
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 13, No. 3, September 2024, pp. 2987~2998

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i3.pp2987-2998  2987

Journal homepage: http://ijai.iaescore.com

A three-step combination strategy for addressing outliers and

class imbalance in software defect prediction

Muhammad Rizky Pribadi1,2, Hindriyanto Dwi Purnomo2, Hendry2
1Department of Informatics, Faculty of Computer Sciences and Engineering, Universitas Multi Data Palembang, Palembang, Indonesia

2Department of Computer Science Doctoral, Faculty of Information Technology, Satya Wacana Christian University, Salatiga, Indonesia

Article Info ABSTRACT

Article history:

Received Jan 15, 2024

Revised Feb 2, 2024

Accepted Feb 10, 2024

 Software defect prediction often involves datasets with imbalanced

distributions where one or more classes are underrepresented, referred to as

the minority class, while other classes are overrepresented, known as the

majority class. This imbalance can hinder accurate predictions of the

minority class, leading to misclassification. While the synthetic minority

oversampling technique (SMOTE) is a widely used approach to address

imbalanced learning data, it can inadvertently generate synthetic minority

samples that resemble the majority class and are considered outliers. This

study aims to enhance SMOTE by integrating it with an efficient algorithm

designed to identify outliers among synthetic minority samples. The

resulting method, called reduced outliers (RO)-SMOTE, is evaluated using

an imbalanced dataset, and its performance is compared to that of SMOTE.

RO-SMOTE first performs oversampling on the training data using SMOTE

to balance the dataset. Next, it applies the mining outlier algorithm to detect

and eliminate outliers. Finally, RO-SMOTE applies SMOTE again to

rebalance the dataset before introducing it to the underlying classifier. The

experimental results demonstrate that RO-SMOTE achieves higher accuracy,

precision, recall, F1-score, and area under curve (AUC) values compared to

SMOTE.

Keywords:

Classification

Imbalanced data

Outliers

Software defect prediction

Synthetic minority

oversampling technique

This is an open access article under the CC BY-SA license.

Corresponding Author:

Muhammad Rizky Pribadi

Department of Informatics, Faculty of Computer Sciences and Engineering

Universitas Multi Data Palembang

Palembang, Indonesia

Email: rizky@mdp.ac.id

1. INTRODUCTION

The widespread use of devices in our daily lives has heightened our dependence on various software

systems [1]. Any disruption in the operation of software upon which we heavily rely can lead to severe

consequences [2]. To ensure the flawless functioning of such systems, comprehensive testing procedures are

essential. According to Sava [3], an expert in information technology (IT) security and services market

analysis, global IT spending reached $3.8 trillion in 2020 and was expected to increase by approximately

5.1% to about $4.45 trillion in 2022 [3]. In the IT industry, approximately 35% of total development costs are

allocated to quality control and testing [4].

One significant effort to reduce software testing costs is software defect prediction. It has become a

practical approach to enhance the quality, efficiency, and cost-effectiveness of software testing by focusing

on identifying defective software [5]. Recent research has extensively employed machine learning to develop

models for defect prediction. Various methods have been proposed to address this task, relying on historical

defect data, software metrics, and a chosen prediction algorithm. Techniques such as classification,

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2987-2998

2988

clustering, regression, and machine learning algorithms like artificial neural network, K-nearest neighbor

(KNN), naive Bayes, decision tree, and ensemble methods have been utilized in this field [5]. The successful

prediction of defective software allows for more effective resource allocation by prioritizing software that is

predicted to contain defects [6].

However, datasets for software defect prediction often suffer from class imbalance, where very few

defective software instances are available for comparison with non-defective ones [7]. To address this

imbalance, software engineers can employ data-level techniques to manipulate training data and achieve a

more balanced distribution [8]. These techniques include undersampling, which involves removing some data

from the majority class, and oversampling, where new instances are added to the minority class by

duplicating or creating new samples [9]. While undersampling poses the risk of losing important data,

oversampling, particularly when the number of minority class instances is very small, can lead to a

significant reduction in dataset size and potentially limit classifier performance [10]. One solution for

handling imbalance issues using the oversampling method is the synthetic minority oversampling technique

(SMOTE), which involves adding new instances through the KNN approach [11].

Previous studies have shown that SMOTE can be an effective method for addressing data imbalance

in datasets. However, in the context of software defect prediction datasets, the issue goes beyond data

imbalance; it also involves outliers [12]. While SMOTE is capable of mitigating class imbalance, it does not

address the problem of outliers [13]. Research in software defect prediction is critical, as the quality of the

data used directly impacts the model being developed. Software defect prediction datasets often contain noisy

data with outliers and missing values, which can distort the results [14]. This issue is exemplified in a study

[15] that utilized SMOTE to combat class imbalances in National Aeronautic and Space Administration

(NASA) and least square support vector machine (LSSVM) datasets for classification. The study reported a

low F1-score, such as the PC1 dataset achieving only a score of 0.2807, attributed to the substantial number

of outliers in the training data after oversampling [16]. Supervised learning techniques, extensively employed

in software defect prediction research, are highly sensitive to outliers, which can significantly reduce their

accuracy [17].

Outliers, or anomalous values, refer to data points that significantly deviate from the norm in a

dataset [18]. They are often considered unexpected values that fall outside a reasonable range, thereby

affecting data analysis and the results of statistical tests [19]. Outliers can arise for various reasons, including

measurement errors, data input errors, or very rare and unusual events that influence measurement outcomes

[20]. For instance, if we have a dataset of human heights and one person’s height deviates significantly from

the rest, we classify that individual as an outlier. The presence of extreme outliers can substantially impact

statistical measures like the mean and standard deviation, rendering these measures unrepresentative of the

true data distribution [20]. Consequently, outliers are often identified and considered for removal before

conducting statistical analysis. However, it’s crucial to exercise caution when removing outliers, as doing so

can alter the data distribution and affect the outcomes of statistical analysis [19].

This article introduces a novel model for addressing the class imbalance problem, termed reduced

outliers (RO)-SMOTE. This innovative approach employs efficient algorithms to identify SMOTE-generated

outliers and eliminate them from the training dataset. Following the removal of outliers, the dataset is

resampled using the SMOTE method to achieve data balance. The primary contributions of this paper are:

‒ The introduction of a novel pre-processing technique for addressing data imbalance, RO-SMOTE, which

leverages efficient algorithms to remove outliers after SMOTE oversampling.

‒ An evaluation of the proposed RO-SMOTE using various classifiers and cross-project datasets for

software defect prediction.

‒ A comparative analysis of classifier performance when combined with RO-SMOTE against their

performance when combined with SMOTE.

The remaining sections of this paper are structured as follows: section 2 provides a review of related

work. In section 3, we introduce the proposed model, beginning with an overview of SMOTE and the

efficient algorithm, followed by a detailed explanation of RO-SMOTE. Section 4 presents the experimental

setup and discusses the obtained results. Finally, section 5 offers conclusions and recommendations for future

research.

2. RELATED WORK

A successful strategy for handling imbalanced dataset classification involves adopting a different

perspective by treating the data as anomalies or noise. This is necessary because the initial dataset may

contain irregularities, and some resampling methods, like SMOTE, may inadvertently introduce more noise,

worsening the imbalance problem. High levels of noise within the training dataset can adversely impact

classifier performance, a perspective that several studies have addressed [16].

Int J Artif Intell ISSN: 2252-8938 

 A three-step combination strategy for addressing outliers and class … Muhammad Rizky Pribadi)

2989

Asniar et al. [21] proposed SMOTE-local outlier factor (LOF), which combined SMOTE for

oversampling with LOF for noise detection in three real-world datasets characterized by low imbalance ratios.

However, its performance across various classifiers, datasets with different imbalance ratios, and dimensions

remains uncertain. Additionally, LOF is computationally intensive compared to other techniques. Some

researchers [22], [23] employed the interquartile range (IQR) for outlier detection in their oversampling

method. Initially, they detected outliers within the imbalanced dataset using the IQR algorithm and then

oversampled these identified outliers with replacement to integrate them into the original dataset. Finally, they

applied SMOTE to balance the dataset. The IQR, however, does not account for variations in data distribution

as it relies solely on the two data points, namely Q1 and Q3, to gauge data spread. Consequently, the IQR may

not accurately represent outliers, especially in datasets with diverse distributions [24].

Another technique, the outlier detection-based oversampling technique (ODBOT) [25], was

introduced for imbalance datasets in multi-class scenarios. It clusters data using weight-based bat algorithm

with k-means (WBBA-KM) to identify dissimilarities between minority and majority classes and then

identifies outliers in the minority class by comparing the relationship of differences between the cluster

centers in the minority and majority classes. Samples are generated according to the best minority cluster

boundary. However, the use of the WBBA-KM algorithm comes with high complexity, primarily due to the

time required to construct the hierarchical tree from large datasets [26]. Another study introduced the

selective oversampling approach (SOA) [27], which identifies outliers in minor classes using a one-class

support vector machine (OCSVM) before removing them and oversampling the data with SMOTE and

adaptive synthetic sampling (ADASYN). However, OCSVM’s accuracy may be compromised when dealing

with limited training data, and it can be time-consuming when applied to large datasets [28].

Furthermore, SMOTE-iterative-partitioning filter (IPF) [28] combines oversampling and noise-

filtering methods. The process commences by augmenting the training data through SMOTE, followed by the

removal of noise and boundary samples using the IPF. Although this method was tested on real-world

datasets featuring up to 19 attributes and a minimum imbalance ratio of 35:301, its effectiveness in scenarios

with lower imbalance ratios or greater dimensions has not been investigated. It is important to highlight that

the evaluation focused solely on the C4.5 classifier, utilizing the area under curve (AUC) metric, and did not

extend the analysis to include other classifiers or metrics.

Puri and Gupta [29] proposed a hybrid model named K-means-SMOTE–edited nearest neighbors

(ENN), which integrates bagging, K-means clustering, ENN, and adaptive boosting (AdBoost). In this

approach, the model begins by clustering the training data within individual subsamples through K-means

clustering [29]. Subsequently, it employs SMOTE to oversample data within each cluster and removes noise

using ENN. The study evaluated this approach using real-world datasets with a maximum of 9 attributes, and

it didn’t assess the model’s performance on datasfets with higher dimensions, primarily due to significant

computational time requirements, which placed it last among the fifteen other approaches it was compared to.

In addition, there’s another proposal called noise-adaptive synthetic oversampling technique

(NASOTECH) [30]. NASOTECH makes use of the noise-adaptive synthetic oversampling (NASO) rule,

which involves applying the KNN method to calculate the total distance from each sample in the minority

class to its Kth nearest neighbors. These cumulative distances are then utilized to determine the noise ratio

for each minority class sample, guiding the generation of synthetic samples. The evaluation of this approach

was conducted exclusively with a single classifier, namely the support vector machine (SVM), using

real-world datasets with a maximum of 294 features. However, its performance with other classifiers

employing different operational principles has not been explored.

These research findings illustrate that integrating SMOTE with outlier cleaning methods can

improve the performance of diverse machine learning classifiers. This enhancement is achieved by furnishing

the classifiers with balanced training datasets while minimizing noise. Nevertheless, a few of these studies

have only applied their techniques to a restricted range of classifiers, leaving their effectiveness unexplored

with other classifier types. Furthermore, some studies have neglected the evaluation of crucial performance

metrics. Furthermore, previous research has primarily concentrated on datasets with a restricted number of

attributes. Moreover, none of these studies have tackled datasets with highly severe imbalance ratios.

3. METHOD

This section presents the proposed methodology, which combines SMOTE and efficient algorithms

to address the outlier issue in imbalanced data. Subsection 3.1 describes SMOTE [11] as the basis of the

proposed method. While subsection 3.2 discusses the utilization of efficient algorithms [21] to identify the

outliers generated by SMOTE.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2987-2998

2990

3.1. Synthetic minority oversampling technique

The SMOTE was initially introduced by Chawla et al. [11]. This method has gained popularity for

addressing class imbalance issues. To tackle class imbalance, the SMOTE technique augments the

underrepresented class with synthetic data, which is generated within the minority class using the KNN

method [5]. SMOTE has been widely adopted by researchers and practitioners, particularly in the context of

software defect prediction, as demonstrated some references [5], [13], [15], [31], [32]. An illustration of the

SMOTE method is presented in Figure 1.

Figure 1. Illustration of SMOTE

SMOTE has two hyperparameters: N, representing the percentage of oversampling for minority

classes (non-defect), and k, which signifies the number of nearest neighbors used to generate synthetic data.

There is no definitive rule for determining the values of k and N. The formula used to generate a new

instance is found in (1). In this way, SMOTE helps optimize the class distribution in the dataset, enhancing

the machine learning model’s ability to recognize and predict the minority class more accurately.

𝑥′ = 𝑥 + 𝑟𝑎𝑛𝑑(0,1) ∗ |𝑥 − 𝑥𝑘| (1)

Algorithm SMOTE(T,N,k)
Input: Number of minority class samples T; Amount of SMOTE N%; Number of nearest neighbors k

Output: (N/100) * T synthetic minority class samples

1. (* If N is less than 100% randomize the minority class samples as only a random percent of them will be SMOTEd.*

2. if N < 100

3. then Randomize the T minority class samples

4. T = (N/100) * T

5. N = 100

6. endif

7. N = (int)(N/100) (* The amount of SMOTE is assumed to be in integral multiples of 100.*)

8. k = Number of nearest neighbors

9. numattrs = Number of attributes

10. Samples[][]: array for original minority class samples

11. newindex: keeps a count number of synthetic samples generated,

initialized to 0

12. Synthetic[][]: array for synthetic for synthetic samples

(*Compute k nearest neighbors for each minority class sample only.*)

13. for i ← 1 to T

14. Compute k nearest neighbors for i, and save the indices in the nnarray

15. Populate(N, i, nnarray)

16. endfor

 Populate(N, i, nnarray) (* Function to generate the synthetic samples. *)

17. while N ≠ 0

18. Choose a random number between 1 and k, call it nn.

 This step chooses one of the k nearest neighbors of the k

 nearest neighbors of i.

19. for attr ← 1 to numattrs

20. Compute: dif = Sample[nnarray[nn]][attr] – Sample[i][attr]

21. Compute: gap = Random number between 0 and 1

22. Synthetic[newindex][attr] = Sample[i][attr] + gap * dif

23. endfor

24. Newindex++

Synthetic minority oversampling technique

Int J Artif Intell ISSN: 2252-8938 

 A three-step combination strategy for addressing outliers and class … Muhammad Rizky Pribadi)

2991

25. N = N – 1

26. endwhile

27. return (* End of Populate *)

 End of Pseudo-Code

3.2. Mining outliers

Outliers are data points or observations that significantly deviate from the expected or typical data

points within a dataset [33]. When the number of outliers increases in an imbalanced dataset, it can lead to a

decline in the performance of the classification algorithm due to reduced model accuracy [25]. In this study,

the identified outliers are primarily derived from synthetic minority class samples created by SMOTE.

This study aims to detect the noise introduced by SMOTE using efficient algorithms, which can

effectively identify outliers based on a point’s distance from its KNN [20]. Another method used for outlier

detection is the LOF. LOF calculates the distance between each data point and other data points within a

specific range to assess the degree of abnormality for each data point in the dataset [34]. However, the LOF

algorithm has some limitations, such as longer execution times and sensitivity to the minimum point value.

The third method used for outlier detection is density-based spatial clustering of applications with noise

(DBSCAN) [35], but it is susceptible to high-dimensional datasets, making it challenging to distinguish

between outlier points and dense points.

The current study seeks to identify outliers generated by SMOTE using an approach recommended

by Ramaswamy et al. [20]. This method offers a more efficient strategy for outlier identification, assigning

distinct outlier levels to each object. It proposes a formulation for recognizing distance-based outliers by

computing the distance between a point and its k-th nearest neighbor. The ranking of each point is

determined by its distance from the k-th nearest neighbor, and the top n points in this ranking are designated

as outliers. Parameters for the number of neighbors (k) and the number of outliers (n) allow for

customization. This approach is grounded in a straightforward and intuitive distance-based outlier criterion,

as articulated by Knorr and Ng: ‘A point p within a dataset is considered an outlier based on two parameters,

k and d, if no more than k points in the dataset are found at a distance of d or less from p’.

This algorithm introduces a new boolean attribute called ‘outlier’ to the provided ExampleSet. If the

‘outlier’ attribute has a true value, it signifies that the corresponding example is an outlier, while a false value

indicates that the example is not an outlier. The ‘outlier’ attribute is set to true for a total of n examples

(where n is determined by the number of outliers parameter). This operator supports various distance

functions, and you can specify your desired distance function by setting it through the distance function

parameter.

Figure 2 illustrates the RO-SMOTE algorithm, which combines SMOTE with the mining outliers

algorithm [20] to obtain training data with minimal outliers before applying it to the learning algorithm. The

core concept involves using SMOTE on imbalanced training data to balance it. However, the results of

balanced SMOTE often contain outliers [36], [37], which can mislead the classifier. Therefore, in the

subsequent step, the mining outliers algorithm [20] is used to remove the detected outliers, resulting in clean

but imbalanced data that is then integrated with the training data. To prepare this data for classifier use,

SMOTE is reapplied to balance it and produce clean, balanced data. Figure 2 offers an overview of this

process.

Figure 2. An overview of the RO-SMOTE mode, illustrating the steps and both the minor and major classes

involved in each step

Figure 3 outlines the specific steps of the proposed process. The process initiated by normalizing the

dataset through Z-score normalization [37]. Subsequently, the normalized dataset underwent resampling

using SMOTE to create balanced data. The outcomes fof data resampling were further refined using an

efficient algorithm since the newly balanced data still contained outliers.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2987-2998

2992

Figure 3. Flowchart of research process

4. RESULTS AND DISCUSSION

In this section, we discuss the evaluation of RO-SMOTE, which includes assessing its performance

with three different classification algorithms: KNN, SVM, and neural network (NN). We conducted this

evaluation on datasets from 11 cross-projects for software defect prediction, each with varying imbalance

ratios. The evaluation employed multiple metrics, such as balanced accuracy [38], precision, recall, F1-score,

and AUC.

4.1. Datasets

This study utilized datasets from 11 cross-projects for software prediction sourced from NASA and

promise projects. To distribute the dataset, we applied K-fold cross validation (K=10). In this study, one fold

was reserved for testing data, while the remaining nine folds were allocated for training data in each dataset.

Table 1 provides details regarding the number of features, samples, and imbalance ratios for each dataset.

These datasets include attributes like static software metrics that help characterize the presence of defects in

the software.

Table 1. Properties of datasets in 11 projects
Datasets Project #instances #Attributes #defects %defect

NASA MDP CM1 327 38 42 12.84
KC1 2109 22 326 15.4

PC1 679 38 25 10

PROMISE Ant-1.3 125 21 20 16

Ant-1.7 745 21 166 22.28
Camel-1.6 965 21 188 19.48

Ivy-2.0 352 21 40 11.36

Jedit-4.3 492 21 11 2.24

Poi-3.0 442 21 281 63.57

Synapse-1.2 256 21 86 33.59
Velocity-1.6 229 21 78 34.06

4.2. Results discussion for classifier

In this section, we delve into the results of implementing RO-SMOTE with KNN, SVM, and NN

algorithms. The hyperparameters for these classifiers have been optimized using 10-fold grid search, and the

hyperparameter configurations are outlined in Table 2. The inclusion of three distinct algorithms in this paper

serves the purpose of evaluating the compatibility of RO-SMOTE with various algorithms. RO-SMOTE’s

performance was then compared with that of SMOTE to assess the improvement in classifier algorithm

Int J Artif Intell ISSN: 2252-8938 

 A three-step combination strategy for addressing outliers and class … Muhammad Rizky Pribadi)

2993

performance. The performance of each classifier was evaluated based on balanced accuracy,

F1-score, precision, recall, and AUC across all 11 datasets. The results for each classifier are presented in

individual tables. Balanced accuracy score represents an enhanced version of the standard accuracy metric,

specifically tailored to enhance performance on datasets with imbalanced class distributions. It accomplishes

this by calculating the average accuracy for each class individually, as opposed to the aggregation employed

in standard accuracy calculations [38]. The F1-score, on the other hand, is the harmonic mean of precision

and recall from a classification model. In the context of imbalanced datasets, the F1-score serves as a more

reliable alternative to the standard accuracy metric. It provides a more accurate assessment of the model’s

performance, especially when prioritizing the evaluation of minority or critical classes [39].

Table 2. Hyperparameter configuration
Classifier Hyperparameters

SMOTE k = 2

NN training cycles = 200, learning rate= 0.01

KNN k = 5

SVM (linear) Kernel cache = 200

SVM (radial) Kernel gamma = 1.0
SVM (poly) Kernel degree = 2.0

Table 3 compares the performance of SMOTE and RO-SMOTE in the NN classifier. From this

table, the performance of RO-SMOTE was superior to SMOTE in terms of balanced accuracy metrics

(0.42%-5.2%), F1-score (1.18%-4.38%), and AUC (0.50%-5.70%). In terms of precision, RO-SMOTE

outperformed SMOTE in six datasets (0.62%-7.3%), while SMOTE excelled in five datasets (0.34%-3.89%).

Regarding recall, RO-SMOTE was superior in 11 datasets (0.26%-12.29%), while SMOTE only excelled in 2

datasets (1.62%-2.17%).

Table 3. Results summary of NN classifier

Dataset
Metrics

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%)

CM1 SMOTE 80.63 79.15 84.19 81.59 0.861
RO-SMOTE 83.06 83.64 82.57 83.10 0.888

KC1 SMOTE 73.39 71.94 77.29 74.51 0.818

RO-SMOTE 75.11 70.87 86.60 77.54 0.832

PC1 SMOTE 82.75 78.47 91.12 84.32 0.887

RO-SMOTE 86.06 81.72 93.33 87.13 0.914

Ant-1.3 SMOTE 86.19 85.75 88.73 87.21 0.889

RO-SMOTE 91.39 93.05 89.67 91.32 0.946

Ant-1.7 SMOTE 77.72 78.98 75.67 77.28 0.838

RO-SMOTE 79.15 78.64 81.05 79.82 0.854

Camel-1.6 SMOTE 74.38 71.97 81.04 76.23 0.810
RO-SMOTE 75.03 73.39 78.87 76.03 0.820

Ivy-2.0 SMOTE 83.49 88.47 77.83 82.80 0.910

RO-SMOTE 85.93 85.59 86.79 86.18 0.924

Jedit-4.3 SMOTE 94.18 93.16 95.42 94.27 0.975

RO-SMOTE 94.60 93.78 95.68 95.68 0.980
Poi-3.0 SMOTE 79.19 78.91 80.86 79.87 0.844

RO-SMOTE 79.85 76.56 86.11 81.05 0.807

Synapse-1.2 SMOTE 79.12 79.45 79.41 79.42 0.846

RO-SMOTE 81.52 80.56 84.17 82.32 0.875

Velocity-1.6 SMOTE 77.13 82.00 72.21 76.79 0.841
RO-SMOTE 80.27 78.11 84.50 81.17 0.832

Table 4 compares the performance of SMOTE and RO-SMOTE in the KNN classifier. The

experimental results demonstrated that RO-SMOTE outperformed SMOTE in terms of balanced accuracy in

nine datasets (0.06%-7.81%), while SMOTE excelled in two datasets (0.48%-4.46%). In terms of precision,

RO-SMOTE excelled in six datasets (0.21%-15.43%), while SMOTE excelled in two datasets

(0.19%-10.47%). RO-SMOTE outperformed in recall in seven datasets (0.12%-14.73%), while SMOTE

outperformed in four datasets (0.31%-17.97%). Furthermore, for the results of the F1-score, RO-SMOTE

produced better results than SMOTE in eight datasets (0.11%-5.93%), while SMOTE excelled in three

datasets (0.4%-3.69%). For AUC, RO-SMOTE excelled in eight datasets (0.20%-2.80%), while SMOTE

excelled in three datasets (0.10%-2.20%).

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2987-2998

2994

Table 4. Results summary of KNN classifier

Dataset
Metrics

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%)

CM1 SMOTE 88.09 82.33 97.32 89.20 0.942
RO-SMOTE 88.75 97.76 79.35 87.60 0.954

KC1 SMOTE 85.45 81.21 92.32 86.41 0.928
RO-SMOTE 85.51 81.02 92.81 86.52 0.935

PC1 SMOTE 93.17 89.20 98.35 93.55 0.972
RO-SMOTE 92.69 88.72 98.04 93.15 0.971

Ant-1.3 SMOTE 85.24 80.62 95.18 87.30 0.928
RO-SMOTE 93.05 94.49 92.00 93.23 0.956

Ant-1.7 SMOTE 84.63 79.66 93.44 86.00 0.920
RO-SMOTE 85.80 82.22 91.79 86.74 0.920

Camel-1.6 SMOTE 80.05 74.06 92.53 82.27 0.880

RO-SMOTE 79.95 73.74 93.40 82.41 0.889

Ivy-2.0 SMOTE 90.39 96.06 84.43 89.87 0.946
RO-SMOTE 85.93 85.59 86.79 86.18 0.924

Jedit-4.3 SMOTE 94.08 91.47 97.30 94.29 0.984
RO-SMOTE 95.05 93.13 97.42 95.23 0.986

Poi-3.0 SMOTE 82.20 81.51 84.72 83.08 0.886
RO-SMOTE 83.33 81.72 86.04 83.82 0.914

Synapse-1.2 SMOTE 80.88 85.61 74.71 79.79 0.902
RO-SMOTE 82.27 84.68 81.08 82.84 0.899

Velocity-1.6 SMOTE 77.49 83.60 68.75 75.45 0.872

RO-SMOTE 80.41 78.97 83.48 81.16 0.854

Table 5 presents a comparison of the experimental results of SMOTE and RO-SMOTE in the SVM

classifier on the linear kernel. For balanced accuracy, RO-SMOTE provided better results than SMOTE in

eight datasets (0.18%-6.94%), while SMOTE excelled in two datasets (0.26%-0.28%). In terms of precision,
RO-SMOTE excelled in eight datasets (0.15%-10.42%), while SMOTE excelled in three datasets

(0.23%-1.73%). As for recall, RO-SMOTE excelled in 10 datasets (0.19%-9.02%), while SMOTE excelled in

only one dataset (0.82%). For the F1-Score, RO-SMOTE produced better results in 10 datasets

(0.17%-8.06%), while SMOTE was only superior in one dataset (0.57%). In terms of AUC value,

RO-SMOTE outperformed SMOTE in eight datasets (0.40%-10.90%), while SMOTE excelled in three

datasets (0.40%-0.70%).

Table 5. Results summary of SVM (linear) classifier

Dataset
Metrics

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%)

CM1 SMOTE 79.29 79.09 79.98 79.53 0.858

RO-SMOTE 80.86 80.44 81.43 80.93 0.873
KC1 SMOTE 72.46 72.93 71.51 72.21 0.815

RO-SMOTE 72.64 73.08 71.70 72.38 0.811
PC1 SMOTE 80.48 77.77 85.85 81.61 0.852

RO-SMOTE 81.40 77.23 89.31 82.83 0.856

Ant-1.3 SMOTE 82.38 79.11 89.45 83.96 0.867

RO-SMOTE 91.57 89.53 95.00 92.18 0.976
Ant-1.7 SMOTE 76.08 80.09 69.75 74.56 0.827

RO-SMOTE 75.80 79.86 68.93 73.99 0.820
Camel-1.6 SMOTE 65.64 67.90 59.60 63.48 0.719

RO-SMOTE 66.36 68.29 61.35 64.63 0.733

Ivy-2.0 SMOTE 81.26 80.04 83.68 81.82 0.871

RO-SMOTE 83.44 81.25 87.82 84.41 0.889
Jedit-4.3 SMOTE 83.07 84.76 80.73 82.70 0.906

RO-SMOTE 86.13 87.56 84.51 86.01 0.925
Poi-3.0 SMOTE 78.47 76.73 82.18 79.36 0.850

RO-SMOTE 78.21 75.00 85.40 79.86 0.844
Synapse-1.2 SMOTE 75.29 73.71 78.82 76.18 0.802

RO-SMOTE 75.29 72.74 84.33 78.11 0.808
Velocity-1.6 SMOTE 73.52 74.89 70.79 72.78 0.800

RO-SMOTE 80.46 81.90 79.81 80.84 0.845

Table 6 compares the performance of SMOTE and RO-SMOTE in the Radial kernel SVM classifier.

The experimental results show that, in terms of balanced accuracy, RO-SMOTE was superior in eight

datasets (0.16%-3.05%), while SMOTE excelled in three datasets (0.42%-0.61%). For precision,

RO-SMOTE excelled in six datasets (0.42%-5.36%), while SMOTE excelled in five datasets (1.10%-4.32%).

In terms of recall, RO-SMOTE outperformed in seven datasets (1.07%-9.21%), while SMOTE excelled in

four datasets (0.83%-4.06%). Furthermore, in terms of F1-score, RO-SMOTE produced better results than

Int J Artif Intell ISSN: 2252-8938 

 A three-step combination strategy for addressing outliers and class … Muhammad Rizky Pribadi)

2995

SMOTE in seven datasets (0.12%-3.73%), while SMOTE excelled in four datasets (0.16%-1.28%). Finally,

for AUC, RO-SMOTE excelled in eight datasets (0.10%-2.80%), while SMOTE excelled in three datasets

(0.30%-1.20%).

Table 6. Results summary of SVM (radial) classifier

Dataset
Metrics

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%)

CM1 SMOTE 88.31 90.10 86.44 88.23 0.948

RO-SMOTE 89.21 92.32 85.61 88.84 0.945

KC1 SMOTE 79.25 77.26 83.01 80.03 0.872
RO-SMOTE 78.64 78.55 78.95 78.75 0.860

PC1 SMOTE 91.57 89.62 94.09 91.80 0.969

RO-SMOTE 94.60 93.09 96.46 94.75 0.974

Ant-1.3 SMOTE 89.52 96.09 82.91 89.01 0.947

RO-SMOTE 91.57 93.76 89.00 91.32 0.948
Ant-1.7 SMOTE 86.27 82.72 92.38 87.28 0.939

RO-SMOTE 86.43 81.62 94.29 87.50 0.950

Camel-1.6 SMOTE 82.37 83.98 80.19 82.04 0.898

RO-SMOTE 81.86 82.50 81.26 81.88 0.886

Ivy-2.0 SMOTE 88.79 88.62 89.45 89.03 0.944
RO-SMOTE 89.37 91.57 86.86 89.15 0.950

Jedit-4.3 SMOTE 93.97 94.78 93.13 93.95 0.980

RO-SMOTE 93.55 92.51 94.82 93.65 0.968

Poi-3.0 SMOTE 83.98 86.37 80.79 83.49 0.906

RO-SMOTE 85.91 91.73 79.09 84.94 0.924
Synapse-1.2 SMOTE 81.76 89.25 72.94 80.27 0.892

RO-SMOTE 84.81 89.67 79.00 84.00 0.920

Velocity-1.6 SMOTE 80.45 80.46 82.71 81.57 0.902

RO-SMOTE 81.11 76.14 91.92 83.29 0.915

Table 7 compares the performance of SMOTE and RO-SMOTE in the SVM kernel poly classifier.

In this table, the performance of RO-SMOTE was superior to SMOTE in the balanced accuracy metric

(0.01%-17.60%). Regarding precision, RO-SMOTE was better in five datasets (1.62%-22.13%), while

SMOTE excelled in six datasets (0.08%-30.66%). In terms of recall, RO-SMOTE excelled in six datasets

(4.76%-82.37%), while SMOTE only excelled in five datasets (0.10%-7.09%). For the F1-score,

RO-SMOTE measurements produced better results in nine datasets (0.39%-43.83%), while SMOTE was

only superior in two datasets (0.24%-3.14%). Finally, in the AUC value, RO-SMOTE outperformed SMOTE

in 10 datasets (3.00%-27.30%), while SMOTE excelled in one dataset (6.30%).

Table 7. Results summary of SVM (poly) classifier

Dataset
Metrics

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%)

CM1 SMOTE 57.13 87.05 16.71 28.04 0.502

RO-SMOTE 61.14 56.39 99.08 71.87 0.775

KC1 SMOTE 61.81 81.04 39.82 53.40 0.756

RO-SMOTE 64.35 83.54 35.94 50.26 0.793

PC1 SMOTE 64.78 85.43 35.57 50.23 0.655

RO-SMOTE 65.55 81.35 40.33 53.93 0.769

Ant-1.3 SMOTE 67.14 61.74 96.36 75.26 0.763

RO-SMOTE 84.74 83.87 89.27 86.49 0.915

Ant-1.7 SMOTE 69.17 74.21 61.23 67.10 0.788

RO-SMOTE 71.96 68.32 82.32 74.67 0.813

Camel-1.6 SMOTE 66.15 61.74 85.85 71.83 0.728

RO-SMOTE 68.21 64.33 82.32 72.22 0.761

Ivy-2.0 SMOTE 72.10 90.39 49.63 64.08 0.872

RO-SMOTE 77.87 92.01 61.15 73.47 0.898

Jedit-4.3 SMOTE 78.48 71.06 97.08 82.06 0.925

RO-SMOTE 86.02 79.69 96.98 87.49 0.955

Poi-3.0 SMOTE 67.80 71.13 66.58 68.78 0.799

RO-SMOTE 74.19 68.37 90.44 77.87 0.736

Synapse-1.2 SMOTE 69.41 63.15 95.29 75.96 0.783

RO-SMOTE 69.42 63.07 94.71 75.72 0.813

Velocity-1.6 SMOTE 63.53 83.52 33.83 48.15 0.719

RO-SMOTE 70.62 72.08 73.82 72.94 0.800

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2987-2998

2996

After conducting experiments on all selected datasets and classifiers, involving 11 datasets and 5

classifiers, a total of 110 experiments were performed. The results demonstrate that the proposed

RO-SMOTE approach can significantly enhance classification performance in predicting software defects.

According to the experimental results, RO-SMOTE outperformed SMOTE 47 times, while SMOTE

outperformed RO-SMOTE only 8 times in terms of balanced accuracy measurements. Furthermore,

RO-SMOTE excelled 36 times in precision measurements, 40 times in recall, 45 times in F1-score, and 42

times in the AUC value. The average F1-score values in Figure 4 indicate that RO-SMOTE’s F1-score is

consistently higher, highlighting a balance between the model’s ability to identify true positives (precision)

and its ability to detect all true positive cases (recall). RO-SMOTE improves the performance of all the

classifiers used when compared to using SMOTE. RO-SMOTE enhances the performance of NN by 9.44%,

KNN by 8%, linear SVM by 10%, radial SVM by 8%, and poly SVM by 14%.

In the NN classifier, RO-SMOTE consistently improves balanced accuracy, F1-score, and AUC

across all 11 datasets. Therefore, selecting the right parameters for the NN classifier can notably enhance the

performance of the resulting software defect prediction model. When it comes to SVM with three different

kernels-linear, radial, and poly, the radial kernel achieved the highest balanced accuracy at 94.60% in the

PC1 dataset. This demonstrates that the radial kernel is the most suitable for classifying software defect

predictions using SVM. In contrast, using the poly kernel in SVM resulted in a decrease in classification

performance compared to the radial kernel. For instance, in the PC1 dataset, the balanced accuracy decreased

by 29.05%. However, implementing RO-SMOTE on the poly kernel of SVM led to a significant increase in

recall compared to SMOTE, as seen in the CM1 dataset, where the recall increased by 82.37%. This, in turn,

boosted the F1-score to 71.87%, representing a 43.83% increase. A higher F1-score value indicates a balance

between the model’s precision and recall.

Moreover, the outcomes of these experiments suggest that RO-SMOTE outperforms SMOTE in

both balanced accuracy and F1-score across all the datasets examined. In instances where datasets have a

larger volume of data and more significant imbalance, as observed in the Jedit dataset, the RO-SMOTE

method exhibits superior balanced accuracy compared to SMOTE. Conversely, for datasets containing fewer

data samples, such as synapse-1.2 and velocity-1.6, SMOTE consistently achieves substantially better

balanced accuracy, especially when combined with different classifiers. This poses a challenge for future

research, as it will require testing the proposed method on alternative datasets with varying combinations of

data sample quantities and imbalance ratios.

Figure 4. Comparison of average performance F1-scores between SMOTE and RO-SMOTE

4.3. Comparison with the current state of art

In this section, we assess the effectiveness of RO-SMOTE in comparison to the current

state-of-the-art method, SMOTE-LOF using Ant-1.3 dataset [21]. KNN classifiers have been used for this

comparisson. The metrics considered for comparison include Accuracy, F1-score, and AUC. The

classifications undergo training and evaluation through 10-fold cross-validation. Only the most optimal

results for the SMOTE-LOF model are included in the analysis. In the case of the Ant-1.3 dataset, the

findings demonstrated that the KNN classifier, when assessed based on Accuracy, AUC and F1-score metrics

with RO-SMOTE, surpassed the performance of SMOTE-LOF by 7.81%, 0.028 and 5.93%, respectively.

5. CONCLUSION

This paper introduces a model for classifying imbalanced datasets in software defect prediction. The

model employs three steps: first, oversampling the training data using SMOTE, second, removing noise from

the resulting oversampled data using the efficient algorithm, and finally, combining the cleaned data with the
original training data and rebalancing using SMOTE. Evaluation experiments were conducted on 11 datasets

74
.3

2%

79
%

7
0

% 79
%

58
%

83
.7

6%

87
%

80
% 87

%

72
%

N N K - N N S V M (L I N E A R) S V M (R A D I A L) S V M (P O L Y)

SMOTE RO-SMOTE

Int J Artif Intell ISSN: 2252-8938 

 A three-step combination strategy for addressing outliers and class … Muhammad Rizky Pribadi)

2997

for software defect prediction, utilizing five different classifiers and five evaluation metrics. The results

indicate that all classifiers demonstrated improved performance when the proposed RO-SMOTE model was

implemented, as opposed to using SMOTE alone. The extent of performance improvement varied across

datasets, classifiers, and metrics. NN classification consistently delivered strong performance, while other

classifiers showed high performance when combined with RO-SMOTE across various metrics for one or

more datasets. Compared to SMOTE, RO-SMOTE demonstrated performance improvements of up to 7.8%

in balanced accuracy, 22.13% in precision, 82.37% in recall, 43.83% in F1 metrics, and an increase of

27.30% in AUC. In the future, our research will expand to include multiclass imbalanced datasets.

Additionally, we plan to leverage deep learning models, such as AutoML and other deep learning

approaches, for noise detection and removal. These models will be combined with various resampling

techniques. Moreover, we intend to utilize deep learning models for data resampling to address the

limitations of existing techniques.

REFERENCES
[1] Y. Yang and M. Han, “Impact of mobile device usage and temporal distance on consumer post-consumption evaluations: evidence

from TripAdvisor,” Electronic Commerce Research and Applications, vol. 56, 2022, doi: 10.1016/j.elerap.2022.101208.

[2] B. Kocaman, S. Gelper, and F. Langerak, “Till the cloud do us part: technological disruption and brand retention in the enterprise software

industry,” International Journal of Research in Marketing, vol. 40, no. 2, pp. 316–341, 2023, doi: 10.1016/j.ijresmar.2022.11.001.

[3] J. A. Sava, “Information technology (IT) spending forecast worldwide from 2012 to 2023, by segment,” Statista, 2023. Accessed:

May 10, 2023. [Online]. Available: https://www.statista.com/Statistics/268938/Global-It-Spending-By-Segment/
[4] V. K. Kulamala, L. Kumar, and D. P. Mohapatra, “Software fault prediction using LSSVM with different kernel functions,”

Arabian Journal for Science and Engineering, vol. 46, no. 9, pp. 8655–8664, 2021, doi: 10.1007/s13369-021-05643-2.

[5] R. B. Bahaweres, F. Agustian, I. Hermadi, A. I. Suroso, and Y. Arkeman, “Software defect prediction using neural network based

smote,” in International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, Oct. 2020, pp.
71–76. doi: 10.23919/EECSI50503.2020.9251874.

[6] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing, vol. 385, pp. 100–110,

2020, doi: 10.1016/j.neucom.2019.11.067.

[7] A. Iqbal et al., “Performance analysis of machine learning techniques on software defect prediction using NASA datasets,” International

Journal of Advanced Computer Science and Applications, vol. 10, no. 5, pp. 300–308, 2019, doi: 10.14569/ijacsa.2019.0100538.
[8] G. Douzas, F. Bacao, and F. Last, “Improving imbalanced learning through a heuristic oversampling method based on k-means

and SMOTE,” Information Sciences, vol. 465, pp. 1–20, 2018, doi: 10.1016/j.ins.2018.06.056.

[9] G. Douzas and F. Bacao, “Effective data generation for imbalanced learning using conditional generative adversarial networks,”

Expert Systems with Applications, vol. 91, pp. 464–471, 2018, doi: 10.1016/j.eswa.2017.09.030.

[10] I. K. Timotius and S.-G. Miaou, “Arithmetic means of accuracies: a classifier performance measurement for imbalanced data set,” in
2010 International Conference on Audio, Language and Image Processing, 2010, pp. 1244–1251. doi: 10.1109/ICALIP.2010.5685124.

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,”

Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.

[12] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abraham, “A systematic literature review on software defect

prediction using artificial intelligence: datasets, data validation methods, approaches, and tools,” Engineering Applications of
Artificial Intelligence, vol. 111, 2022, doi: 10.1016/j.engappai.2022.104773.

[13] S. Feng, J. Keung, X. Yu, Y. Xiao, and M. Zhang, “Investigation on the stability of SMOTE-based oversampling techniques in

software defect prediction,” Information and Software Technology, vol. 139, 2021, doi: 10.1016/j.infsof.2021.106662.

[14] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: do different classifiers find the same defects?,” Software Quality

Journal, vol. 26, no. 2, pp. 525–552, Jun. 2018, doi: 10.1007/s11219-016-9353-3.
[15] T. F. Husin, M. R. Pribadi, and Yohannes, “Implementation of LSSVM in classification of software defect prediction data with

feature selection,” in 2022 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI),

IEEE, Oct. 2022, pp. 126–131. doi: 10.23919/EECSI56542.2022.9946611.

[16] P. Vuttipittayamongkol, E. Elyan, and A. Petrovski, “On the class overlap problem in imbalanced data classification,”

Knowledge-Based Systems, vol. 212, Jan. 2021, doi: 10.1016/j.knosys.2020.106631.
[17] T. Sharma, A. Jatain, S. Bhaskar, and K. Pabreja, “Ensemble machine learning paradigms in software defect prediction,” Procedia

Computer Science, vol. 218, pp. 199–209, 2023, doi: 10.1016/j.procs.2023.01.002.

[18] A. Kumar, A. Kumar, A. K. Bashir, M. Rashid, V. D. A. Kumar, and R. Kharel, “Distance based pattern driven mining for outlier

detection in high dimensional big dataset,” ACM Transactions on Management Information Systems, vol. 13, no. 1, pp. 1–17,

Mar. 2022, doi: 10.1145/3469891.
[19] I. Souiden, M. N. Omri, and Z. Brahmi, “A survey of outlier detection in high dimensional data streams,” Computer Science

Review, vol. 44, May 2022, doi: 10.1016/j.cosrev.2022.100463.

[20] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining outliers from large data sets,” in Proceedings of the 2000 ACM

SIGMOD international conference on Management of data, New York, USA: ACM, 2000, pp. 427–438. doi: 10.1145/342009.335437.

[21] Asniar, N. U. Maulidevi, and K. Surendro, “SMOTE-LOF for noise identification in imbalanced data classification,” Journal of King
Saud University-Computer and Information Sciences, vol. 34, no. 6, pp. 3413–3423, 2022, doi: 10.1016/j.jksuci.2021.01.014.

[22] N. Nnamoko and I. Korkontzelos, “Efficient treatment of outliers and class imbalance for diabetes prediction,” Artificial

Intelligence in Medicine, vol. 104, 2020, doi: 10.1016/j.artmed.2020.101815.

[23] A. Banerjee, K. Ghosh, S. Chatterjee, and D. Sen, “FOFO: fused oversampling framework by addressing outliers,” in 2021 International

Conference on Emerging Smart Computing and Informatics (ESCI), 2021, pp. 238–242. doi: 10.1109/ESCI50559.2021.9397056.
[24] B. Dastjerdy, A. Saeidi, and S. Heidarzadeh, “Review of applicable outlier detection methods to treat geomechanical data,”

Geotechnics, vol. 3, no. 2, pp. 375–396, May 2023, doi: 10.3390/geotechnics3020022.

[25] M. H. Ibrahim, “ODBOT: Outlier detection-based oversampling technique for imbalanced datasets learning,” Neural Computing

and Applications, vol. 33, no. 22, pp. 15781–15806, 2021, doi: 10.1007/s00521-021-06198-x.

[26] M. H. Ibrahim, “WBBA-KM: a hybrid weight-based bat algorithm with k-means algorithm for cluster analysis,” Journal of
Politeknik Dergisi, vol. 25, no. 1, pp. 65–73, Mar. 2022, doi: 10.2339/politeknik.689384.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2987-2998

2998

[27] P. Gnip, L. Vokorokos, and P. Drotár, “Selective oversampling approach for strongly imbalanced data,” PeerJ Computer Science,
vol. 7, Jun. 2021, doi: 10.7717/peerj-cs.604.

[28] N. Usman, E. Utami, and A. D. Hartanto, “Comparative analysis of elliptic envelope, isolation forest, one-class SVM, and local outlier

factor in detecting earthquakes with status anomaly using outlier,” in 2023 International Conference on Computer Science, Information

Technology and Engineering (ICCoSITE), IEEE, Feb. 2023, pp. 673–678. doi: 10.1109/ICCoSITE57641.2023.10127748.

[29] A. Puri and M. K. Gupta, “Knowledge discovery from noisy imbalanced and incomplete binary class data,” Expert Systems with
Applications, vol. 181, Nov. 2021, doi: 10.1016/j.eswa.2021.115179.

[30] M. T. Vo, T. Nguyen, H. A. Vo, and T. Le, “Noise-adaptive synthetic oversampling technique,” Applied Intelligence, vol. 51, no.

11, pp. 7827–7836, Nov. 2021, doi: 10.1007/s10489-021-02341-2.

[31] C. Pak, T. T. Wang, and X. H. Su, “An empirical study on software defect prediction using over-sampling by SMOTE,” International

Journal of Software Engineering and Knowledge Engineering, vol. 28, no. 6, pp. 811–830, 2018, doi: 10.1142/S0218194018500237.
[32] H. Alsawalqah, H. Faris, I. Aljarah, L. Alnemer, and N. Alhindawi, “Hybrid SMOTE-ensemble approach for software defect prediction,”

in Advances in Intelligent Systems and Computing, vol. 575, Springer, 2017, pp. 355–366. doi: 10.1007/978-3-319-57141-6_39.

[33] B. Chander and G. Kumaravelan, “Outlier detection strategies for WSNs: a survey,” Journal of King Saud University-Computer

and Information Sciences, vol. 34, no. 8, pp. 5684–5707, Sep. 2022, doi: 10.1016/j.jksuci.2021.02.012.

[34] O. Alghushairy, R. Alsini, T. Soule, and X. Ma, “A review of local outlier factor algorithms for outlier detection in big data
streams,” Big Data and Cognitive Computing, vol. 5, no. 1, pp. 1–24, 2021, doi: 10.3390/bdcc5010001.

[35] A. Arafa, N. El-Fishawy, M. Badawy, and M. Radad, “RN-SMOTE: Reduced noise SMOTE based on DBSCAN for enhancing

imbalanced data classification,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 8, pp. 5059–

5074, 2022, doi: 10.1016/j.jksuci.2022.06.005.

[36] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Tackling class overlap and imbalance problems in software defect prediction,”
Software Quality Journal, vol. 26, no. 1, pp. 97–125, Mar. 2018, doi: 10.1007/s11219-016-9342-6.

[37] Henderi, T. Wahyuningsih, and E. Rahwanto “Comparison of min-max normalization and Z-score normalization in the k-nearest

neighbor (KNN) algorithm to test the accuracy of types of breast cancer,” IJIIS: International Journal of Informatics and

Information Systems, vol. 4, no. 1, pp. 13–20, Mar. 2021, doi: 10.47738/ijiis.v4i1.73.

[38] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The balanced accuracy and its posterior distribution,” in 2010
20th International Conference on Pattern Recognition, IEEE, Aug. 2010, pp. 3121–3124. doi: 10.1109/ICPR.2010.764.

[39] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation,” BMC Genomics, vol. 21, no. 1, Jan. 2020, doi: 10.1186/s12864-019-6413-7.

BIOGRAPHIES OF AUTHORS

Muhammad Rizky Pribadi is a doctoral student at Satya Wacara Christian

University, and lecturer at Universitas Multi Data Palembang, Indonesia. He got masater from

Universitas Indonesia in 2014 and graduate from Universitas Multi Data Palembang in 2011,

both computer science. His research interest inculude machine learning, information retrieval,

text mining, and computer vision. He can be contacted at email: rizky@mdp.ac.id.

Hindriyanto Dwi Purnomo is a professor at Department of Information

Technology, Satya Wacana Christian University, Indonesia. He received his Bachelor degree

in Engineering Physics, from Gadjah Mada University, Indonesia, in 2005, Magister of

Information Technology from The University of Melbourne, Australia in 2009 and Doctor of

Philosophy in Industrial and System Engineering from Chung Yuan Christian University,

Taiwan, in 2013. He was a visiting scholar at Sophia University, Japan, in 2022. He has

received several recognitions and awards for his academic achievement. He also has

published many articles in reputable journals, conferences and books. His research interests

are in the field of metaheuristics, soft computing, machine learning, and deep learning. He

can be contacted at email: hindriyanto.purnomo@uksw.edu.

Hendry received a B.S. degree in Information Technology from Technology

School of Surabaya, in 2005, an M.S. degree in Information Technology from 10 November

Institute of Technology, Surabaya, in 2009, and a Ph.D. degree in Information Management

from Chaoyang University of Technology in 2018. From 2012-2014 he was the Director of

the Business and Technology Incubator at Satya Wacana Christian University. He is now a

lecturer in Faculty of Information Technology, Satya Wacana Christian University, Central

Java, Indonesia. His research interests include domain ontology, recommendation systems,

knowledge engineering, and applications of artificial intelligence. He can be contacted at

email: hendry@uksw.edu.

https://orcid.org/0000-0001-7440-9667
https://scholar.google.com/citations?user=y5fc61UAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57205225991
https://www.webofscience.com/wos/author/record/34239565
https://orcid.org/0000-0001-6728-7868
https://scholar.google.com/citations?user=K94eXrEAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=42462221100
https://orcid.org/0000-0002-7387-2622
https://scholar.google.com/citations?hl=id&user=gkDC980AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57197729542
https://www.webofscience.com/wos/author/record/ACL-6413-2022

