; Mfx = Moxifloxacin; Lzd = linezolid; Cs = Cycloserine; E = Ethambutol;  

H = Isoniazid; Eto = Ethionamide; Dlm = Delamanid; Z = Pyrazinamide; Pas = P-Aminosalicylic Acid; and S = Streptomycin 
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[38], and metabolic disorders such as hypoglycemia and hyperglycemia [35]. Since the treatment of DR-TB 

must consist of four to five drugs, all side effects could occur due to drug-drug interactions (DDI) and can be 

analyzed well using the RF model. 

In this study, we found that Mfx, Lzd, Cs, H, E, Eto, Dlm, Z, PAS, and S were equal to or lower than 

0.1, even though many studies found that all these drugs had a risk of some side effects. Therefore, we can 

consider them an alternative when designing a regimen to reduce side effects [39]. For example, Dlm can cause 

QTc interval prolongation, anorexia, malaise, gastritis or gastric ulcer, anemia, and psychiatric disorders. 

However, this study found that Dlm had a low-feature important score. Regarding the efficacy of Dlm, we 

should consider using this drug as an alternative to avoid severe or multiple side effects of the regimen. Since 

side effects can also arise due to DDI, we had to consider using these prediction models since the RF algorithm 

could simulate the drug interaction process. The limitation of this study was that we did not analyze any 

demographic, clinical, and comorbidity that might influence side effects. Future research endeavors could 

incorporate a more nuanced examination of these demographic and clinical factors, allowing for a more holistic 

understanding of the interplay between various variables and their potential impact on side effects. 

 

 

4. CONCLUSION 

Monitoring and early identification of the adverse effects of DR-TB drugs are essential to support 

the successful treatment of DR-TB. We created ATD side effect prediction models using tree-based learning 

algorithms, where each given drug represents a feature, and each side effect means a label. RF multi-label 

algorithms with problem transformation methods are suitable potential models for predicting the side effects 

of ATD for DR-TB compared with DT and XGBoost, with outperformed performance metrics and high 

AUC. Based on feature importance, Cfz, Km, Bdq, and Lfx had a higher risk for multiple side effects such as 

gastrointestinal, neuropsychiatric, cardiovascular, musculoskeletal, and others. Predicting multiple side 

effects using a multi-label RF algorithm model is essential when designing a treatment regimen for DR-TB 

for better patient management. 
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