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 Software-defined networking (SDN) revolutionizes networking by separating 

control logic and data forwarding, enhancing security against threats like 

distributed denial of service (DDoS) attacks. These attacks flood control plane 

bandwidth, causing SDN network failures. Recent studies emphasize the 

efficacy of machine learning (ML) and statistical approaches in identifying 

and mitigating these security risks. However, there has been a lack of focus 

on employing ensembling techniques, amalgamating diverse ML models, 

selecting pertinent features, and utilizing oversampling techniques to balance 

categorical data. Our study evaluates 20 machine-learning models, 

emphasizing feature engineering and addressing class imbalance using 

synthetic minority oversampling technique (SMOTE). The results indicate 

that ensemble methods such as light gradient boosting machine (LGBM) 

classifier, random forest classifier, XGB classifier, decision tree classifier 

obtained near-perfect scores (almost 100%) across all metrics, suggesting 

potential overfitting. Conversely, models like AdaBoost classifier, k-

neighbors classifier, and support vector classifier (SVC) exhibited slightly 

lower (99%) but realistic performance, underscoring the intricacy of accurate 

prediction in cybersecurity. Simpler models, including logistic regression, 

linear discriminant analysis, and Gaussian naive Bayes, demonstrated 

moderate to low accuracy, approximately around 70%. These findings stress 

the imperative need for a nuanced approach in the selection and fine-tuning of 

ML models to ensure effective DDoS detection in SDN environments.  
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1. INTRODUCTION  

The landscape of software-driven networks undergoes a revolutionary transformation through 

software-defined networking (SDN), a novel paradigm that effectively separates the control and data planes, 

addressing issues inherent in traditional network design. SDN has emerged as a paradigmatic shift, addressing 

limitations present in conventional IP-based networks. The architecture of SDN facilitates the decoupling of 

the control plane and data plane, enabling a centralized controller to abstract the underlying network framework 

from applications. This abstraction ensures simplified resource provisioning and enhanced programmability of 

network characteristics. Compared to traditional networks, the logical centralization of controllers in SDN 

provides improved visibility of the entire network, facilitating efficient management and optimization of 
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network resources [1]. Additionally, SDN allows for tailored quality of service (QoS) provisioning to meet the 

requirements of various applications. As a result, SDN has found widespread adoption in large-scale networks 

and data centers. OpenFlow technology [2] empowers OpenFlow controllers to manage multiple hardware or 

software entities. 

The SDN architecture is vertically divided into three planes: data plane, controller plane, and 

application plane. The control plane orchestrates network configuration and policies. In traditional  

application-specific integrated circuit (ASIC) switches, where the data plane and control plane coexist, 

accommodating flow table entries and buffer space becomes nearly impossible. The controller issues 

instructions to the forwarding elements through the Southbound interface. However, the same characteristics 

that make SDN networks appealing also expose them to new security risks. One such risk is distributed denial 

of service (DDoS) attacks, which can have a catastrophic impact on an SDN network. If the network is 

inadequately protected, DDoS attacks can overwhelm the controller or OpenFlow switch by directing packets 

to various points. Numerous researchers have contributed to advancing strategies for detecting and mitigating 

DDoS attacks, employing diverse methodologies and frameworks [3]. Extensive literature exists that delves 

into research challenges and potential future directions for DDoS attack detection and mitigation in SDN [1], 

[4]–[7]. Several researchers have proposed innovative approaches to DDoS attack detection and mitigation 

within an SDN architecture. For instance, Ribeiro et al. [8] introduced a time-based moving target defense 

(MTD) technique utilizing machine learning (ML) sensors for real-time DDoS attack diagnosis and controller 

migration. Bhayo et al. [9] explored naive Bayes (NB), decision tree (DT), and support vector machine (SVM) 

algorithms, achieving remarkable accuracy in DDoS attack detection simulations. CoWatch [10] presented a 

framework for cooperative prediction and detection of DDoS attacks in edge computing (EC) scenarios, 

leveraging SDN's distributed architecture and employing the long short-term memory (LSTM) algorithm. The 

DOCUS model [11] was proposed for distinguishing genuine DDoS attacks from harmless flash traffic, 

reducing average detection time significantly in SDN-based networks. Anyanwu et al. [12] developed an 

intrusion detection system using the radial basis function kernel (RBF) of SVM for detecting DDoS attacks in 

vehicular ad hoc networks (VANETs) with high accuracy. Naula et al. [13] proposed a scalable SDN-based 

security framework employing deep reinforcement learning (DRL) for effective DDoS detection and 

mitigation. Numerous studies explore the application of deep learning techniques, such as recurrent neural 

networks (RNN), for DDoS detection [14], [15]. These methods find prevalence in data centers [16], [17] and 

cloud computing environments [18]. Long and Jinsong [19] proposed a dual approach, combining information 

entropy and a ML framework using an stacked sparse auto-encoder (SSAE)-SVM architecture for improved 

DDoS detection. A framework incorporating a composite multilayer perceptron and an effective feature 

extraction technique for detecting and identifying DDoS assaults was presented [20].  

An anomaly tree proposed [21] is tailored to detect and trace the specific route taken by a DDoS attack 

within the SDN architecture, responding to observed fluctuations in network traffic. Cui et al. [22] illustrated 

a DDoS assault detection and defense system based on cognitive-inspired computing, which uses dual address 

entropy and suggests suitable defense and recovery procedures upon attack detection. Imran et al. [23] provides 

an extensive analysis of several mitigation strategies developed to combat malicious traffic in the SDN 

environment, systematically providing solutions based on how they manage such malicious traffic. According 

to Sahay et al. [24], an autonomic DDoS defense framework named analytics readiness and optimal maturity 

advancement (ArOMA), encompassing business monitoring, anomaly discovery, and mitigation, was 

proposed. ArOMA demonstrated the capability to facilitate collaborations between internet service providers 

(ISPs) and their guests in the realm of DDoS mitigation. Cui et al. [25] introduced a comprehensive system 

comprising four crucial modules-attack discovery detector, attack discovery, attack traceback, and attack 

mitigation. The existing literature only focuses on very few ML algorithms, while our work considers 

performance analysis of all ML algorithms and also uses synthetic minority over-sampling technique (SMOTE) 

technique for feature engineering and addressing class ifmbalance. Additionally, the paper implements a DDoS 

attack discovery system based on neural networks for direct attack identification and introduces an attack 

traceback system strategically leveraging the distinctive characteristics of SDN. In this work, the main focus 

is DDoS attack prediction in SDN environments. In this endeavor, this work makes contributions on various 

fronts:  

Exploratory data analysis (EDA): a thorough inspection of the dataset consisting of a range of features 

pertinent to network traffic. Each feature is examined for its data type, range, distribution, and presence of 

missing or null values, and anomalous points.  

‒ Data cleaning: depending on the nature and importance of the missing values, techniques such as imputation 

or exclusion are employed to address them. 

‒ Statistical measures such as central tendency (mean, median) and dispersion (standard deviation, 

interquartile range) are calculated to provide a high-level understanding of the distribution and spread of 

the data. For instance, if the mean packet count is notably higher than the median, it suggests a skewed 

distribution, potentially due to the presence of outliers or heavy traffic episodes. 
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‒ Visualization is carried out using the following plots: i) boxplots to depict data distribution, aiding outlier 

detection, potentially indicating DDoS attacks in this study; ii) scatter plots to visualize relationships 

between continuous variables, hinting at correlated features, indicative of specific network behavior; and 

bar charts to display categorical data distributions, crucial for understanding the frequency of variables such 

as protocol types or port numbers. 

‒ Given the typical class imbalance in DDoS datasets, the SMOTE was used to generate synthetic samples 

of the minority class. This balanced the dataset, thus preventing the models from being biased towards the 

majority class. 

‒ We also utilized correlation analysis to identify linear relationships between features, while the random 

forest algorithm assessed feature importance, enabling a selection of the most relevant features for the 

models.  

‒ A diverse suite of ML algorithms was selected to classify whether the traffic is normal or attacked. 

Algorithms such as gradient boosting and ensemble models: as light gradient boosting machine (LGBM) 

classifier, random forest classifier, XGB classifier, extra trees classifier, and AdaBoost classifier. DT: DT 

classifier and extra tree classifier. Proximity-based algorithms: K-neighbors classifier. SVM: support vector 

classifier (SVC). Stochastic gradient descent: SGD classifier. Linear models: logistic regression, linear 

discriminant analysis, ridge classifier CV, and ridge classifier. Bayesian methods: Gaussian NB. Other 

classifiers: perceptron, nearest centroid, passive aggressive classifier, quadratic discriminant analysis, and 

dummy classifier.  

‒ The key findings of the research are to tune each model meticulously and validate using techniques such as 

cross-validation to mitigate overfitting and ensure the robustness of the predictions. 

The remaining sections of the paper cover the following topics: section 2 elaborates on the datasets 

utilized, sourced from various databases. Section 3 outlines the schematic diagram detailing the proposed 

methodology for predicting DDoS attacks in the SDN environment. Section 4 delves into significant 

performance measures, results, and comparisons with state-of-the-art approaches. Lastly, section 5 concludes 

the paper and outlines directions for future research.  

 

 

2. METHOD 

2.1.  Input dataset 

For the DDoS attack detection, at first, SDN dataset is collected from [26] and preprocessed. The 

dataset contains 104346 rows and 23 columns, which are a mix of features and labels, a substantial and valuable 

resource for researching and developing DDoS detection methods. These columns could be divided into:  

‒ Features: these are the attributes used to describe network traffic patterns and characteristics. These features 

help ML models learn to distinguish between normal and DDoS traffic. Some common features for DDoS 

detection might include packet sizes, packet rates, byte rates, source IP addresses, destination IP addresses, 

and various statistical metrics related to network traffic.  

‒ Labels: this column indicates whether each network traffic recordf represents normal traffic or a DDoS 

attack. The label column is essential for supervised learning, where models learn from labeled data as shown 

in Figure 1. 

‒ Data split: when using this dataset for ML, it's common to split it into training, validation, and test sets to 

evaluate model performance properly. Here 75% is used for training and 25% of the dataset is used for 

testing and validation.  

 

 

 
 

Figure 1. Dataset with various features having labeled information 
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2.2.  Framework 

This study delineates a comprehensive approach to predict SDN-DDoS attacks by employing a single 

phased methodological framework that integrates various ML algorithms into lazy classifiers. The 

methodology aims to leverage the strengths of each algorithmic category to enhance predictive accuracy and 

gain deeper insights into the characteristics of network traffic data that could potentially signal the presence of 

DDoS attacks. Figure 2 depicts the overall stages in the proposed work. The subsequent sections provide 

concise descriptions of the elements constituting the models.  

 

 

 
 

Figure 2. A schematic diagram of the methodology 

 

 

2.2.1. Exploratory data analysis 

The statistical summary of the dataset is shown in Tables 1 and 2. The dataset comprises 8,714 

observations across various variables, shedding light on network traffic dynamics. The 'switch' variable, likely 

representing network switch identifiers, has a mean value of 11,089.83, suggesting potential encoding or 

scaling, as switch identifiers are typically categorical. 

 

 

Table 1. Dataset 
 pktcount bytecount dur dur_nsec tot_dur packetins pktperflow  

count 14.00 8,714.00 8,714.00 8,714.00 8,714.00 8,714.00 8,714.00  

mean 7.47E+04 7.91E+07 194.01 5.48E+08 1.95E+11 1,920.42 1.05E+04  

std 4.07E+04 4.31E+07 117.35 2.32E+08 1.17E+11 254.13 4.05E+03  
min 284.00 3.03E+05 - 7.90E+07 8.37E+08 558.00 0.00E+00  

25% 3.73E+04 3.96E+07 100.00 3.91E+08 1.01E+11 1,931.00 8.64E+03  

50% 7.66E+04 8.17E+07 190.00 5.56E+08 1.91E+11 1,943.00 1.34E+04  
75% 1.13E+05 1.20E+08 280.00 7.26E+08 2.81E+11 1,943.00 1.35E+04  

max 1.35E+05 1.44E+08 473.00 9.14E+08 4.73E+11 2,242.00 1.37E+04  

 

 

Table 2. Feature selection in dataset 
 byteperflow pktrate tx_bytes rx_bytes tx_kbps rx_kbps tot_kbps 

count 8,714.00 8,714.00 8,714.00 8,714.00 8,714.00 8,714.00 8,714.00 

mean 1.11E+07 349.86 4.82E+07 4.81E+07 873.43 873.11 1,746.54 
std 4.35E+06 134.91 1.51E+08 1.10E+08 2,848.97 2,269.07 3,426.36 

min 0.00E+00 - 2.85E+03 9.26E+02 - -  

25% 9.21E+06 288.00 3.59E+03 1.47E+03 - -  
50% 1.43E+07 446.00 3.84E+03 3.54E+03 - -  

75% 1.44E+07 451.00 4.25E+03 6.16E+06 - - 2.57E+03 

max 1.46E+07 456.00 1.27E+09 9.91E+08 2.06E+04 1.66E+04 2.06E+04 

 

 

'Pktcount' and 'bytecount' signify packet and byte counts per network event, with 'pktcount' averaging 

at 2.32, indicating consistency across observations. Meanwhile, 'bytecount' averages 79,060,776.54 bytes, 

reflecting varying event sizes. Duration variables 'dur', 'dur_nsec', and 'tot_dur' depict event lengths in seconds, 

nanoseconds, and total duration, with mean values indicating a wide range of event durations. 'Flows' average 

3.32 per event, indicating simultaneous communication sessions, with consistent flow numbers. 'Packetins', 

possibly indicating incoming packets, averages 1,920.42, hinting at variability in incoming packet frequency. 

'Pktperflow' and 'byteperflow' show packet and byte counts per flow, with diverse averages and high standard 

deviations, crucial for traffic profiling. 'Pktrate' averages 349.86, with a significant standard deviation, 

suggesting a wide range in packet transmission rates, potentially reflecting idle periods or keep-alive 

connections.  

 

2.2.2. Visualization 

The following visualizations were observed here. The chart is a pairs plot matrix that visualizes the 

relationships between several categorical variables:'switch', 'flows', 'pairflow', and 'port_no', along with their 

distribution with respect to two labels (0 and 1, which could represent different classes such as 'normal' and 

'attack' in the context of network traffic). Looking at the diagonal, we see density plots for each variable, 
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colored differently for each label, indicating the distribution of each variable within the two classes. It appears 

that the variables have discrete values which might represent categorical or binned numerical data. For instance, 

'switch' shows a bimodal distribution for one label and a more uniform distribution for the other, suggesting 

that certain switch values are more prevalent in one class than in the other. 

In the off-diagonal plots, which show the relationship between two variables, we see distinct 

groupings of points. These scatter plots reveal how the categories of each variable are distributed concerning 

each other. For example, the 'switch' vs. 'flows' plot shows that certain switches are associated with specific 

flow counts, and this association differs by label, which could be indicative of certain patterns of network 

behavior that are characteristic of normal versus attack traffic. The plots with 'pairflow' against other variables 

exhibit a relatively tight clustering of points at lower values of 'pairflow', especially for one label, perhaps 

indicating that low 'pairflow' values are strongly associated with a particular class as depicted in Figure 3. 

Finally, the 'port_no' variable shows multiple peaks in distribution, suggesting that there are common 

ports that are frequently used in both classes, but there's a visible distinction in the distribution of 'port_no' 

between the labels. The 'switch' value count indicates the number of network events or connections handled by 

each switch identifier. With switch 3 handling the most events (4,077), followed by switch 2 (3,358), and 

switch 1 (1,280), there's a clear indication that some switches are more heavily utilized than others. This could 

be due to the network topology, where certain switches serve as major hubs for traffic. The differences in 

counts might also reflect the strategic positioning of switches within the network, or varying levels of protection 

against DDoS attacks, assuming the switches are part of an SDN environment being monitored for security 

purposes. The 'flows' count provides insights into how many concurrent network flows are common within the 

events captured. The majority of events have between 2 and 4 flows, with 2.00 flows being the most frequent 

(2,569 times). This suggests that dual-flow communication is a common pattern, possibly indicative of 

bidirectional traffic between hosts. The presence of a single not a number (NaN) value indicates an event where 

the flow count was not recorded or is missing, which may require additional data cleaning or imputation. 

The 'pairflow' count, with 0.00 occurring 8,714 times, suggests that all recorded events are of one 

type, potentially representing unpaired flows. This could signify unidirectional communication or  

non-responsive traffic, which might be characteristic of certain types of network behavior or applications. The 

single NaN value indicates one instance of missing data, which, depending on the context, might be negligible 

or could warrant further investigation to ensure data integrity. For the 'protocol' variable, every single counted 

event (8,714 in total) used the user datagram protocol (UDP) protocol. This uniformity implies that the dataset 

might be filtered to capture only UDP traffic, or that UDP is overwhelmingly the protocol of choice in the 

network environment under study. UDP's connectionless nature makes it a frequent choice for streaming, 

gaming, or certain types of DDoS attacks. The single NaN value suggests an instance where protocol 

information is missing. 

The 'port_no' variable count indicates the number of network events associated with different port 

numbers. Ports 1 and 2 are nearly equally represented (2,397 and 2,392 events, respectively), followed by port 

3 (2,180) and port 4 (1,745). This distribution could reflect the usage of these ports for different services or 

applications within the network. The singular NaN value indicates one event where the port number was not 

recorded, which may need to be addressed during data preprocessing. Overall, this pairs plot matrix is a 

powerful exploratory tool that allows us to see the relationships between different pairs of variables and how 

these relationships may differ by class. This can provide valuable insights for further analysis, such as feature 

selection or anomaly detection in the context of network security as depicted in Figure 3. 

Data preprocessing played a critical role in maintaining dataset integrity by addressing missing or null 

values. This ensured that the predictive models received clean and complete data, a crucial factor for the 

reliability of subsequent analyses. One-hot encoding was applied to handle categorical variables. This 

transformation converted categorical data into a numerical format, facilitating better understanding and 

evaluation of input features by ML algorithms.  

Feature engineering, a pivotal step, involved applying domain knowledge to create new features aimed 

at enhancing model performance. Techniques such as correlation analysis identified linear relationships 

between features, while the random forest algorithm assessed feature importance. This process allowed for the 

selection of the most relevant features, reducing dimensionality, and directing the models towards the most 

predictive attributes. To address class imbalance inherent in DDoS datasets, the SMOTE was employed. This 

technique generated synthetic samples of the minority class, effectively balancing the dataset and preventing 

bias towards the majority class. A diverse array of ML algorithms was selected for the subsequent phase, 

aiming to provide a comprehensive perspective on the dataset. The selection encompassed various algorithms, 

reflecting different approaches and methodologies in order to capture the complexity and nuances of the data. 

In summary, this comprehensive approach, from exploratory analysis through preprocessing and feature 

engineering to the selection of diverse ML models, was undertaken to ensure a robust and well-informed 
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foundation for subsequent phases of analysis and model development. Each step was strategically chosen to 

address specific challenges and enhance the overall reliability and predictive capability of the models.  

 

 

 
 

Figure 3. Plot matrix visualizing the relationships between several categorical variables: 'switch', 'flows', 

'pairflow', and 'port_no', along with their distribution with respect to normal traffic and attack traffic 

 

 

2.2.3. Model development 

Various ensemble methods, including LGBM classifier, random forest classifier, XGB classifier, DT 

classifier, and extra trees classifier, as well as popular ML classifiers like AdaBoost classifier, K-neighbors 

classifier, and SVC, are being explored for training models to detect DDoS attacks. The dataset is divided into 

75% for training and 25% for testing and validation. Ensemble techniques, pivotal in ML, involve gradient 

boosting, which elevates weak learners into robust prediction models. 

The LGBM classifier, abbreviated from light gradient boosting machine classifier, utilizes DT 

algorithms for classification and ranking. It incorporates gradient-based one-side sampling (GOSS) and 

exclusive feature bundling (EFB) techniques to enhance efficiency with large-scale data, boosting speed and 

reducing memory usage. Random forest, another ensemble method, excels in regression and classification tasks 

by clustering DT into an ensemble, combating overfitting and lack of resilience. XGBoost, or extreme gradient 

boosting, is renowned for its high performance and strategies to mitigate overfitting, especially adept at 

handling large datasets and parallel processing, contributing to its wide adoption in ML. Extra trees classifier, 

akin to random forest, creates multiple trees and employs random feature subsets for node splitting. However, 

it diverges by forgoing bootstrapping and opting for random splits, emphasizing its unique approach of 
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introducing randomness into the tree-building process. AdaBoost collaborates multiple weak classifiers to form 

a robust ensemble, adjusting their roles incrementally to improve accuracy, particularly in challenging 

scenarios. DT classifiers extract decision-making insights from input data, serving as foundational tools in ML. 

The K-neighbors classifier, a part of the k-nearest neighbors (KNN) family, predicts based on the 

majority class of its k-nearest neighbors in the feature set, offering flexibility in instance-based learning. 

Support vector machines (SVM) construct models to distinguish between different class instances, assuming 

linear separability. The stochastic gradient descent (SGD) classifier is a linear classifier optimized using SGD, 

suitable for scenarios with substantial data sizes. Logistic regression predicts binary outcomes using continuous 

independent variables, while linear discriminant analysis identifies linear feature combinations to effectively 

distinguish classes. The ridge classifier, tailored for multi-class classification tasks, incorporates concepts from 

traditional classification methods and ridge regression to minimize overfitting risks. Gaussian NB excels in 

classification tasks with normally distributed, continuous data, assuming conditional independence among 

features within each class. Quadratic discriminant analysis allows distinct covariance matrices for each class, 

enabling a flexible capture of non-linear decision boundaries. A dummy classifier serves as a basic baseline 

model, contrasting with more complex algorithms and establishing a fundamental reference point for 

performance evaluation. 
 

2.2.4. Performance metrics 

The evaluation of models involved the use of diverse metrics appropriate for classification tasks, 

encompassing accuracy, balanced accuracy, receiver operating characteristic (ROC)-area under the curve 

(AUC), and F1-score. These metrics collectively offered a comprehensive assessment of the performance of 

each model. Accuracy is determined as the ratio of correct predictions to the total number of predictions. It can 

be computed using (1). A metric commonly used in ML to assess the performance of a classification model, 

particularly in scenarios with imbalanced class distributions. Balanced accuracy addresses this issue by 

computing the average of sensitivity (true positive rate) across all classes as depicted in (2). The F1-score, 

depicted in (3) represents the harmonic average of recall and precision, taking into account both false positives 

and false negatives. This makes it particularly effective when dealing with imbalanced datasets. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
  (1) 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦1+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦2+⋯.𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑘 

𝑘
 (2) 

 

𝐹1 = 2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
  (3) 

 

The AUC is a measure calculated from the ROC curve, offering a singular scalar value that 

encapsulates the performance of the classifier across various thresholds. An ideal classifier achieves an AUC 

of 1.0, whereas a random classifier yields an AUC of 0.5. Efficient models with brief training times are 

desirable but selecting them should not compromise predictive performance. This plot is essential for assessing 

the trade-offs between model accuracy and the computational resources needed for both training and inference. 

 

 

3. RESULTS AND DISCUSSION 

The assessment of ML models for DDoS attack detection in SDN reveals diverse performance 

characteristics. Table 3 depicts the comprehensive performance evaluation of various ML algorithms in the 

detection of DDoS Attacks. The LGBM classifier, DT classifier, random forest classifier, XGB classifier, extra 

trees classifier has achieved perfect scores across all metrics, including accuracy, balanced accuracy,  

ROC-AUC, and F1 score, all at 1.00 (100%). This suggests that the model has likely overfit to the training 

data, especially in the context of a complex problem like predicting DDoS attacks in SDN. The computation 

time of 1.68, 0.52, 6.38, 1.7, and 3.41 seconds respectively indicates high efficiency in model training, 

highlights simplicity, speed, and extremely fast training. Despite efficient training times, these models may not 

reflect real-world performance accurately. Summary: however, decision tree classifiers give the best 

performance with a fast computation time of 0.52 seconds. 

Models such as extra tree classifier, AdaBoost classifier and K-neighbors classifier achieve 

commendable accuracy of 0.99 (99%) with varying computation times, such as 3.41, 0.18, and 4.66 seconds 

respectively, showcasing their efficacy and scalability. In contrast, models like SVC and SGD classifier present 

slightly lower scores, indicating a focus on generalization over memorization. Logistic regression strikes a 

balance between simplicity and efficiency, demonstrating moderate accuracy as shown in Table 3. Summary: 
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however, extratree classifiers give the best performance of 99% accuracy with a fast computation time of 0.18 

seconds. 

Linear discriminant analysis, ridge classifier CV, and ridge classifier exhibit lower accuracy around 

72.33% suggesting potential limitations in capturing complex patterns. Gaussian NB, perceptron, nearest 

centroid, passive aggressive classifier, and quadratic discriminant analysis show varying degrees of accuracy 

of 63%, each with implications for their suitability in DDoS detection scenarios. The dummy classifier serves 

as a baseline with a minimal accuracy of 57%, reflecting its simplistic prediction approach based on simple 

rules. This model provides a benchmark for evaluating the performance of more sophisticated algorithms. The 

swift computation time of the dummy classifier aligns with its inherent simplicity. Each model's unique 

strengths and weaknesses underscore the critical importance of selecting an appropriate algorithm tailored to 

specific task requirements and dataset characteristics. Striking a balance between accuracy, efficiency, and 

generalization is crucial when implementing ML models for DDoS detection in the dynamic landscape of SDN. 

Further exploration, including techniques like cross-validation and testing on unseen data, is imperative to 

ensure the reliability and practical applicability of these models in real-world cybersecurity scenarios.  

From the Table 3 it is also observed that based on accuracy and time taken for computation shows 

that DT is the best (100% - 0.52 seconds), extra tree classifier (99% - 0.18 seconds) and Gaussian NB - low 

accuracy with low computation time of 0.12 seconds. The bar plot for accuracy as shown in Figure 4, likely 

shows that models such as LGBM classifier, DT classifier, random forest classifier, and XGB classifier are 

performing with high accuracy, potentially reaching 1.00. This can be indicative of very effective models, but 

in real-world scenarios, such perfection often flags a need for scrutiny, possibly hinting at overfitting. 
 

 

Table 3. Performance comparison of ML algorithms in detection of DDoS attacks 
Model Accuracy Balanced accuracy ROC-AUC F1-score Time taken 

LGBM classifier 1 1 1 1 1.68 
DT classifier 1 1 1 1 0.52 

Random forest classifier 1 1 1 1 6.38 
XGB classifier 1 1 1 1 1.7 

ExtraTrees classifier 1 1 1 1 3.41 
ExtraTree classifier 0.99 0.99 0.99 0.99 0.18 
AdaBoost classifier 0.99 0.99 0.99 0.99 4.66 

KNeighbors Classifier 0.99 0.99 0.99 0.99 5.49 
SVC 0.95 0.96 0.96 0.96 58.14 

SGD classifier 0.81 0.81 0.81 0.81 0.51 
Logistic regression 0.79 0.78 0.78 0.79 0.84 

Linear discriminant analysis 0.73 0.73 0.73 0.73 0.32 
Ridge classifier CV 0.72 0.72 0.72 0.72 0.3 

Ridge classifier 0.72 0.72 0.72 0.72 0.15 
Gaussian NB 0.68 0.69 0.69 0.68 0.12 
Perceptron 0.66 0.68 0.68 0.66 0.31 

Nearest centroid 0.65 0.65 0.65 0.65 0.17 
Passive aggressive classifier 0.58 0.61 0.61 0.57 0.45 

Quadratic discriminant analysis 0.58 0.51 0.51 0.44 0.28 
Dummy classifier 0.57 0.5 0.5 0.41 0.12 

 
 

 
 

Figure 4. Performance comparison of various models with respect to the accuracy and balanced accuracy 
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Models with slightly less accuracy, such as AdaBoost classifier and K-neighbors classifier, may offer 

more realistic predictive performances and potentially better generalization to unseen data. Balanced accuracy 

as depicted in Figure 4, is crucial in datasets with imbalanced classes. A bar plot illustrating high balanced 

accuracy for the same top-performing models suggests that these models are effective across both majority and 

minority classes. However, the same caution regarding overfitting applies here. For models with lower balanced 

accuracy, it may indicate that these models struggle more with class imbalance, affecting their performance in a 

real-world setting. The ROC AUC bar in Figure 5 likely mirrors accuracy and balanced accuracy trends.  
 
 

 
 

Figure 5. Performance comparison of various models with respect to the ROC-AUC and F1 score 
 

 

High ROC AUC values near 1.00 suggest effective class distinction, though excessive values may 

imply overfitting. Lower values indicate less discriminative power, improvable with feature engineering or 

model tuning. The F1 Score bar combines precision and recall, revealing a model's true-positive identification 

balance. High F1 scores are crucial for DDoS detection, while lower scores require precision-recall balance 

refinement. The time taken barplot, as depicted in Figure 6, likely shows significant variation across models. 

Models like SVC that take longer to train may not be suitable for environments where quick retraining is 

necessary. Conversely, models with short training times are desirable for their efficiency but should not be 

chosen at the cost of predictive performance. This plot is crucial for understanding the trade-offs between 

model accuracy and the computational resources required for model training and inference.  
 

 

 
 

Figure 6. Performance comparison of various models with respect to the computation time 
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As it can be seen from Table 4, the proposed work performs better than most of the state-of-the-art 

methods. The present study has provided best results in terms of accuracy, balanced accuracy, ROC-AUC and 

F1 score by using SMOTE for feature engineering and all popular ensembling techniques available. This 

performance spectrum emphasizes the challenge of accurately predicting DDoS attacks and underscores the 

importance of selecting a suitable model aligned with the specific characteristics of cybersecurity data. The 

varying outcomes stress the significance of comprehending the underlying data and problem context when 

choosing and fine-tuning ML algorithms for cybersecurity applications.  

 

 

Table 4. Comparison of proposed work with state of art 

Author (year) Dataset used 

Methodology Performance metrics 

No. of features 

considered 
Classifiers 

Accuracy 

(%) 

ROC-AUC 

(%) 

F1-score 

(%) 

Alghoson. and 
Abbas (2021) [3] 

CICDDoS 2019 
dataset 

20 
RF, LGB, Catboost, 

CNN 
99 unknown unknown 

Long and Jinsong 

(2022) [19] 
DARPAR dataset 18 SSAE-SVM 98 unknown unknown 

Polat et al. [14] SCADA dataset 10 
RNN, LSTM, and 

GRU 
97.62 unknown unknown 

Vadhil et al. [6] CICIDS-2017) 
variable number 

of features 
DT, RF, LR, GNB, 

AB & Ensemble 
99.50 unknown 99.44 

Bhayo et al. 
(2023) [9] 

Simulated traffic 05 NB, SVM, and DT 98.1 unknown unknown 

Present study [27] 16 

Ensemble 

techniques, ML with 
SMOTE 

100 100 100 

 

 

4. CONCLUSION 

In this work, we applied various widely used ML techniques to identify DDoS attacks within SDN. 

Our study extensively evaluates the performance of these popular ML techniques, distinguishing itself from 

existing works that focus on only a subset of these methods. Notably, we observed that although certain models 

exhibit outstanding performance across multiple metrics, consistent high scores may indicate potential 

overfitting, particularly in intricate domains like cybersecurity. The ML models, including LGBM classifier, 

DT classifier, random forest classifier, XGB classifier, extra trees classifier, AdaBoost classifier, and  

K-neighbors classifier, demonstrated noteworthy effectiveness in various aspects of DDoS detection and 

mitigation. To ensure practical applicability, it is crucial to subject these models to further scrutiny through 

techniques such as cross-validation and testing on unseen data. Future endeavors should explore enhancing 

models with lower performance using advanced feature selection, hyperparameter tuning, or ensemble 

methods. Implementing ML models for DDoS detection and mitigation transcends being an option; it stands 

as a necessity in the contemporary cybersecurity landscape. 
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