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 Software defect prediction often involves datasets with imbalanced 

distributions where one or more classes are underrepresented, referred to as 

the minority class, while other classes are overrepresented, known as the 

majority class. This imbalance can hinder accurate predictions of the 

minority class, leading to misclassification. While the synthetic minority 

oversampling technique (SMOTE) is a widely used approach to address 

imbalanced learning data, it can inadvertently generate synthetic minority 

samples that resemble the majority class and are considered outliers. This 

study aims to enhance SMOTE by integrating it with an efficient algorithm 

designed to identify outliers among synthetic minority samples. The 

resulting method, called reduced outliers (RO)-SMOTE, is evaluated using 

an imbalanced dataset, and its performance is compared to that of SMOTE. 

RO-SMOTE first performs oversampling on the training data using SMOTE 

to balance the dataset. Next, it applies the mining outlier algorithm to detect 

and eliminate outliers. Finally, RO-SMOTE applies SMOTE again to 

rebalance the dataset before introducing it to the underlying classifier. The 

experimental results demonstrate that RO-SMOTE achieves higher accuracy, 

precision, recall, F1-score, and area under curve (AUC) values compared to 

SMOTE. 
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1. INTRODUCTION 

The widespread use of devices in our daily lives has heightened our dependence on various software 

systems [1]. Any disruption in the operation of software upon which we heavily rely can lead to severe 

consequences [2]. To ensure the flawless functioning of such systems, comprehensive testing procedures are 

essential. According to Sava [3], an expert in information technology (IT) security and services market 

analysis, global IT spending reached $3.8 trillion in 2020 and was expected to increase by approximately 

5.1% to about $4.45 trillion in 2022 [3]. In the IT industry, approximately 35% of total development costs are 

allocated to quality control and testing [4]. 

One significant effort to reduce software testing costs is software defect prediction. It has become a 

practical approach to enhance the quality, efficiency, and cost-effectiveness of software testing by focusing 

on identifying defective software [5]. Recent research has extensively employed machine learning to develop 

models for defect prediction. Various methods have been proposed to address this task, relying on historical 

defect data, software metrics, and a chosen prediction algorithm. Techniques such as classification, 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2987-2998 

2988 

clustering, regression, and machine learning algorithms like artificial neural network, K-nearest neighbor 

(KNN), naive Bayes, decision tree, and ensemble methods have been utilized in this field [5]. The successful 

prediction of defective software allows for more effective resource allocation by prioritizing software that is 

predicted to contain defects [6]. 

However, datasets for software defect prediction often suffer from class imbalance, where very few 

defective software instances are available for comparison with non-defective ones [7]. To address this 

imbalance, software engineers can employ data-level techniques to manipulate training data and achieve a 

more balanced distribution [8]. These techniques include undersampling, which involves removing some data 

from the majority class, and oversampling, where new instances are added to the minority class by 

duplicating or creating new samples [9]. While undersampling poses the risk of losing important data, 

oversampling, particularly when the number of minority class instances is very small, can lead to a 

significant reduction in dataset size and potentially limit classifier performance [10]. One solution for 

handling imbalance issues using the oversampling method is the synthetic minority oversampling technique 

(SMOTE), which involves adding new instances through the KNN approach [11]. 

Previous studies have shown that SMOTE can be an effective method for addressing data imbalance 

in datasets. However, in the context of software defect prediction datasets, the issue goes beyond data 

imbalance; it also involves outliers [12]. While SMOTE is capable of mitigating class imbalance, it does not 

address the problem of outliers [13]. Research in software defect prediction is critical, as the quality of the 

data used directly impacts the model being developed. Software defect prediction datasets often contain noisy 

data with outliers and missing values, which can distort the results [14]. This issue is exemplified in a study 

[15] that utilized SMOTE to combat class imbalances in National Aeronautic and Space Administration 

(NASA) and least square support vector machine (LSSVM) datasets for classification. The study reported a 

low F1-score, such as the PC1 dataset achieving only a score of 0.2807, attributed to the substantial number 

of outliers in the training data after oversampling [16]. Supervised learning techniques, extensively employed 

in software defect prediction research, are highly sensitive to outliers, which can significantly reduce their 

accuracy [17]. 

Outliers, or anomalous values, refer to data points that significantly deviate from the norm in a 

dataset [18]. They are often considered unexpected values that fall outside a reasonable range, thereby 

affecting data analysis and the results of statistical tests [19]. Outliers can arise for various reasons, including 

measurement errors, data input errors, or very rare and unusual events that influence measurement outcomes 

[20]. For instance, if we have a dataset of human heights and one person’s height deviates significantly from 

the rest, we classify that individual as an outlier. The presence of extreme outliers can substantially impact 

statistical measures like the mean and standard deviation, rendering these measures unrepresentative of the 

true data distribution [20]. Consequently, outliers are often identified and considered for removal before 

conducting statistical analysis. However, it’s crucial to exercise caution when removing outliers, as doing so 

can alter the data distribution and affect the outcomes of statistical analysis [19]. 

This article introduces a novel model for addressing the class imbalance problem, termed reduced 

outliers (RO)-SMOTE. This innovative approach employs efficient algorithms to identify SMOTE-generated 

outliers and eliminate them from the training dataset. Following the removal of outliers, the dataset is 

resampled using the SMOTE method to achieve data balance. The primary contributions of this paper are: 

‒ The introduction of a novel pre-processing technique for addressing data imbalance, RO-SMOTE, which 

leverages efficient algorithms to remove outliers after SMOTE oversampling. 

‒ An evaluation of the proposed RO-SMOTE using various classifiers and cross-project datasets for 

software defect prediction. 

‒ A comparative analysis of classifier performance when combined with RO-SMOTE against their 

performance when combined with SMOTE. 

The remaining sections of this paper are structured as follows: section 2 provides a review of related 

work. In section 3, we introduce the proposed model, beginning with an overview of SMOTE and the 

efficient algorithm, followed by a detailed explanation of RO-SMOTE. Section 4 presents the experimental 

setup and discusses the obtained results. Finally, section 5 offers conclusions and recommendations for future 

research. 

 

 

2. RELATED WORK 

A successful strategy for handling imbalanced dataset classification involves adopting a different 

perspective by treating the data as anomalies or noise. This is necessary because the initial dataset may 

contain irregularities, and some resampling methods, like SMOTE, may inadvertently introduce more noise, 

worsening the imbalance problem. High levels of noise within the training dataset can adversely impact 

classifier performance, a perspective that several studies have addressed [16]. 
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Asniar et al. [21] proposed SMOTE-local outlier factor (LOF), which combined SMOTE for 

oversampling with LOF for noise detection in three real-world datasets characterized by low imbalance ratios. 

However, its performance across various classifiers, datasets with different imbalance ratios, and dimensions 

remains uncertain. Additionally, LOF is computationally intensive compared to other techniques. Some 

researchers [22], [23] employed the interquartile range (IQR) for outlier detection in their oversampling 

method. Initially, they detected outliers within the imbalanced dataset using the IQR algorithm and then 

oversampled these identified outliers with replacement to integrate them into the original dataset. Finally, they 

applied SMOTE to balance the dataset. The IQR, however, does not account for variations in data distribution 

as it relies solely on the two data points, namely Q1 and Q3, to gauge data spread. Consequently, the IQR may 

not accurately represent outliers, especially in datasets with diverse distributions [24]. 

Another technique, the outlier detection-based oversampling technique (ODBOT) [25], was 

introduced for imbalance datasets in multi-class scenarios. It clusters data using weight-based bat algorithm 

with k-means (WBBA-KM) to identify dissimilarities between minority and majority classes and then 

identifies outliers in the minority class by comparing the relationship of differences between the cluster 

centers in the minority and majority classes. Samples are generated according to the best minority cluster 

boundary. However, the use of the WBBA-KM algorithm comes with high complexity, primarily due to the 

time required to construct the hierarchical tree from large datasets [26]. Another study introduced the 

selective oversampling approach (SOA) [27], which identifies outliers in minor classes using a one-class 

support vector machine (OCSVM) before removing them and oversampling the data with SMOTE and 

adaptive synthetic sampling (ADASYN). However, OCSVM’s accuracy may be compromised when dealing 

with limited training data, and it can be time-consuming when applied to large datasets [28]. 

Furthermore, SMOTE-iterative-partitioning filter (IPF) [28] combines oversampling and noise-

filtering methods. The process commences by augmenting the training data through SMOTE, followed by the 

removal of noise and boundary samples using the IPF. Although this method was tested on real-world 

datasets featuring up to 19 attributes and a minimum imbalance ratio of 35:301, its effectiveness in scenarios 

with lower imbalance ratios or greater dimensions has not been investigated. It is important to highlight that 

the evaluation focused solely on the C4.5 classifier, utilizing the area under curve (AUC) metric, and did not 

extend the analysis to include other classifiers or metrics. 

Puri and Gupta [29] proposed a hybrid model named K-means-SMOTE–edited nearest neighbors 

(ENN), which integrates bagging, K-means clustering, ENN, and adaptive boosting (AdBoost). In this 

approach, the model begins by clustering the training data within individual subsamples through K-means 

clustering [29]. Subsequently, it employs SMOTE to oversample data within each cluster and removes noise 

using ENN. The study evaluated this approach using real-world datasets with a maximum of 9 attributes, and 

it didn’t assess the model’s performance on datasfets with higher dimensions, primarily due to significant 

computational time requirements, which placed it last among the fifteen other approaches it was compared to. 

In addition, there’s another proposal called noise-adaptive synthetic oversampling technique 

(NASOTECH) [30]. NASOTECH makes use of the noise-adaptive synthetic oversampling (NASO) rule, 

which involves applying the KNN method to calculate the total distance from each sample in the minority 

class to its Kth nearest neighbors. These cumulative distances are then utilized to determine the noise ratio 

for each minority class sample, guiding the generation of synthetic samples. The evaluation of this approach 

was conducted exclusively with a single classifier, namely the support vector machine (SVM), using  

real-world datasets with a maximum of 294 features. However, its performance with other classifiers 

employing different operational principles has not been explored. 

These research findings illustrate that integrating SMOTE with outlier cleaning methods can 

improve the performance of diverse machine learning classifiers. This enhancement is achieved by furnishing 

the classifiers with balanced training datasets while minimizing noise. Nevertheless, a few of these studies 

have only applied their techniques to a restricted range of classifiers, leaving their effectiveness unexplored 

with other classifier types. Furthermore, some studies have neglected the evaluation of crucial performance 

metrics. Furthermore, previous research has primarily concentrated on datasets with a restricted number of 

attributes. Moreover, none of these studies have tackled datasets with highly severe imbalance ratios. 

 

 

3. METHOD 

This section presents the proposed methodology, which combines SMOTE and efficient algorithms 

to address the outlier issue in imbalanced data. Subsection 3.1 describes SMOTE [11] as the basis of the 

proposed method. While subsection 3.2 discusses the utilization of efficient algorithms [21] to identify the 

outliers generated by SMOTE. 
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3.1.  Synthetic minority oversampling technique 

The SMOTE was initially introduced by Chawla et al. [11]. This method has gained popularity for 

addressing class imbalance issues. To tackle class imbalance, the SMOTE technique augments the 

underrepresented class with synthetic data, which is generated within the minority class using the KNN 

method [5]. SMOTE has been widely adopted by researchers and practitioners, particularly in the context of 

software defect prediction, as demonstrated some references [5], [13], [15], [31], [32]. An illustration of the 

SMOTE method is presented in Figure 1. 

 

 

 
 

Figure 1. Illustration of SMOTE 

 

 

SMOTE has two hyperparameters: N, representing the percentage of oversampling for minority 

classes (non-defect), and k, which signifies the number of nearest neighbors used to generate synthetic data. 

There is no definitive rule for determining the values of k and N. The formula used to generate a new 

instance is found in (1). In this way, SMOTE helps optimize the class distribution in the dataset, enhancing 

the machine learning model’s ability to recognize and predict the minority class more accurately. 

 

𝑥′ =  𝑥 + 𝑟𝑎𝑛𝑑(0,1) ∗ |𝑥 − 𝑥𝑘| (1) 

 

Algorithm SMOTE(T,N,k) 
Input: Number of minority class samples T; Amount of SMOTE N%; Number of nearest neighbors k 

Output: (N/100) * T synthetic minority class samples 

1. (* If N is less than 100% randomize the minority class samples as only a random percent of them will be SMOTEd.* 

2. if N < 100 

3.     then Randomize the T minority class samples  

4.          T = (N/100) * T 

5.          N = 100 

6. endif 

7. N = (int)(N/100) ( * The amount of SMOTE is assumed to be in integral multiples of 100.*) 

8. k = Number of nearest neighbors 

9. numattrs = Number of attributes 

10. Samples[][]: array for original minority class samples 

11. newindex: keeps a count number of synthetic samples generated,  

initialized to 0 

12. Synthetic[][]: array for synthetic for synthetic samples 

(*Compute k nearest neighbors for each minority class sample only.*) 

13. for i ← 1 to T 

14.         Compute k nearest neighbors for i, and save the indices in the nnarray 

15.           Populate(N, i, nnarray) 

16. endfor 

       Populate(N, i, nnarray) (* Function to generate the synthetic samples. *) 

17. while N ≠ 0 

18.          Choose a random number between 1 and k, call it nn.  

         This step chooses one of the k nearest neighbors of the k  

         nearest neighbors of i. 

19.          for attr ← 1 to numattrs 

20.                      Compute: dif = Sample[nnarray[nn]][attr] – Sample[i][attr] 

21.                      Compute: gap = Random number between 0 and 1 

22.                      Synthetic[newindex][attr] = Sample[i][attr] + gap * dif 

23.         endfor 

24.         Newindex++ 

Synthetic minority oversampling technique 
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25.         N = N – 1 

26. endwhile 

27. return (* End of Populate *) 

     End of Pseudo-Code 
 

3.2.  Mining outliers 

Outliers are data points or observations that significantly deviate from the expected or typical data 

points within a dataset [33]. When the number of outliers increases in an imbalanced dataset, it can lead to a 

decline in the performance of the classification algorithm due to reduced model accuracy [25]. In this study, 

the identified outliers are primarily derived from synthetic minority class samples created by SMOTE. 

This study aims to detect the noise introduced by SMOTE using efficient algorithms, which can 

effectively identify outliers based on a point’s distance from its KNN [20]. Another method used for outlier 

detection is the LOF. LOF calculates the distance between each data point and other data points within a 

specific range to assess the degree of abnormality for each data point in the dataset [34]. However, the LOF 

algorithm has some limitations, such as longer execution times and sensitivity to the minimum point value. 

The third method used for outlier detection is density-based spatial clustering of applications with noise 

(DBSCAN) [35], but it is susceptible to high-dimensional datasets, making it challenging to distinguish 

between outlier points and dense points.  

The current study seeks to identify outliers generated by SMOTE using an approach recommended 

by Ramaswamy et al. [20]. This method offers a more efficient strategy for outlier identification, assigning 

distinct outlier levels to each object. It proposes a formulation for recognizing distance-based outliers by 

computing the distance between a point and its k-th nearest neighbor. The ranking of each point is 

determined by its distance from the k-th nearest neighbor, and the top n points in this ranking are designated 

as outliers. Parameters for the number of neighbors (k) and the number of outliers (n) allow for 

customization. This approach is grounded in a straightforward and intuitive distance-based outlier criterion, 

as articulated by Knorr and Ng: ‘A point p within a dataset is considered an outlier based on two parameters, 

k and d, if no more than k points in the dataset are found at a distance of d or less from p’. 

This algorithm introduces a new boolean attribute called ‘outlier’ to the provided ExampleSet. If the 

‘outlier’ attribute has a true value, it signifies that the corresponding example is an outlier, while a false value 

indicates that the example is not an outlier. The ‘outlier’ attribute is set to true for a total of n examples 

(where n is determined by the number of outliers parameter). This operator supports various distance 

functions, and you can specify your desired distance function by setting it through the distance function 

parameter.  

Figure 2 illustrates the RO-SMOTE algorithm, which combines SMOTE with the mining outliers 

algorithm [20] to obtain training data with minimal outliers before applying it to the learning algorithm. The 

core concept involves using SMOTE on imbalanced training data to balance it. However, the results of 

balanced SMOTE often contain outliers [36], [37], which can mislead the classifier. Therefore, in the 

subsequent step, the mining outliers algorithm [20] is used to remove the detected outliers, resulting in clean 

but imbalanced data that is then integrated with the training data. To prepare this data for classifier use, 

SMOTE is reapplied to balance it and produce clean, balanced data. Figure 2 offers an overview of this 

process. 

 

 

 
 

Figure 2. An overview of the RO-SMOTE mode, illustrating the steps and both the minor and major classes 

involved in each step 

 

 

Figure 3 outlines the specific steps of the proposed process. The process initiated by normalizing the 

dataset through Z-score normalization [37]. Subsequently, the normalized dataset underwent resampling 

using SMOTE to create balanced data. The outcomes fof data resampling were further refined using an 

efficient algorithm since the newly balanced data still contained outliers. 
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Figure 3. Flowchart of research process 

 

 

4. RESULTS AND DISCUSSION 

In this section, we discuss the evaluation of RO-SMOTE, which includes assessing its performance 

with three different classification algorithms: KNN, SVM, and neural network (NN). We conducted this 

evaluation on datasets from 11 cross-projects for software defect prediction, each with varying imbalance 

ratios. The evaluation employed multiple metrics, such as balanced accuracy [38], precision, recall, F1-score, 

and AUC. 

 

4.1.  Datasets 

This study utilized datasets from 11 cross-projects for software prediction sourced from NASA and 

promise projects. To distribute the dataset, we applied K-fold cross validation (K=10). In this study, one fold 

was reserved for testing data, while the remaining nine folds were allocated for training data in each dataset. 

Table 1 provides details regarding the number of features, samples, and imbalance ratios for each dataset. 

These datasets include attributes like static software metrics that help characterize the presence of defects in 

the software. 

 

 

Table 1. Properties of datasets in 11 projects 
Datasets Project #instances #Attributes #defects %defect 

NASA MDP CM1 327 38 42 12.84 
KC1 2109 22 326 15.4 

PC1 679 38 25 10 

PROMISE Ant-1.3 125 21 20 16 

Ant-1.7 745 21 166 22.28 
Camel-1.6 965 21 188 19.48 

Ivy-2.0 352 21 40 11.36 

Jedit-4.3 492 21 11 2.24 

Poi-3.0 442 21 281 63.57 

Synapse-1.2 256 21 86 33.59 
Velocity-1.6 229 21 78 34.06 

 

 

4.2.  Results discussion for classifier 

In this section, we delve into the results of implementing RO-SMOTE with KNN, SVM, and NN 

algorithms. The hyperparameters for these classifiers have been optimized using 10-fold grid search, and the 

hyperparameter configurations are outlined in Table 2. The inclusion of three distinct algorithms in this paper 

serves the purpose of evaluating the compatibility of RO-SMOTE with various algorithms. RO-SMOTE’s 

performance was then compared with that of SMOTE to assess the improvement in classifier algorithm 
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performance. The performance of each classifier was evaluated based on balanced accuracy,  

F1-score, precision, recall, and AUC across all 11 datasets. The results for each classifier are presented in 

individual tables. Balanced accuracy score represents an enhanced version of the standard accuracy metric, 

specifically tailored to enhance performance on datasets with imbalanced class distributions. It accomplishes 

this by calculating the average accuracy for each class individually, as opposed to the aggregation employed 

in standard accuracy calculations [38]. The F1-score, on the other hand, is the harmonic mean of precision 

and recall from a classification model. In the context of imbalanced datasets, the F1-score serves as a more 

reliable alternative to the standard accuracy metric. It provides a more accurate assessment of the model’s 

performance, especially when prioritizing the evaluation of minority or critical classes [39]. 

 

 

Table 2. Hyperparameter configuration 
Classifier Hyperparameters 

SMOTE k = 2 

NN training cycles = 200, learning rate= 0.01 

KNN k = 5 

SVM (linear) Kernel cache = 200 

SVM (radial) Kernel gamma = 1.0 
SVM (poly) Kernel degree = 2.0 

 

 

Table 3 compares the performance of SMOTE and RO-SMOTE in the NN classifier. From this 

table, the performance of RO-SMOTE was superior to SMOTE in terms of balanced accuracy metrics 

(0.42%-5.2%), F1-score (1.18%-4.38%), and AUC (0.50%-5.70%). In terms of precision, RO-SMOTE 

outperformed SMOTE in six datasets (0.62%-7.3%), while SMOTE excelled in five datasets (0.34%-3.89%). 

Regarding recall, RO-SMOTE was superior in 11 datasets (0.26%-12.29%), while SMOTE only excelled in 2 

datasets (1.62%-2.17%). 

 

 

Table 3. Results summary of NN classifier 

Dataset 
Metrics 

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%) 

CM1 SMOTE 80.63 79.15 84.19 81.59 0.861 
RO-SMOTE 83.06 83.64 82.57 83.10 0.888 

KC1 SMOTE 73.39 71.94 77.29 74.51 0.818 

RO-SMOTE 75.11 70.87 86.60 77.54 0.832 

PC1 SMOTE 82.75 78.47 91.12 84.32 0.887 

RO-SMOTE 86.06 81.72 93.33 87.13 0.914 

Ant-1.3 SMOTE 86.19 85.75 88.73 87.21 0.889 

RO-SMOTE 91.39 93.05 89.67 91.32 0.946 

Ant-1.7 SMOTE 77.72 78.98 75.67 77.28 0.838 

RO-SMOTE 79.15 78.64 81.05 79.82 0.854 

Camel-1.6 SMOTE 74.38 71.97 81.04 76.23 0.810 
RO-SMOTE 75.03 73.39 78.87 76.03 0.820 

Ivy-2.0 SMOTE 83.49 88.47 77.83 82.80 0.910 

RO-SMOTE 85.93 85.59 86.79 86.18 0.924 

Jedit-4.3 SMOTE 94.18 93.16 95.42 94.27 0.975 

RO-SMOTE 94.60 93.78 95.68 95.68 0.980 
Poi-3.0 SMOTE 79.19 78.91 80.86 79.87 0.844 

RO-SMOTE 79.85 76.56 86.11 81.05 0.807 

Synapse-1.2 SMOTE 79.12 79.45 79.41 79.42 0.846 

RO-SMOTE 81.52 80.56 84.17 82.32 0.875 

Velocity-1.6 SMOTE 77.13 82.00 72.21 76.79 0.841 
RO-SMOTE 80.27 78.11 84.50 81.17 0.832 

 

 

Table 4 compares the performance of SMOTE and RO-SMOTE in the KNN classifier. The 

experimental results demonstrated that RO-SMOTE outperformed SMOTE in terms of balanced accuracy in 

nine datasets (0.06%-7.81%), while SMOTE excelled in two datasets (0.48%-4.46%). In terms of precision, 

RO-SMOTE excelled in six datasets (0.21%-15.43%), while SMOTE excelled in two datasets  

(0.19%-10.47%). RO-SMOTE outperformed in recall in seven datasets (0.12%-14.73%), while SMOTE 

outperformed in four datasets (0.31%-17.97%). Furthermore, for the results of the F1-score, RO-SMOTE 

produced better results than SMOTE in eight datasets (0.11%-5.93%), while SMOTE excelled in three 

datasets (0.4%-3.69%). For AUC, RO-SMOTE excelled in eight datasets (0.20%-2.80%), while SMOTE 

excelled in three datasets (0.10%-2.20%). 
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Table 4. Results summary of KNN classifier 

Dataset 
Metrics 

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%) 

CM1 SMOTE 88.09 82.33 97.32 89.20 0.942 
RO-SMOTE 88.75 97.76 79.35 87.60 0.954 

KC1 SMOTE 85.45 81.21 92.32 86.41 0.928 
RO-SMOTE 85.51 81.02 92.81 86.52 0.935 

PC1 SMOTE 93.17 89.20 98.35 93.55 0.972 
RO-SMOTE 92.69 88.72 98.04 93.15 0.971 

Ant-1.3 SMOTE 85.24 80.62 95.18 87.30 0.928 
RO-SMOTE 93.05 94.49 92.00 93.23 0.956 

Ant-1.7 SMOTE 84.63 79.66 93.44 86.00 0.920 
RO-SMOTE 85.80 82.22 91.79 86.74 0.920 

Camel-1.6 SMOTE 80.05 74.06 92.53 82.27 0.880 

RO-SMOTE 79.95 73.74 93.40 82.41 0.889 

Ivy-2.0 SMOTE 90.39 96.06 84.43 89.87 0.946 
RO-SMOTE 85.93 85.59 86.79 86.18 0.924 

Jedit-4.3 SMOTE 94.08 91.47 97.30 94.29 0.984 
RO-SMOTE 95.05 93.13 97.42 95.23 0.986 

Poi-3.0 SMOTE 82.20 81.51 84.72 83.08 0.886 
RO-SMOTE 83.33 81.72 86.04 83.82 0.914 

Synapse-1.2 SMOTE 80.88 85.61 74.71 79.79 0.902 
RO-SMOTE 82.27 84.68 81.08 82.84 0.899 

Velocity-1.6 SMOTE 77.49 83.60 68.75 75.45 0.872 

RO-SMOTE 80.41 78.97 83.48 81.16 0.854 

 

 

Table 5 presents a comparison of the experimental results of SMOTE and RO-SMOTE in the SVM 

classifier on the linear kernel. For balanced accuracy, RO-SMOTE provided better results than SMOTE in 

eight datasets (0.18%-6.94%), while SMOTE excelled in two datasets (0.26%-0.28%). In terms of precision, 
RO-SMOTE excelled in eight datasets (0.15%-10.42%), while SMOTE excelled in three datasets  

(0.23%-1.73%). As for recall, RO-SMOTE excelled in 10 datasets (0.19%-9.02%), while SMOTE excelled in 

only one dataset (0.82%). For the F1-Score, RO-SMOTE produced better results in 10 datasets  

(0.17%-8.06%), while SMOTE was only superior in one dataset (0.57%). In terms of AUC value,  

RO-SMOTE outperformed SMOTE in eight datasets (0.40%-10.90%), while SMOTE excelled in three 

datasets (0.40%-0.70%). 
 

 

Table 5. Results summary of SVM (linear) classifier 

Dataset 
Metrics 

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%) 

CM1 SMOTE 79.29 79.09 79.98 79.53 0.858 

RO-SMOTE 80.86 80.44 81.43 80.93 0.873 
KC1 SMOTE 72.46 72.93 71.51 72.21 0.815 

RO-SMOTE 72.64 73.08 71.70 72.38 0.811 
PC1 SMOTE 80.48 77.77 85.85 81.61 0.852 

RO-SMOTE 81.40 77.23 89.31 82.83 0.856 

Ant-1.3 SMOTE 82.38 79.11 89.45 83.96 0.867 

RO-SMOTE 91.57 89.53 95.00 92.18 0.976 
Ant-1.7 SMOTE 76.08 80.09 69.75 74.56 0.827 

RO-SMOTE 75.80 79.86 68.93 73.99 0.820 
Camel-1.6 SMOTE 65.64 67.90 59.60 63.48 0.719 

RO-SMOTE 66.36 68.29 61.35 64.63 0.733 

Ivy-2.0 SMOTE 81.26 80.04 83.68 81.82 0.871 

RO-SMOTE 83.44 81.25 87.82 84.41 0.889 
Jedit-4.3 SMOTE 83.07 84.76 80.73 82.70 0.906 

RO-SMOTE 86.13 87.56 84.51 86.01 0.925 
Poi-3.0 SMOTE 78.47 76.73 82.18 79.36 0.850 

RO-SMOTE 78.21 75.00 85.40 79.86 0.844 
Synapse-1.2 SMOTE 75.29 73.71 78.82 76.18 0.802 

RO-SMOTE 75.29 72.74 84.33 78.11 0.808 
Velocity-1.6 SMOTE 73.52 74.89 70.79 72.78 0.800 

RO-SMOTE 80.46 81.90 79.81 80.84 0.845 

 

 

Table 6 compares the performance of SMOTE and RO-SMOTE in the Radial kernel SVM classifier. 

The experimental results show that, in terms of balanced accuracy, RO-SMOTE was superior in eight 

datasets (0.16%-3.05%), while SMOTE excelled in three datasets (0.42%-0.61%). For precision,  

RO-SMOTE excelled in six datasets (0.42%-5.36%), while SMOTE excelled in five datasets (1.10%-4.32%). 

In terms of recall, RO-SMOTE outperformed in seven datasets (1.07%-9.21%), while SMOTE excelled in 

four datasets (0.83%-4.06%). Furthermore, in terms of F1-score, RO-SMOTE produced better results than 
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SMOTE in seven datasets (0.12%-3.73%), while SMOTE excelled in four datasets (0.16%-1.28%). Finally, 

for AUC, RO-SMOTE excelled in eight datasets (0.10%-2.80%), while SMOTE excelled in three datasets 

(0.30%-1.20%). 
 

 

Table 6. Results summary of SVM (radial) classifier 

Dataset 
Metrics 

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%) 

CM1 SMOTE 88.31 90.10 86.44 88.23 0.948 

RO-SMOTE 89.21 92.32 85.61 88.84 0.945 

KC1 SMOTE 79.25 77.26 83.01 80.03 0.872 
RO-SMOTE 78.64 78.55 78.95 78.75 0.860 

PC1 SMOTE 91.57 89.62 94.09 91.80 0.969 

RO-SMOTE 94.60 93.09 96.46 94.75 0.974 

Ant-1.3 SMOTE 89.52 96.09 82.91 89.01 0.947 

RO-SMOTE 91.57 93.76 89.00 91.32 0.948 
Ant-1.7 SMOTE 86.27 82.72 92.38 87.28 0.939 

RO-SMOTE 86.43 81.62 94.29 87.50 0.950 

Camel-1.6 SMOTE 82.37 83.98 80.19 82.04 0.898 

RO-SMOTE 81.86 82.50 81.26 81.88 0.886 

Ivy-2.0 SMOTE 88.79 88.62 89.45 89.03 0.944 
RO-SMOTE 89.37 91.57 86.86 89.15 0.950 

Jedit-4.3 SMOTE 93.97 94.78 93.13 93.95 0.980 

RO-SMOTE 93.55 92.51 94.82 93.65 0.968 

Poi-3.0 SMOTE 83.98 86.37 80.79 83.49 0.906 

RO-SMOTE 85.91 91.73 79.09 84.94 0.924 
Synapse-1.2 SMOTE 81.76 89.25 72.94 80.27 0.892 

RO-SMOTE 84.81 89.67 79.00 84.00 0.920 

Velocity-1.6 SMOTE 80.45 80.46 82.71 81.57 0.902 

RO-SMOTE 81.11 76.14 91.92 83.29 0.915 

 

 

Table 7 compares the performance of SMOTE and RO-SMOTE in the SVM kernel poly classifier. 

In this table, the performance of RO-SMOTE was superior to SMOTE in the balanced accuracy metric 

(0.01%-17.60%). Regarding precision, RO-SMOTE was better in five datasets (1.62%-22.13%), while 

SMOTE excelled in six datasets (0.08%-30.66%). In terms of recall, RO-SMOTE excelled in six datasets 

(4.76%-82.37%), while SMOTE only excelled in five datasets (0.10%-7.09%). For the F1-score,  

RO-SMOTE measurements produced better results in nine datasets (0.39%-43.83%), while SMOTE was 

only superior in two datasets (0.24%-3.14%). Finally, in the AUC value, RO-SMOTE outperformed SMOTE 

in 10 datasets (3.00%-27.30%), while SMOTE excelled in one dataset (6.30%). 
 

 

Table 7. Results summary of SVM (poly) classifier 

Dataset 
Metrics 

Model Balanced accuracy (%) Precision (%) Recall (%) F1-score(%) AUC (%) 

CM1 SMOTE 57.13 87.05 16.71 28.04 0.502 

RO-SMOTE 61.14 56.39 99.08 71.87 0.775 

KC1 SMOTE 61.81 81.04 39.82 53.40 0.756 

RO-SMOTE 64.35 83.54 35.94 50.26 0.793 

PC1 SMOTE 64.78 85.43 35.57 50.23 0.655 

RO-SMOTE 65.55 81.35 40.33 53.93 0.769 

Ant-1.3 SMOTE 67.14 61.74 96.36 75.26 0.763 

RO-SMOTE 84.74 83.87 89.27 86.49 0.915 

Ant-1.7 SMOTE 69.17 74.21 61.23 67.10 0.788 

RO-SMOTE 71.96 68.32 82.32 74.67 0.813 

Camel-1.6 SMOTE 66.15 61.74 85.85 71.83 0.728 

RO-SMOTE 68.21 64.33 82.32 72.22 0.761 

Ivy-2.0 SMOTE 72.10 90.39 49.63 64.08 0.872 

RO-SMOTE 77.87 92.01 61.15 73.47 0.898 

Jedit-4.3 SMOTE 78.48 71.06 97.08 82.06 0.925 

RO-SMOTE 86.02 79.69 96.98 87.49 0.955 

Poi-3.0 SMOTE 67.80 71.13 66.58 68.78 0.799 

RO-SMOTE 74.19 68.37 90.44 77.87 0.736 

Synapse-1.2 SMOTE 69.41 63.15 95.29 75.96 0.783 

RO-SMOTE 69.42 63.07 94.71 75.72 0.813 

Velocity-1.6 SMOTE 63.53 83.52 33.83 48.15 0.719 

RO-SMOTE 70.62 72.08 73.82 72.94 0.800 
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After conducting experiments on all selected datasets and classifiers, involving 11 datasets and 5 

classifiers, a total of 110 experiments were performed. The results demonstrate that the proposed  

RO-SMOTE approach can significantly enhance classification performance in predicting software defects. 

According to the experimental results, RO-SMOTE outperformed SMOTE 47 times, while SMOTE 

outperformed RO-SMOTE only 8 times in terms of balanced accuracy measurements. Furthermore,  

RO-SMOTE excelled 36 times in precision measurements, 40 times in recall, 45 times in F1-score, and 42 

times in the AUC value. The average F1-score values in Figure 4 indicate that RO-SMOTE’s F1-score is 

consistently higher, highlighting a balance between the model’s ability to identify true positives (precision) 

and its ability to detect all true positive cases (recall). RO-SMOTE improves the performance of all the 

classifiers used when compared to using SMOTE. RO-SMOTE enhances the performance of NN by 9.44%, 

KNN by 8%, linear SVM by 10%, radial SVM by 8%, and poly SVM by 14%.  

In the NN classifier, RO-SMOTE consistently improves balanced accuracy, F1-score, and AUC 

across all 11 datasets. Therefore, selecting the right parameters for the NN classifier can notably enhance the 

performance of the resulting software defect prediction model. When it comes to SVM with three different 

kernels-linear, radial, and poly, the radial kernel achieved the highest balanced accuracy at 94.60% in the 

PC1 dataset. This demonstrates that the radial kernel is the most suitable for classifying software defect 

predictions using SVM. In contrast, using the poly kernel in SVM resulted in a decrease in classification 

performance compared to the radial kernel. For instance, in the PC1 dataset, the balanced accuracy decreased 

by 29.05%. However, implementing RO-SMOTE on the poly kernel of SVM led to a significant increase in 

recall compared to SMOTE, as seen in the CM1 dataset, where the recall increased by 82.37%. This, in turn, 

boosted the F1-score to 71.87%, representing a 43.83% increase. A higher F1-score value indicates a balance 

between the model’s precision and recall. 

Moreover, the outcomes of these experiments suggest that RO-SMOTE outperforms SMOTE in 

both balanced accuracy and F1-score across all the datasets examined. In instances where datasets have a 

larger volume of data and more significant imbalance, as observed in the Jedit dataset, the RO-SMOTE 

method exhibits superior balanced accuracy compared to SMOTE. Conversely, for datasets containing fewer 

data samples, such as synapse-1.2 and velocity-1.6, SMOTE consistently achieves substantially better 

balanced accuracy, especially when combined with different classifiers. This poses a challenge for future 

research, as it will require testing the proposed method on alternative datasets with varying combinations of 

data sample quantities and imbalance ratios. 

 

 

 
 

Figure 4. Comparison of average performance F1-scores between SMOTE and RO-SMOTE 

 

 

4.3.  Comparison with the current state of art 

In this section, we assess the effectiveness of RO-SMOTE in comparison to the current  

state-of-the-art method, SMOTE-LOF using Ant-1.3 dataset [21]. KNN classifiers have been used for this 

comparisson. The metrics considered for comparison include Accuracy, F1-score, and AUC. The 

classifications undergo training and evaluation through 10-fold cross-validation. Only the most optimal 

results for the SMOTE-LOF model are included in the analysis. In the case of the Ant-1.3 dataset, the 

findings demonstrated that the KNN classifier, when assessed based on Accuracy, AUC and F1-score metrics 

with RO-SMOTE, surpassed the performance of SMOTE-LOF by 7.81%, 0.028 and 5.93%, respectively. 

 

 

5. CONCLUSION 

This paper introduces a model for classifying imbalanced datasets in software defect prediction. The 

model employs three steps: first, oversampling the training data using SMOTE, second, removing noise from 

the resulting oversampled data using the efficient algorithm, and finally, combining the cleaned data with the 
original training data and rebalancing using SMOTE. Evaluation experiments were conducted on 11 datasets 
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for software defect prediction, utilizing five different classifiers and five evaluation metrics. The results 

indicate that all classifiers demonstrated improved performance when the proposed RO-SMOTE model was 

implemented, as opposed to using SMOTE alone. The extent of performance improvement varied across 

datasets, classifiers, and metrics. NN classification consistently delivered strong performance, while other 

classifiers showed high performance when combined with RO-SMOTE across various metrics for one or 

more datasets. Compared to SMOTE, RO-SMOTE demonstrated performance improvements of up to 7.8% 

in balanced accuracy, 22.13% in precision, 82.37% in recall, 43.83% in F1 metrics, and an increase of 

27.30% in AUC. In the future, our research will expand to include multiclass imbalanced datasets. 

Additionally, we plan to leverage deep learning models, such as AutoML and other deep learning 

approaches, for noise detection and removal. These models will be combined with various resampling 

techniques. Moreover, we intend to utilize deep learning models for data resampling to address the 

limitations of existing techniques. 
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