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 This study investigates the innovative application of neural networks 

algorithms in the aviation industry's mechanical design process, motivated by 

the pursuit of creating a more accurate and efficient method for performance 

prediction. Traditional approaches, such as computational fluid dynamics 

(CFD) simulations based on solving Navier-Stokes’s equations, demand 

substantial computational power and often exhibit limited accuracy, 

particularly when compared with complex geometries. The state-of-the-art 

review unveils a growing research trend advocating for data-driven 

methodologies to revolutionize design practices, addressing the limitations of 

conventional techniques. The primary objective of this study is to explore how 

neural network algorithms can overcome the drawbacks of CFD simulations, 

offering a more effective alternative for predicting the performance of airfoils. 

To achieve this objective, we conducted a performance analysis of airfoils 

using neural network algorithms. The results presented a promising avenue 

for a more accurate and efficient performance prediction method through 

digital twinning. The study highlights the advantageous features of neural 

network methods in unmanned aircraft vehicles (UAV) component 

mechanical design, showcasing their potential to outperform traditional 

methods and offering practical recommendations for integration into the 

design process.  
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1. INTRODUCTION 

The aviation industry is undergoing a paradigm shift, driven by the rapid advancements in digital 

technologies. Among these, machine learning and neural networks methods hold undiscovered potential to 

revolutionize the design process and unlock new possibilities for unmanned aerial systems (UAS) [1], [2]. This 

study investigates the application of neural networks to predict airfoil lift and drag coefficient, crucial 

parameters in UAS design and performance. 

While traditional simulation and analysis methods have been the mainstay in aircraft design, they 

often rely on assumptions and may not accurately capture real-world complexities [3], [4]. This can lead to 

suboptimal designs and missed opportunities for innovation. Conversely, data-driven approaches based on 

machine learning and neural networks offer a powerful alternative. By leveraging real-world data, these 
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methods can learn complex relationships and make accurate predictions, leading to improved efficiency, 

reduced costs, and enhanced performance [5], [6].  

Several successful applications of machine learning algorithms in the aviation sector demonstrate their 

potential. For instance, decision tree learning has proven effective in aircraft engine failure diagnosis, while 

neural networks have been utilized to predict aircraft maintenance needs with high accuracy [7]. These 

examples highlight the ability of artificial intelligence to transform critical aspects of aircraft design and 

operation. In the realm of UAS, optimizing airfoil performance is paramount for maximizing range, endurance, 

and maneuverability. The lift coefficient, a key aerodynamic parameter, plays a crucial role in determining an 

airfoil's lift generation at different angles of attack. Traditionally, computational fluid dynamics (CFD) 

simulations have been employed to predict lift coefficients, but they can be computationally expensive and 

time-consuming. 

This study explores the use of neural networks as a data-driven alternative for predicting airfoil lift 

and drag coefficients. This approach aims to achieve fast and accurate predictions, potentially streamlining the 

UAS design process and enabling rapid prototyping and optimization. By employing neural networks, this 

research seeks to: i) develop a model for predicting airfoil lift and drag coefficients, ii) compare the 

performance of the neural network model with traditional CFD simulations, and iii) demonstrate the potential 

of data-driven design for UAS development and optimization. This research contributes to the ongoing effort 

to integrate machine learning into the aviation industry and explore its potential benefits for UAS design. By 

harnessing the power of data-driven approaches, we can usher in a new era of innovation and efficiency in the 

development of next-generation UAS. 

 

 

2. BACKGROUND REVIEW 

In the domain of engineering, the utilization of neural networks has increased across diverse 

applications, ranging from image, and text recognition [8], [9], maintenance [10], production [11], cutting edge 

technologies like internet of things (IoT) [12], [13]. However, despite the myriad use cases, a notable gap 

persists in harnessing the potential of neural networks for designing machine components under the influence 

of aerodynamic loads. Bridging this gap holds immense promise not only for enhancing the efficiency and 

performance of machine components, but also for pushing the boundaries of what neural networks can achieve 

in the field of engineering design. 

In aircraft engineering, having a wing designed with appropriate aerodynamic features is critical for 

achieving efficient and successful flight. The initial phase of this process involves meticulously exploring 

various wing cross-sections through a combination of experimental, computational, and theoretical methods. 

This iterative process often culminates in creating a customized wing profile tailored to the specific 

requirements of the aircraft. 

However, with the ever-increasing wing geometry and design complexity, traditional CFD approaches 

have become computationally expensive and resource-intensive. Additionally, the accuracy of CFD methods 

can be compromised when dealing with highly complex geometries, potentially leading to misleading results. 

Consequently, researchers have focused on data-driven approaches and real-world measurements to develop 

more accurate predictive models. This shift towards data-driven methodologies is further supported by a 

significant gap in the existing literature regarding the application of artificial neural networks (ANNs) in 

aerodynamics, particularly in the context of wing cross-section design in Figure 1. This underscores the 

immense potential of ANNs to contribute significantly to the advancement of aerodynamic design and analysis. 

One key approach involves using convolutional neural networks (CNNs) [14]. By leveraging their 

ability to extract spatial features from image data, CNNs can be trained on airfoil geometry data to predict the 

lift coefficient directly. This eliminates the need for complex simulations and allows for faster design iterations. 

Additionally, recurrent neural networks (RNNs) and long short-term memory (LSTM) architectures are being 

investigated for their capability to capture the temporal dependencies between different angles of attack, 

leading to more accurate lift predictions throughout the entire range of operation [15], [16]. Furthermore, 

advanced data augmentation techniques are being employed to address the often limited availability of high-

quality airfoil data. By artificially generating new data based on existing samples, researchers can significantly 

expand the training set and enhance the generalization ability of the neural network models [17]. This is 

particularly beneficial for unconventional airfoil designs with scarce experimental data. 

Another promising avenue involves integrating domain knowledge into the neural network 

architecture. This can be achieved through physics-informed neural networks (PINNs) [18], which utilize 

partial differential equations governing the flow around the airfoil to guide the learning process. By 

incorporating these physical constraints, PINNs can achieve superior accuracy and robustness compared to 

traditional neural networks, mainly when dealing with extreme or unseen conditions. These advancements 

demonstrate the immense potential of neural networks and related data-driven techniques in revolutionizing 

the design of airfoils for UAS. By enabling rapid prototyping, exploring unconventional designs, and ensuring 
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robust performance across various operating conditions, this approach is paving the way for a new era of 

innovation in unmanned aircraft systems. 

 

 

 
 

Figure 1. Results from ScienceDirect 

 

 

3. THE REVIEW OF DIFFERENT TECHNIQUES 

3.1.  Physical model and mathematical approach 

Predicting aerodynamic forces acting on an airfoil is crucial for the design and analysis of UAS. 

Traditionally, two main approaches have been employed: physical models based on theoretical equations and 

numerical simulations like finite element analysis (FEA) and CFD. Early attempts to understand and predict 

the lift force generated by an airfoil relied on simple physical models based on the Bernoulli equation, which 

relates the pressure difference between the upper and lower surfaces of the airfoil to its lift. This equation, 

expressed as [19]: 

 

L= 
1

2
×ρ× V2 × cl× A  

 

Where ρ is the air density, V is the air velocity, cl is the lift coefficient, and A is the wing area. 

However, this equation only provides an approximation of the lift force and does not account for 

various factors such as viscosity, turbulence, and compressibility. To address these limitations, more complex 

mathematical models were developed based on the Navier-Stokes equations, which govern the flow of viscous 

fluids. These equations are a set of coupled partial differential equations that can be used to solve for the 

pressure, velocity, and temperature distribution around the airfoil. However, solving these equations 

analytically is often impossible, and numerical methods are required.  

 

3.1.1. Mathematical background of navier-stokes equations 

The Navier-Stokes equations are derived from the fundamental principles of conservation of mass, 

momentum, and energy. They can be written in the following general form [20]: 

‒ Continuity equation 

 

 
∂ρ

∂t
+ ∇ (ρv) = 0 

 

‒ Momentum equation 

 
∂(ρv)

∂t
 + ∇ · (ρvv) = -∇p + ∇ · τ + ρg 

 

‒ Energy equation 

 
∂(ρE)

∂t
 + ∇ · (ρvE) = ∇ · (k∇T) + ∇ · (τ · v) + ρq  
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Where ρ is the density, v is the velocity, p is the pressure, τ is the stress tensor, g is the acceleration due to 

gravity, T is the temperature, k is the thermal conductivity, and q is the heat source. These equations are solved 

with appropriate boundary conditions to determine the flow field around the airfoil. 

Limitations: solving the Navier-Stokes equations directly can be computationally expensive. 

Especially for complex geometries and turbulent flows. This limits their application to simple cases or requires 

powerful computing resources. 
 

3.1.2. Joukowski and lifting line theory 

Joukowski's airfoil theory provides a relationship between the lift force and the circulation around the 

airfoil. It can be expressed as [20]: 
 

L = ρ ∗ V ∗ Γ  
 

Where Γ is the circulation. The Prandtl lifting line theory is a fundamental concept in aerodynamics, developed 

by Ludwig Prandtl and his colleagues in the early 20th century. It offers a simplified model to predict a three-

dimensional wing's lift distribution and aerodynamic performance. 

a) Key assumptions 

− Wing is represented by a line vortex: The actual wing is replaced by a line vortex along its span, where 

the vortex strength varies to represent the varying lift distribution. This simplifies the complex 3D flow 

around the wing. 

− Elliptic lift distribution: The lift distribution is assumed to be elliptical, with the highest lift at the wing 

root and gradually decreasing towards the tips.  

This assumption is based on empirical observations and approximates many wings well. 

b) Concepts and formulas 

Lift and induced drag: The theory relates the lift generated by the wing to the induced downwash 

velocity field created by the line vortex. This downwash velocity reduces the effective angle of attack at 

different sections along the wing, leading to a variation in lift distribution. The induced drag arises from the 

work done against the downwash. Here are some important formulas used in Prandtl lifting line theory [20]. 

‒ Lift coefficient 
 

CL=
2π ε

√(1 + ε²)
  

 

Where ε is the elliptic parameter related to the aspect ratio of the wing. 

‒ Induced drag coefficient 
 

CDi = 
CL²

πAR
  

 

Where AR is the aspect ratio of the wing. 

‒ Downwash velocity 
 

w(x) = 
−Γ(s) 

2πb
 × √

(x − s)²

𝑏²
ds  

 

Where Γ(s) is the vortex strength at spanwise location s, b is the half-span of the wing, and x is the spanwise 

location where the downwash is being calculated. 

c) Limitations 

‒ Assumptions limit accuracy: The theory relies on simplifying assumptions like elliptical lift distribution, 

which may not hold perfectly for all wings or flight conditions [20].  

‒ Limited to subsonic flows: The theory is primarily valid for subsonic flow regimes and may not accurately 

predict the behavior of wings at transonic and supersonic speeds [20].  

 

3.2.  Numerical approach and Simulations like finite element analysis and computational fluid dynamics 

Numerical simulations are necessary for more accurate predictions of aerodynamic forces. While 

physical models offer valuable insights into the underlying principles of airfoils. FEA and CFD are two widely 

used numerical techniques. 

 

3.2.1. Finite element analysis 

FEA discretizes the geometry of the airfoil into a mesh of finite elements. The Navier-Stokes 

equations are then solved for each component, and the results are combined to obtain an overall solution for 
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the flow field. FEA is typically used to analyze the structural integrity of airfoils and other aerospace 

components [21].  

 

3.2.2. Computational fluid dynamics 

CFD solve the Navier-Stokes equations on a grid of points surrounding the airfoil. The grid can be 

structured or unstructured, and the equations are solved using various numerical methods such as finite volume, 

finite difference, or spectral methods. CFD is widely used for predicting the aerodynamic performance of 

airfoils and other aerospace components [22].  

 

3.2.3. Limitations of computational fluid dynamics and finite element analysis 

While FEA and CFD offer powerful tools for analyzing solid and fluid mechanics, they do come with 

limitations [22]. Both methods rely on discretizing the domain of interest, which can lead to inaccuracies, 

especially near complex geometries or sharp gradients. FEA, while adept at stress and deformation analysis, 

struggles with fluid flow and heat transfer, while CFD excels in these areas but can be computationally 

expensive for complex systems. Additionally, both methods require significant user expertise for accurate 

model generation, boundary condition definition, and result interpretation [22].  

 

 

4. METHOD  

The primary objective of this study is to develop a predictive model employing neural networks. This 

model aims to forecast alterations in the lift coefficient in response to variations in the angle of attack and 

predicting the drag coefficient across the lift coefficient, as specified by the user-defined geometry, the outline 

of the research design is shown in Figure 2. The forthcoming subsections will elaborate on this process. 
 

 

 
 

Figure 2. The outline of the research design 
 

 

4.1.  Dataset generation 

In this case study, due to the absence of real-life data, lift coefficient and various drag coefficient data 

for various angles of attack on different wing sections was generated using CFD simulation extracted from the 

XFLR5 software. This simulated data was subsequently transferred to an Excel file. The file was organized 

into columns with headers for angle of attack (Alpha values), GeoX (X coordinates of wing sections), GeoY 

(Y coordinates), drag coefficient (CD), and lift coefficient (CL) creating a dataset for the ANN model. The 

simulation condition used in XFLR5 is shown in Table 1. 
 
 

Table 1. Simulation condition 
Reynolds number  1000000 

Mach number  0.3 
Angle of attack range  [-10,15] 

Angle of attack rate of change 0.5 

Airfoil pannels  50 

 
 

After repeating the same simulation on different geometries, the different National Advisory 

Committee for Aeronautics (NACA) 4-digit wing section data have been saved in Excel files. The NACA wing 
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sections to be used for training the model are as follows: NACA0006, NACA0018, NACA0024, NACA1408, 

NACA2410, NACA2412, NACA2415, NACA4412, NACA4418, NACA442, NACA6409, and NACA6412. 

The Figures 3 and 4 shows a sample of the results obtained from the XFLR after running the simulation showed 

on Table 1.  

 

 

 
 

Figure 3. Aerodynamics coefficients from XFLR5 

 

 

 
 

Figure 4. Pressure distribution along the airfoil 
 

 

4.2.  Neural network model 

According to The Buckingham Pi Theorem applied on resultant forces as the lift and drag forces we 

obtain the following: 

 

Cr =
R

1

2
×ρ×V²×D²

= f(G,Re,M)  

 

Where R: Force, Cr: Force Coefficient, V: Velocity, D: Distance, G: Geometry, Re: Renolds number, and  

M: Mach number. Which tells that the lift and drag coefficients are only influenced by the geometry, Reynolds 

number and Mach number. In this study case Reynolds number and Mach number will be fixed and train the 

model on different geometries.  

This study presents a TensorFlow neural network model for predicting the CL and CD trained on 

different airfoil geometries at various angles of attack (Alpha/AoA). The model reads data from Excel files 

containing airfoil coordinates, Alpha, CD, and CL values from different geometries and concatenates them into 

a single dataset. The dataset is then split into training and testing sets, as shown in Figures 5 and 6 (training) 

and Figure 7 (test). 

The neural network model consists of two dense layers with 64 units and 1 unit, respectively. The 

mean squared error (MSE) loss function was chosen to train the model, and the Adam optimizer was used to 

minimize the loss function 1. The model was trained for 100 epochs for CL v AoA, and CD v CL. But two 

dense layers with 32 units and 1 unit, respectively. The MSE loss function (section 4.2.2) was chosen because 

it is a popular choice for regression problems, such as predicting the lift coefficient of airfoils. The Adam 
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optimizer (section 4.2.1) was chosen because it is an efficient optimization algorithm that is well-suited for 

large datasets and high-dimensional parameter spaces. 

The training history was recorded, and the model’s performance was evaluated by calculating the test 

loss and mean absolute error (MAE). The MAE helps build a predictive model for CL based on airfoil geometry 

and angle of attack, which can be used in aerodynamic simulations and analysis. Overall, the TensorFlow 

model was chosen because it is a powerful and flexible tool for building and training neural networks. The 

MSE loss function and Adam optimizer were chosen because they are well-suited for regression problems and 

large datasets, respectively. The model’s performance was evaluated using the MAE, which is a common 

metric for regression problems. 
 

 

  
 

Figure 5. The training architecture for CL v AoA 

 

Figure 6. The training architecture for CD v CL 
 

 

 
 

Figure 7. The test algorithm for testing CL v AoA 
 

 

4.2.1. Adam optimizer 

The adaptive moment estimation (ADAM) optimizer, widely used in deep learning, addresses the 

shortcomings of traditional stochastic gradient descent (SGD) by adaptively adjusting the learning rate for each 

parameter. It accomplishes this by maintaining two exponential moving averages: the first moment (mean) m̂_t 

and the second moment (uncentered variance) w_t of the gradient. These moments are used to update the 

parameters w_t according to: 

 

w_t+1 = w_t - α ×  
m̂_t

(√v̂_t + ε)
  

 

Where α is the learning rate, ε is a small constant to prevent division by zero, and m̂_t and v̂_t are the bias-

corrected versions of the first and second moment estimates, respectively. This adaptive learning rate allows 

for faster convergence and efficient training of deep neural networks [23], [24].  

 

4.2.2. The mean squared error 

In deep learning, the MSE serves as a vital tool for evaluating the performance of regression models. 

It measures the average of the squared differences between predicted and actual values, providing a quantitative 

assessment of the model's accuracy. Mathematically, MSE is defined as [25]: 
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MSE = 
1

𝑛
 × Σ(y_i - ŷ_i)²  

 

Where n is the number of data points, y_i is the actual value of the i-th data point, and ŷ_i is the predicted value 

of the i-th data point. 

The squaring operation in the equation magnifies the impact of larger errors, making MSE sensitive 

to outliers. This characteristic can be both an advantage and a disadvantage. On the one hand, it ensures that 

models are penalized more for significant deviations from the true values, encouraging them to learn accurate 

predictions across the entire dataset.  

MSE is widely used in various deep learning tasks, including regression problems such as price 

prediction and time series forecasting. It offers a simple and interpretable metric for model evaluation, allowing 

developers to easily assess the performance of different models and compare them against each other. However, 

it is important to acknowledge its limitations, particularly its sensitivity to outliers, and consider alternative 

loss functions like MAE when dealing with datasets containing significant outliers. 

 

 

5. RESULTS AND DISCUSSION 

Following the training process, the model's capabilities were evaluated using a new wing cross-

section, NACA 4412, to assess its performance. This evaluation involved a comprehensive comparison of the 

predicted results with the CFD data presented in Figures 8 to 10. The comparison employed both graphical 

visualizations for qualitative insights and quantitative metrics for precise accuracy assessment. 

 

 

 
 

Figure 8. Results for CL v AoA 

 

 

 
 

Figure 9. Results for CD v AoA 
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This study focuses on investigting the performance of ANN in predicting aerodynamic coefficients, 

specifically focusing on the lift coefficient and drag coefficient, utilizing airfoils' geometry coordinates. Unlike 

previous research endeavors, which have predominantly centered on employing PINNs using mathematical 

methodologies and CNN trained on visual data of airfoils, this investigation seeks to fill crucial gaps mentioned 

in section 2. Prior studies have indeed explored the effects of various factors on aerodynamic coefficients, yet 

they have not explicitly examined the performance of ANN trained on geometry coordinates. 

 

 

 
 

Figure 10. Results for CD v CL 

 

 

The analysis revealed promising results for all parameters, even with a limited dataset. Further study 

is required to optimize hyperparameters, particularly with a larger dataset. The CL across the AoA achieved 

an impressive accuracy of 86.18%, while the CD showed strong performance with 82.90% accuracy across the 

angle of attack and 80.56% across the lift coefficient. Despite the small dataset, these results indicate the 

potential of the model. Moving forward, a more extensive hyperparameter optimization study, with a larger 

dataset, will likely lead to even more accurate predictions. 

While PINNs, CNNs, and RNNs have gained traction in aerodynamics for airfoil applications and 

performance prediction, each exhibits inherent limitations. PINNs excel at solving partial differential equations 

governing aerodynamic simulations but demand substantial training data and computational resources. CNNs 

adeptly analyze image data for flow field prediction, yet struggle with time-dependent data and show sensitivity 

to input variations. RNNs, while suitable for time-dependent flow field prediction, can be computationally 

expensive and data-hungry. Furthermore, a common pitfall across these models is the "overlook geometry" 

disadvantage, where complex airfoil geometries are not adequately captured, leading to inaccurate predictions. 

This necessitates a critical evaluation of model selection and potential integration with traditional methods for 

robust and reliable aerodynamic predictions [26]–[29].  

This methodology has showcased a new approach to analyzing the performance of airfoils using ANN 

and geometry coordinates, addressing the limitations mentioned earlier. This methodology can be applied in 

various industries, including the energy sector for designing turbine blade airfoils. Additionally, since the 

algorithm is trained on data separate from the fluid characteristics, it can be utilized in any other context where 

training data is available, eliminating the need for costly simulation approaches that consume time and high 

computational power.  

 

 

6. LIMITATIONS, CHALLENGES AND FUTURE STUDIES 

This study demonstrates valuable insights but acknowledges limitations arising from the small dataset 

used for training. To address the hard problem of limited data, future studies should prioritize expanding data 

acquisition, particularly for additional aerodynamic coefficients. Additionally, exploring data augmentation 

technique and advanced optimization strategies could enhance model performance and robustness. 

Regularization techniques are also crucial to avoid the non-obvious mistake of overfitting often associated with 

limited data. Furthermore, the potential of hybrid approaches and adapting the framework for 3D geometries 

opens doors for broader applications in the future, paving the way for a wider range of possibilities in 

aerodynamic design and optimization. 
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7. CONCLUSION 

As a solution this investigative study put in theory that neural networks can potentially solve these 

problems without explicitly relying on differential equations or images by building models directly from airfoil 

geometry and data. This approach leverages the inherent non-linearity and feature extraction capabilities of 

neural networks to capture the complex relationships between geometry and aerodynamic performance. By 

encoding airfoil parameters, surface features, and experimental data into the network architecture, neural 

networks can learn the underlying physics and directly predict aerodynamic coefficients, lift, and drag. This 

eliminates the need for solving complex partial differential equations or interpreting flow field images, 

potentially leading to faster predictions and less reliance on high-resolution data. However, this approach 

requires careful design of the network architecture and selection of relevant features, as well as robust training 

datasets to avoid overfitting and ensure generalizability to unseen airfoil geometries. Compared to traditional 

methods, neural networks-based geometry-driven models offer a potentially faster and data-driven alternative 

for aerodynamic prediction, although further research is needed to fully validate their accuracy and robustness. 

To conclude, the study assessed the use of a neural network model to predict CL based on the angle of attack 

for various geometries. Despite the use of small datasets, the model showed promising performance, 

highlighting its potential for aerodynamic analysis and wing design. To enhance accuracy and generalization, 

future research should focus on using larger and more diverse datasets.  
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