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 Medical image recognition has enormous potential to benefit from the recent 

developments in federated learning (FL) and interpretable artificial intelligence 

(AI). The function of FL and explainable artificial intelligence (XAI) in the 

diagnosis of brain cancers is discussed in this paper. XAI and FL techniques 

are vital for ensuring data ethics during medical image processing. This paper 

highlights the benefits of FL, such as cooperative model training and data 

privacy preservation, and the significance of XAI approaches in providing 

logical justifications for model predictions. A number of case studies on the 

segmentation of medical images employing FL were reviewed to compares 

and contrasts various methods for assessing the efficacy of FL and XAI based 

diagnostic models for brain tumors. The relevance of FL and XAI to improve 

the accuracy and interpretability during medical image diagnosis have been 

presented. Future research directions are also described indicating as to 

integrate data from various modes, create standardised evaluation processes, 

and manage ethical issues. This paper is intended to provide a deeper insight 

on relevance of FL and XAI in medical image diagnosis.  
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1. INTRODUCTION 

Analysis of medical images has far-reaching implications for many facets of modern patient care 

and professional practice. The diagnosis and identification of illness is one of its primary functions. This 

allows them to detect abnormalities and diseases when they are still treatable. Preventing diseases from 

progressing to more advanced stages not only increases the likelihood of successful treatment but also saves 

on healthcare costs [1]. Medical image interpretation is essential for treatment planning. Radiation 

oncologists and surgeons rely on accurate imaging to ensure procedures and treatments target affected areas 

while causing as little damage to healthy tissue as possible. This accuracy is critical for demanding surgeries 

and therapies such as brain surgery, where even small errors can have devastating consequences. 

Analysis of medical images is crucial for monitoring disease progression. By comparing images 

collected at different points in time, doctors can study how diseases manifest and how effective treatments 

are. Better patient outcomes come from the ability to quickly change treatment approaches [2], [3]. Medical 

image analysis supports personalized healthcare. Because each patient is different and has unique anatomical 

and disease-specific characteristics, this is taken into account. By tailoring medication to specific patients 

based on their individual imaging data, doctors can increase the effectiveness of treatments while avoiding 

side effects or effects. 

https://creativecommons.org/licenses/by-sa/4.0/
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Medical complications include seizures, brain injuries, and increased intracranial pressure. Early 

detection and treatment can reduce the likelihood or even eliminate these side effects. Successful treatment 

and long-term survival are more likely when brain cancers are detected early [4], [5]. In some situations, 

early detection can even enable complete treatment of the cancer. A quick diagnosis of a medical picture can 

ease anxiety and confusion about the cause of symptoms. This allows patients to understand the situation 

better and make the best decision. Preserving neurological function and delaying or preventing the onset of 

symptoms including seizures, vision or hearing loss, and cognitive deficiencies, are possible because to early 

detection and treatment of disease [6]. 

Conventional image processing algorithms used to diagnose medical images have significant 

drawbacks that may affect their utility and accuracy. Because so many traditional image processing methods 

rely on human interpretation, the analysis may be vulnerable to subjectivity and variability [7]. It is possible 

for various radiologists or medical specialists to interpret the images differently, which might result in 

variations in diagnoses and treatment suggestions [8]. Although imaging tests are useful for finding and 

identifying medical images, image processing algorithms may not always be reliable at differentiating 

between different tumor types or finding small tumors that might be overlooked on imaging. Very small 

tumors, especially those that are slow-growing, may not be detectable by some image processing systems [9]. 

As a result, there may be tumors present but not recognised by the algorithm, producing false-negative 

results. Some image processing techniques might not be sufficiently precise to classify tumors as benign or 

malignant or to determine the tumour’s severity [10]. Motion artefacts, for example, might degrade the image 

quality and make it more challenging for image processing algorithms to correctly identify a medical image. 

The image processing methods used to diagnose medical images are not standardised, which can cause 

variation in the outcomes of various algorithms. The use of image processing algorithms to track a medical 

image's development over time or identify changes in the tumor's characteristics may not always be 

successful. 

Although deep learning algorithms may improve the precision with which brain tumours are 

diagnosed, they are not without substantial downsides. In order to train and enhance their models, deep 

learning algorithms need access to massive amounts of data [11]. Nevertheless, getting such information 

might be difficult, especially for uncommon kinds of medical images. Black box models are sometimes used 

to describe deep learning algorithms because it's hard to figure out how they work within them. This makes it 

hard for doctors to figure out why the algorithm offers a certain treatment or diagnosis [12]. Deep learning 

algorithms could lead to incorrect diagnosis and inappropriate recommendations for therapy. If deep learning 

algorithms were only ever taught on data from a single institution or demographic, they might not be 

applicable to data from any other. This reduces their potential usefulness in healthcare settings. The training 

and optimization of a deep learning model can be computationally intensive, necessitating dedicated 

hardware and software. As a result, they may become more difficult and costly to implement in clinical 

settings [13]. 

Machine learning (ML) has the potential to enhance the efficiency and accuracy of diagnosing brain 

tumors. ML algorithms can detect subtle changes in brain imaging that are undetectable to the naked eye 

[14]. This could improve the precision of tumor characterization and diagnosis. Imaging and clinical data can 

be used with ML algorithms to help diagnose patients, make treatment decisions, and predict the type and 

grade of tumors [15]. The efficacy of treatment can be evaluated, and tumor growth can be tracked, with the 

use of ML algorithms applied to analyzed image data. This may allow doctors to make smarter decisions and 

improve their treatments. Invasive procedures such as brain biopsies can be avoided by using non-invasive 

diagnostic technologies such as magnetic resonance imaging (MRI) and computed tomography (CT) scans, 

which are more accurate [16]. 

Explainable artificial intelligence (XAI) is important to data ethics for several reasons. The ethical 

use of data is the subject of data ethics. It includes a set of principles and rules to ensure ethical data 

handling. However, XAI research focuses on creating artificial intelligence (AI) systems that can explain 

their decisions and actions. To ensure openness, accountability, and trustworthiness in AI decision-making, 

explainability must be integrated. XAI addresses ethical issues about biases, prejudice, and lack of 

interpretability in opaque AI models by giving accessible explanations for AI generated decisions. XAI helps 

AI systems become transparent by revealing a model's decision-making process. Transparency in AI is 

crucial for monitoring and assessing developers and companies. Transparency helps identify and attribute 

unethical or biased AI outputs to the guilty parties. Ethical issues in data and AI stem from bias and 

discrimination in algorithms and datasets. 

XAI could help identify and reduce prejudice. XAI helps explain biased outcomes by revealing the 

elements and data points that influence AI decision-making. This enhanced exposure makes it easier to 

identify and correct injustice and discrimination. XAI may help promote fairness and equity in AI systems by 

illuminating bias-prone decision-making processes. Informed consent from data subjects is necessary for 

ethical data use. If AI systems can explain their decision-making processes, people are more likely to trust 
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and agree to AI applications using their data. Certain data protection legislation, such as the EU's general data 

protection regulation (GDPR), allow individuals to be informed about automated decisions that affect them. 

XAI is crucial to meeting the legal requirement to provide clear and understandable reasons for AI system 

judgements. Ethical AI aims to reduce discrimination and negative effects. XAI can help identify AI systems 

making decisions based on irrelevant or discriminatory criteria. This feature allows businesses to prevent and 

fix such issues. 

Federated learning's (FL) privacy-preserving framework for ML is crucial to data ethics. This 

strategy solves many ethical issues with centralised data gathering and processing. FL is important in data 

ethics for various reasons. First, it lets data contributors train ML models collaboratively while protecting 

their anonymity. This distributed strategy keeps sensitive data local, reducing the hazards of centralising 

massive databases. FL also increases fairness and inclusivity by using varied datasets from different sources 

for model training. This reduces biases from using a single, centralised dataset. ML traditionally uses 

centralised models, which require the storage of sensitive data. However, this practise may compromise 

privacy. FL is an innovative method for training ML models with user-owned data. This strategy reduces data 

exchange, addressing privacy issues and hazards. FL respects data ownership and governance. In a FL 

system, individuals and organisations own and govern their data. This decentralised approach lets people 

actively train models while maintaining data control. This is congruent with ethical ideals that value data 

autonomy and control. 

Ethical data practises emphasise data minimization, or restricting data gathering and processing to 

what is necessary. FL uses decentralised data sources to update models without sharing raw data. FL 

emphasises informed consent and active engagement in ML model training. This observation follows ethical 

norms that value informed consent and data transparency. FL can improve data security and confidentiality 

by restricting data exposure. Data is stored on the user's device, preventing data breaches and unauthorised 

access. This technique efficiently addresses ethical issues related to data security and confidentiality. FL's 

capacity to use many data sources during model training might reduce bias and discrimination in AI models. 

FL's distributed nature allows the training process to reflect data source variety, minimising bias and 

prejudice in AI models. This technique may help overcome biased AI system ethics and promote justice and 

inclusion in AI applications. This strategy promotes justice and resolves bias-related AI ethical issues. FL 

follows data ethics principles like privacy, data ownership, permission, fairness, and data minimization. The 

approach being described is interesting for ML since it addresses ethical issues connected with typical data 

practises and centralised processing. 

In section 2, we brief as how FL can help diagnose malignant brain tumors. In section 3, we outline 

the role of XAI in the diagnosis of brain tumors. Section 4 discusses the existing methods for diagnosing 

medical images using FL and XAI. Section 5 presents the evaluation of medical image diagnosis methods 

using FL and XAI. Section 6 discusses case studies of medical image analysis using XAI and FL.  

In section 7, we discuss about the results and possible directions for future study. 

 

 

2. FEDERATED LEARNING FOR MEDICAL IMAGE DIAGNOSIS-SOME REFLECTIONS 

ML method FL allows for collective model training on dispersed data. FL allows training models 

directly on data spread across numerous devices or locations while keeping the data local and ensuring 

privacy, unlike typical ML methods [17]. FL disperses the data so that it can be used in the model-training 

process, rather than having it all kept in one central location. It's important to keep this in mind if data 

sharing is restricted for any reason, whether it be due to privacy concerns, security concerns, or legal 

requirements. FL provides a workaround by enabling edge nodes to collaborate and collaboratively train a 

shared model without releasing their unique data [18]. Figure 1 depicts the implementation of FL in medical 

image analysis. 

In FL, a central server sets up and communicates the model framework to all client devices. The 

distributed model is trained using local data collected from each device. Training can make use of deep 

neural networks and other ML techniques [19]. Devices update the central server with their refined model 

parameters or gradients after completing in-house training. Using methods like averaging and weighted 

averaging, the server collects model updates from numerous devices and merges them into a unified model. 

Iterative processes are used for both regional training and model aggregation [20]. 

FL's ability to maintain user anonymity is a major selling point. Local data is stored on each device, 

and only model updates are exchanged. This distributed approach helps guarantee personal data is kept 

hidden [21]. The trained model can then be deployed for inference on additional data, either on the central 

server or on the participating devices, after the FL process reaches the required level of model performance. 

The healthcare industry, where patient confidentiality and data security are of the utmost importance, is just 

one area where FL has been widely adopted and successfully put to use. While protecting patients' 
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anonymity, it facilitates model-training collaboration between healthcare facilities [22]. Medical image 

analysis, disease prediction, and clinical decision assistance are just a few examples of successful 

applications of FL. However, FL also presents difficulties such as inefficient communication, data 

heterogeneity between devices, and dealing with data that is not independently and identically distributed. 

These issues are the topic of ongoing research aimed at making FL even more versatile and efficient [23]. 

Medical imaging is an area where FL presents both opportunities and obstacles. Protecting users' 

anonymity is a major perk. FL paves the way for cooperation across hospitals without jeopardizing patients' 

right to privacy. FL ensures compliance with data protection standards [24] by storing data locally and only 

communicating model updates. Additionally, FL allows access to diverse and large-scale data by aggregating 

information from multiple sources. This leads to more robust and generalizable models. Another advantage is 

the reduction in data transfer and storage requirements. By exchanging model updates instead of raw data, FL 

minimizes bandwidth usage and storage costs [25]. Furthermore, FL facilitates collaborative learning in 

resource-constrained environments. Local training on edge devices or distributed systems makes FL suitable for 

medical imaging applications in remote or low-resource settings. However, FL also faces challenges. 

Heterogeneity of data, arising from variations in imaging protocols, equipment, and patient populations, can 

impact model performance. Handling non-identically distributed (Non-IID) data remains an ongoing research 

challenge. Communication and computational overhead pose additional hurdles, particularly when dealing with 

large-scale medical imaging datasets. Efficient compression and transmission techniques are being explored to 

mitigate these challenges. Ensuring fairness, model interpretability, and addressing security concerns are also 

important considerations in FL for medical imaging. Despite these challenges, FL holds great promise in 

advancing medical imaging research and applications while safeguarding patient privacy [26]–[30]. 

 

 

 
 

Figure 1. Implementation of FL in medical image analysis 

 

 

3. EXPLAINABLE AI FOR MEDICAL IMAGE DIAGNOSIS- SOME REFELECTONS 

Building ML or AI systems with human-comprehensible explanations for their predictions and 

actions is the focus of XAI study [31]. In contrast to the black box nature of complex AI models, XAI aims to 

make the decision-making process understandable to humans. This is achieved through interpretable model 

architectures, such as decision trees, or by generating post-hoc explanations that highlight the key factors 

influencing the model's outputs [32]. To account for the model's behaviour over the entire dataset, XAI 

considers both local and global explanations. Predictions can be improved with the use of local explanations. 

User-centric explanations are made specifically for the target group, making them meaningful and 

understandable. Users can judge the dependability and fairness of AI systems by evaluating the quality and 

credibility of explanations, which is a key component of XAI. When used to healthcare, XAI can improve 

doctors' ability to understand AI-based diagnoses, build trust, and streamline collaboration between humans 

and AI. XAI's overarching goal is to promote transparency, accountability, and trust in AI systems by 
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bridging the gap between how they make decisions and how humans can understand them [33]. Figure 2 

illustrates the importance of XAI in the detection of medical images. 

Interpretability is of utmost importance in medical image diagnosis as it enhances the understanding 

and trust in AI systems' decisions. Accurate and trustworthy diagnoses are crucial in medical imaging for 

patient care and treatment planning. Radiologists and physicians benefit from being able to analyse AI 

models so that they can understand the thinking behind the factors used in these systems' classifications and 

forecasts [34]. Interpretability helps validate a diagnosis since it provides clear justifications for the model's 

decisions about which parts of a picture to focus on. Additionally, it allows doctors to assess the model's 

efficacy, spot any biases or errors, and make educated decisions based on the AI system's findings. 

Additionally, interpretability encourages collaboration between human specialists and AI systems, enabling 

radiologists to employ AI as a tool in their diagnostic workflow while guaranteeing a sound and credible final 

diagnosis [35]. 

 

 

 
 

Figure 2. XAI in medical image analysis-a high level view 

 

 

AI models can be utilized in a variety of ways to create explanations for medical imaging diagnosis. 

With the use of gradient-weighted class activation mapping (CAM), we can generate heat maps that show 

where in the input image the model's prediction was most strongly impacted [36]. Visualization is a powerful 

tool for learning more about the characteristics and potential sites of a brain tumor. Model-independent local 

interpretation is achieved by tweaking the input image and monitoring the model's predictions to create 

explanations. It identifies the most important regions or pixels for a prediction, providing insight into what 

drives the model's decision [37]. 

Shapley additive explanations (SHAP) provides relevance values to various aspects in the input 

image based on how much they contribute to the model's output. It provides a unifying framework for feature 

attribution, helping doctors to grasp the relative value of various picture attributes in medical image 

diagnosis. Rule-based explanations generate a set of interpretable rules based on the AI model's learnt 

decision boundaries [38]. These rules can specify explicit requirements or thresholds that aid in 

understanding how various elements or combinations of features affect the model's predictions. Feature 

visualisation techniques create visual representations of the model's learned characteristics. These 

visualisations assist physicians in comprehending the learnt representations and identifying relevant patterns 

or structures in imaging data that are symptomatic of medical image characteristics [39]. 

 

 

4. STATE-OF-THE-ART TECHNIQUES FOR MEDICAL IMAGE DIAGNOSIS USING FL AND XAI 

In the field of medical imaging diagnostics, FL can be utilized to enable collaborative model 

training across several institutions, while simultaneously safeguarding the confidentiality of patient data. The 

following are some FL-based ways for analysing medical images and making a diagnosis. FL makes it 

possible for many institutions or hospitals to collaborate on the training of a medical image diagnosis model 

without releasing raw patient data. Instead, the model is trained at each individual institution using the 

institution's own data, and only model updates or gradients are sent to a centralized server for the purpose of 

aggregation. This decentralized technique safeguards data while simultaneously capitalizing on the 

accumulated knowledge contained across diverse datasets [40]. By utilizing pre-trained models from a 

variety of institutions, FL makes transfer learning possible in the field of medical picture identification. Each 

institution is able to train a base model using its own data, and then transfer the model to a shared, federated 
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dataset in order to make additional adjustments to it. The model's convergence can be achieved more quickly 

with this strategy, and diagnostic performance is enhanced. 

By training multiple models at different institutions and then pooling their predictions, FL can be 

used to build an ensemble of brain tumour diagnosis models. The ensemble is built by aggregating the 

predictions of individual models trained by different institutions [41]. The diagnostic system may be made 

more accurate and robust through the use of ensemble learning. Brain tumour imaging data can benefit from 

FL's ability to assist the extraction of collaborative features. Institutions are able to apply pre-trained deep 

learning models to extract features from their local data, and they can then just release the extracted features 

as opposed to the original, unfiltered imagegraphs. After that, a global model for analysing unexpected 

information can be constructed by using these traits as building blocks [42]. The term federated transfer 

learning refers to the process that results when FL and transfer learning are combined. Institutions collaborate 

in order to train a standardized baseline model with the use of their own data, and then they share this model 

with one another so that they can fine-tune it using their own data. The federated model that was produced as 

a result [43] draws upon sources from a wide range of organizations. 

These FL-based methods improve medical image diagnosis by using the potential of distributed data 

while maintaining privacy. By employing FL, institutions can collectively train models with larger and more 

diversified datasets, resulting in enhanced diagnostic model accuracy and generalisation. Model-agnostic 

strategies seek answers that are independent of the exact AI model employed. Model behaviour and the 

impact of input features on model predictions are analysed using these methods [44], regardless of the 

model's underlying architecture. Note that the specific AI model, data characteristics, and the requirements of 

doctors or end-users will all play a role in deciding which explanation technique to adopt. To create thorough 

and contextually appropriate explanations for medical image diagnosis, many methodologies might be 

integrated or altered [45]. 

Transparent and easily interpretable XAI approaches can improve the efficacy of models used in the 

diagnosis of brain tumors. In this article, we show many XAI-based approaches for detecting brain tumors 

[46]. In order to produce maps that highlight the regions of the brain that contributed most to the model's 

conclusion, a heat map visualization approach such as grad-CAM might be used. These heat maps provide 

visual explanations for medical image identification by identifying which portions of the image were most 

influential in the diagnosis [47]. XAI approaches can evaluate the significance of various picture features or 

regions in the diagnosis of medical images. Clinicians can determine which features the model depends on 

for predictions by measuring the importance of specific features such as forms, textures, or intensity patterns. 

Rule-based techniques generate interpretable rules based on the AI model's learned decision limits [48]. 

These rules can be explicit conditions or thresholds that assist doctors in understanding how individual 

aspects of the image or combinations of features contribute to medical image diagnosis. Model-agnostic 

strategies seek answers that are independent of the exact AI model employed. These methods concentrate on 

analysing the model's behaviour and the impact of input variables on its predictions, allowing physicians to 

comprehend the decision-making process across different models or architectures [49]. Contextual 

explanations can be provided by XAI techniques by analysing the reasons behind the model's predictions 

within the framework of medical knowledge and guidelines. By relating the model's results to standard 

medical metrics, these justifications increase the diagnostic process's interpretability and reliability. 

XAI algorithms can create natural language explanations of the reasoning and elements impacting 

medical image diagnosis [50]. These human-readable explanations can assist physicians in understanding and 

communicating the model's decisions to patients or other healthcare professionals. Clinicians can improve 

their understanding of AI model decision-making, the factors influencing forecasts, and the model's outputs 

by applying XAI methods into brain tumor diagnoses. This promotes openness, trust, and cooperation 

between AI systems and medical staff, leading to improved diagnostic accuracy and clinical interpretability 

of medical images [51]. 

Combining FL and XAI approaches can provide an effective approach for medical image 

identification. Here are some examples of how to integrate FL and XAI. Using FL, researchers from different 

institutions can work together to fine-tune a single XAI model. Any organization can participate in the 

training process by contributing local data while yet protecting user privacy. The resulting XAI model would 

explain the algorithm's reasoning for its predictions in language that clinicians could understand [52]. Instead 

of aggregating solely model updates or gradients in FL, the federated aggregation process might incorporate 

explanations given by XAI approaches. This will enable the aggregation server to aggregate not just the 

model parameters but also the generated explanations from other institutions, resulting in an intelligible and 

transparent final model. 

Multiple XAI models can be trained in tandem across organizations using FL XAI models for 

hypothesis generation in brain tumour diagnosis are developed independently by each institution [53]. The 

ensemble, which is comprised of the individual models' forecasts and explanations, then makes the ultimate 

call. This method yields both accurate predictions and a variety of interpretable explanations. In this method, 
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institutions work together to extract interpretable features from their local medical image imaging data using 

XAI approaches. Rather than distributing raw images or models, the extracted features are distributed and 

utilised to train a global XAI model. This enables the extraction of shared knowledge and the production of 

transparent and interpretable explanations for medical image diagnosis [54]. 

Advantages of FL and XAI in brain tumour diagnosis include interpretable decision-making, 

protection of patient privacy, and group learning. It combines the power of distributed data and model 

training with the capacity to offer explanations for physicians that improve transparency, trust, and 

understanding. Hybrid approaches, which combine the capabilities of FL and XAI, offer the potential to 

increase accurate and interpretable medical image diagnosis while resolving privacy concerns [55]. 

 

 

5. EVALUATION OF FL AND XAI-BASED MEDICAL IMAGE DIAGNOSIS TECHNIQUES 

Quantitative assessments of accuracy, precision, recall, specificity, and overall performance of FL 

and XAI-based approaches in identifying brain tumours are provided by the performance evaluation metrics. 

The area under the ROC curve (AUC-ROC) and average precision metrics are frequently used to evaluate the 

discriminatory power and precision-recall tradeoff of models [56]. Table 1 depicts some of the evaluation 

metrics employed by FL and XAI-based diagnostic techniques. 

 

 

Table 1. Metrics used in evaluation of medical image diagnosis techniques 
Metrics Formula Description 

Accuracy (TP+TN) / (TP+TN+FP+FN) Overall correctness of diagnostic predictions 

Precision TP / (TP+FP) Proportion of correctly predicted positive cases 

Recall (sensitivity) TP / (TP+FN) Proportion of correctly predicted positive cases 

Specificity TN / (TN+FP) Proportion of correctly predicted negative cases 
F1 Score 2×(precision×recall) / (precision+recall) Harmonic mean of precision and recall 

AUC-ROC - Measures the model's ability to distinguish between positive and 

negative cases 

Average precision - Average precision across different recall levels based on the 

precision-recall curve 

 

 

The evaluation techniques used for medical image diagnostic techniques based on FL and XAI also 

have certain challenges and limitations. Some common challenges and limitations associated with these 

evaluation techniques are limited ground truth data, data heterogeneity, and lack of evaluation protocols, 

interpretability and ethical considerations [57]. Obtaining a reliable and comprehensive ground truth for 

medical image diagnosis can be challenging. The availability of high-quality ground truth data is crucial to 

the reliability of the evaluation metrics. An incomplete or inaccurate ground truth can introduce biases and 

affect the performance evaluation. Variations in picture acquisition techniques, equipment, and patient 

demographics can introduce unavoidable discrepancies into FL data. Performance evaluations can be 

impacted by such data heterogeneity, making it hard to generalize results to other settings or datasets [58]. 

The absence of standardized evaluation protocols for FL and XAI based medical image diagnosis poses 

challenges in comparing and replicating results across different studies. The variations in evaluation 

methodologies and metrics used make it challenging to establish consistent benchmarks and assess the 

progress in the field. 

XAI techniques aim to provide interpretable explanations for model decisions [59]. However, there 

can be a trade-off between interpretability and performance. While more complicated models may be more 

accurate, they may not be explainable, while simpler models with better interpretability may be less effective. 

Balancing interpretability and performance are a challenge in evaluating and selecting medical image 

diagnostic techniques. In some cases, the FL or XAI based medical image diagnostic models may utilize 

black-box models that are inherently complex and lack interpretability. Even though XAI methods can offer 

explanations after the fact, they might not be able to reveal all of the black-box models' inner workings. 

It is common practice to evaluate FL and XAI based brain tumour diagnostic methods on predefined 

datasets that may not be representative of the complexity and variety of actual clinical settings [60]. 

Generalizing the performance results to diverse patient populations, imaging protocols, and clinical 

environments can be challenging. Evaluation techniques should also consider ethical aspects, such as 

fairness, bias, and accountability [61]. Ensuring that the evaluation metrics and methodologies address these 

concerns can be challenging, particularly in complex and sensitive domains like medical imaging. 

Addressing these challenges and limitations requires ongoing research and collaboration between the medical 

and AI communities. Developing standardized evaluation protocols, improving access to high-quality ground 
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truth data, and advancing interpretability techniques are crucial for reliable and meaningful evaluation of FL 

and XAI based medical image diagnostic techniques [62]. 

Future research in FL and XAI for medical image diagnostic techniques holds significant potential 

for advancements in accuracy, interpretability, and clinical applicability. There are some promising directions 

for future research in this field. Developing more efficient and secure FL frameworks specifically tailored for 

medical imaging applications can further improve collaborative medical image diagnosis [63]. This includes 

addressing challenges related to data heterogeneity, communication efficiency, privacy preservation, and 

model aggregation techniques. Combining imaging modalities including MRI, CT, and positron emission 

tomography with clinical and genetic data improves our understanding of brain tumors [60]. In order to 

improve diagnostic precision and choice-making, future studies can investigate FL and XAI methods that 

enable the integration and analysis of multi-modal data. 

Knowledge can be transferred from well-established datasets to domains with minimal labelled data 

by exploring transfer learning and domain adaption approaches within the FL and XAI frameworks [64]. This 

approach can improve model performance and generalization in medical image diagnosis across different 

healthcare institutions or regions. Advancing XAI techniques specific to deep learning models can provide 

more detailed and actionable explanations for medical image diagnosis. Within this framework, novel 

techniques for feature extraction, visualization, and comprehending the decision-making process of deep 

neural networks can be investigated. The interpretability and decision-making power of FL and XAI models 

can be enhanced with the incorporation of clinical knowledge and domain experience [65]. Incorporating 

medical guidelines, previous knowledge, and expert annotations can improve the diagnosis processes explain 

ability and reliability. 

It is essential to examine methods for evaluating model robustness and calculating uncertainty in 

brain tumour detection using FL and XAI. Uncertainty estimate helps clinicians learn how confident they can 

be in model predictions, which improves their ability to make decisions and handle risks. To demonstrate the 

efficacy, reliability, and impact of FL and XAI-based medical image diagnosis approaches, comprehensive 

validation studies in real-world clinical settings are required [66]. Collaboration with healthcare institutions 

and clinicians is critical to evaluate the performance, usability, and integration of these techniques into 

routine clinical practice. Future research should address ethical and legal challenges associated with FL and 

XAI-based diagnostic techniques, including privacy, data ownership, bias, and accountability. Ensuring 

transparency, fairness, and compliance with regulatory requirements are crucial for the responsible 

deployment of these technologies. By exploring these research directions, FL and XAI-based medical image 

diagnostic techniques can advance the field of medical imaging, improving accuracy, interpretability, and the 

overall quality of patient care [67]. 

 

 

6. CASE STUDIES 

6.1.  Explainable artificial intelligence in healthcare 

The novel method to Parkinson's disease diagnosis makes use of XAI. To make DaTscan images 

more easily understood, the authors employ local interpretable model-agnostic explanations (LIME). This 

research shows how crucial it is for medical AI to be open and explainable to both doctors and patients [65]. 

To deal intensively with the topic of XAI in biomedicine and emphasize the crucial importance of developing 

trustworthy AI systems for medical professionals and patients. The article examines various methods and 

tactics for establishing interpretability in AI-driven medical decision-making and emphasizes the importance 

of ethical and transparent AI. XAI to gain new insights into tumor microenvironmental factors associated 

with improved outcomes in breast cancer patients. The study not only proves the diagnostic capabilities of 

AI, but also its ability to explain medical data in an understandable way, thus leading to better patient care 

[66]. Developed an XAI model for glaucoma diagnosis. Aside from accurate diagnostic performance, the 

model's interpretability allows clinicians to understand the reasons behind its predictions. This strategy 

increases confidence in AI-powered medical decision-making and delivers actionable insights for healthcare 

professionals [67]. To be used XAI to diagnose biological mental illnesses. The study not only helps identify 

mental health problems by creating a model with explainable properties, but also provides interpretable 

insights into the diagnostic process, supporting more effective treatments and interventions [68]. 

To examine the ability of XAI to predict cardiovascular events using molecular data. Explainable 

models enable clinicians to gain an understanding of the aspects that contribute to risk assessment, enabling 

more informed patient treatment and prevention initiatives [69]. In-depth research on the uses of XAI in 

healthcare over the past decade was undertaken [70]. The comprehensive analysis examines the growth of XAI 

in healthcare including varied application cases and shows the revolutionary importance of interpretability in 

medical AI. The study examines numerous applications of XAI in medical diagnostics and surgical decision 

making. It highlights the importance of transparency in AI-driven healthcare, enabling physicians to not only 

trust but also understand AI-generated suggestions, leading to better patient outcomes [71]. 
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To proposed an automatic diagnosis strategy for myocarditis diseases using depth transformers and 

XAI in cardiac MRI processing. This method helps doctors’ better plan patient care by enhancing diagnostic 

precision and illuminating how AI arrives at its conclusions [72]. To be involvement of XAI in deep 

learning-based medical image processing. By making AI-generated data interpretable, the work contributes to 

the credibility of image-based diagnostics and makes them more accessible for clinical use [73]. To be 

developed a methodology to assess blood test parameters that may be helpful in COVID-19 diagnosis. By 

providing clear and understandable insights into diagnostic assessments, the interpretable AI models used in 

this work help address pandemic-related health challenges [74]. In advanced stage ovarian cancer, found that 

XAI can be used to predict complete surgical cytoreduction. The work enables individual treatment plans and 

surgical planning by integrating interpretability into the diagnostic process [75]. According to reported the 

use of XAI in lung cancer screening models. The interpretability of the AI system helps doctors not only 

diagnose diseases but also understand the underlying elements that impact diagnostic evaluations [76]. To 

categorize prostate cancer, created an XAI model using ultrasound and MRI data. The study increases trust in 

AI-powered healthcare workflows while improving diagnostic accuracy and providing insights into the 

variables that influence AI conclusions. Sadeghi et al. [58] performed a systematic analysis of XAI's 

applications in healthcare in 2023. It highlights XAI's promise to improve the openness and interpretability of 

AI systems, while describing the various applications of XAI in medical diagnosis and therapy [77]. A 

scoping review carried out in 2023 to examine the developments, advantages and possible uses of XAI in 

medicine. The increasing use of XAI in healthcare and its potential impact on clinical practice are highlighted 

in the review [78]. 

 

6.2.  Federated learning in healthcare 

To address privacy and security issues, developed a FL paradigm for edge-based analysis of 

healthcare data. It represents a ground breaking method for data protection and collaborative analysis [79]. 

For FL, address dynamic contracts in smart healthcare applications. The study focuses on resource-efficient 

model training that enables healthcare companies to operate efficiently while limiting data sharing [80]. To 

examined the future of digital health from a FL perspective. They emphasize the opportunities for 

collaborative research and privacy protection in healthcare, laying the foundation for a more secure and data-

driven healthcare ecosystem [81]. Li et al. [82] examined FL applications in the context of the internet of 

things (IoT) in depth, with a particular focus on healthcare. In addition to discussing the potential of FL for 

IoT applications in healthcare, the poll also covers privacy and security concerns. Clinical outcomes in 

patients with COVID-19 were predicted using FL. The benefits of FL for healthcare decision support are 

highlighted by this real-world example, which is especially relevant in the context of pandemics [83]. Used 

biological data to conduct a systematic review of FL applications. The potential of FL in health research is 

demonstrated, and the most important results and successes in this sector are summarized in the overview 

[84]. To be presented FL and fine-grained privacy for use in medical image analysis. They stress the need for 

confidentiality safeguards even as medical imaging diagnostics benefit from the pooled resources of multiple 

data sources [85]. 

Propose a FL strategy for protecting healthcare data in big data environments. The study addresses 

data security concerns while allowing healthcare companies to collaborate on data-driven research [86]. 

Developed work using FL to diagnose heart problems in a hospital setting. In this context, AI techniques for 

protecting privacy are crucial, and research suggests that the potential for secure analysis of medical data is 

being discussed [87]. Liu et al. [88] investigated the development of intelligent healthcare systems based on 

FL that are both secure and efficient. Their efforts ensure that AI-driven healthcare solutions are trustworthy 

by bolstering data security and model accuracy [88]. Privacy-protecting FL algorithms in healthcare systems 

were analysed. The evaluation highlights potential privacy concerns related to collaborative health research 

and provides recommendations for enhancing data protection [89]. 

To offered a reinforced FL technique for healthcare IoT devices using particle swarm optimization. 

This method improves model performance and data security as well as the effectiveness of AI-driven 

healthcare applications [90]. Patients' lengths of stay in hospitals can be predicted via FL, researchers are 

able to improve healthcare resource allocation and patient care planning while keeping private medical 

information secure [91]. To investigated XAI's function in chronic wound categorization and showed its 

potential applications beyond diagnosis. Wound treatment is the centre of the study, although the broad 

applications of XAI in medicine are also discussed [92]. Introduced a better, more understandable AI tool for 

hospital recommendations. By selecting hospitals based on transparent and interpretable criteria, this 

platform improves healthcare and patient outcomes [93]. FL to estimate the length of stay of hospital 

patients, resulting in more efficient resource management and patient care planning [94]. The study shows 

the value of FL in healthcare. A method for detection and forecasting based on AI was presented [95]. 
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6.3.  Lessons learned 

In medical image diagnosis, grad-CAM and LIME offer significant advantages that can be exploited 

depending on the specific diagnostic goals and the type of underlying deep learning models. Grad-CAM 

excels at spatial localization and visual explanations, making it particularly valuable for cases where it is 

critical to understand where the model focuses within an image. This is particularly beneficial in scenarios 

such as radiology, where precise location of an abnormality or lesion in an X-ray or MRI image is essential 

for an accurate diagnosis. Radiologists and healthcare professionals can benefit from grad-CAM's clear 

visualizations that highlight areas of interest and provide insight into the model's decision-making process. 

On the other hand, LIME's model-agnostic approach proves advantageous when dealing with a 

variety of deep learning architectures and data types commonly encountered in medical image analysis. Its 

ability to provide local, case-specific explanations can help understand why a particular diagnosis was made 

for a particular image. In cases where model interpretability is critical to building trust and ensuring the 

ethical use of AI in healthcare, LIME's ability to explain individual predictions contributes to transparency 

and accountability. Additionally, LIME can be valuable for uncovering the reasons for unexpected model 

behaviour, such as misclassifications or cases where the confidence level of the model is low. Ultimately, the 

choice between grad-CAM and LIME in medical image diagnosis should depend on the specific 

requirements of the diagnostic task, the type of medical image data to be analysed, and the level of 

interpretability required for medical professionals to confidently incorporate AI-driven insights integrate their 

clinical workflows. In some scenarios, combining both methods can provide a comprehensive solution that 

enables both spatial localization and instance-specific explanations to improve the diagnostic process and 

improve patient care. 

 

 

7. DISCUSSION 

This study investigated the effects of FL and XAI for medical image diagnosis. While earlier studies 

have explored the impact of FL and XAI in various domains, they have not explicitly addressed its influence 

on the specific challenges and nuances associated with medical image diagnosis. Existing research has 

primarily focused on general applications of FL and XAI, overlooking the unique requirements and 

considerations essential for the accurate and reliable diagnosis of medical images. This research gap 

highlights the need for a dedicated investigation into the tailored implementation and effectiveness of FL and 

XAI techniques in the context of medical image diagnosis, addressing issues such as interpretability, 

transparency, and trustworthiness in the healthcare domain. 

In our investigation into the impact of FL and XAI for medical image diagnosis, we identified a 

noteworthy correlation between the application of FL and XAI techniques and improved diagnostic 

outcomes. The integration of FL demonstrated a significant enhancement in collaborative learning across 

decentralized medical data sources, leading to heightened accuracy and robustness in image diagnosis. 

Additionally, the incorporation of XAI not only contributed to accurate predictions but also provided 

valuable insights into the decision-making process, fostering transparency and interpretability in the 

diagnostic outcomes. Our findings underscore the potential of FL and XAI in revolutionizing medical image 

diagnosis by addressing issues of data privacy, model transparency, and diagnostic reliability in a 

collaborative healthcare environment. 

While this study delves into the impact of FL and XAI for medical image diagnosis, offering a 

comprehensive analysis of their influence on diagnostic outcomes, it is crucial to acknowledge certain 

limitations into consideration. The scope of our investigation may not encompass the full spectrum of 

medical imaging conditions or diverse patient populations, potentially impacting the generalizability of our 

findings. The dynamic nature of healthcare practices and evolving technology landscapes introduce an 

inherent challenge in capturing real-world variations that may affect the application of FL and XAI in 

different clinical settings. The interpretability of XAI models, while improved, may still pose challenges in 

complex medical scenarios. 

Our study on the impact of FL and XAI for medical image diagnosis reveals promising outcomes in 

terms of diagnostic accuracy and interpretability. To further advance this field, future research could delve 

into exploring the optimal configurations of FL and XAI models for specific medical imaging modalities. 

Investigating the integration of real-time feedback mechanisms to continuously improve model performance 

and interpretability in dynamic clinical environments would be valuable. Examining the ethical 

considerations and addressing the challenges associated with deploying these technologies in real-world 

healthcare settings should be a focal point for future investigations. By addressing these aspects, future 

research can contribute to refining and optimizing the practical implementation of FL and XAI, ultimately 

enhancing their impact on medical image diagnosis in a meaningful and responsible manner. 
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8. CONCLUSION 

There have been important discoveries made in the field of medical image diagnosis as a result of 

the use of FL and XAI. FL allows for the training of collaborative models across several institutions without 

the need to share private patient information. FL-based medical image diagnostic models have demonstrated 

improved accuracy in detecting and classifying tumors, benefiting from the aggregation of diverse datasets. 

XAI approaches provide interpretable explanations for model predictions, improving doctors' understanding 

of decision-making processes and allowing them to make more informed therapeutic judgements. FL and 

XAI's transparency aids in model validation and develops trust in their diagnostic skills. Furthermore, FL 

protects data privacy by keeping patient data decentralised, assuring regulatory compliance. FL-based models 

have demonstrated the ability to generalise across institutions, incorporating differences in imaging methods 

and patient groups. When FL and XAI are used in clinical treatment, ethical considerations including fairness 

and bias are essential for ensuring responsible and ethical use. Brain tumour identification relies heavily on 

the accuracy, interpretability, cooperation, and privacy afforded by FL and XAI when applied to medical 

imaging. 

 

 

9. FUTURE RESEARCH 

There are important clinical and future research implications for using FL and XAI systems to detect 

brain tumours. FL and XAI, when used to the diagnosis of brain tumors in a clinical setting, can improve 

both model accuracy and interpretability, leading to more informed treatment decisions. Due of FL's 

collaborative character, knowledge sharing across institutions is encouraged while patient privacy is 

maintained, leading to more reliable and generalizable models. Transparent explanations for model 

predictions are provided by XAI techniques, enhancing physician acceptance and fostering greater trust. FL 

and XAI have applications in healthcare that include better patient outcomes, individualized treatment 

strategies, and more efficient use of available resources. Future research should concentrate on creating 

standardised evaluation procedures, addressing problems with data heterogeneity, and enhancing the 

readability of FL and XAI models. Furthermore, for the discipline to advance, study is needed on the ethical 

implications of FL and XAI, transfer learning, and the integration of multimodal data. Overall, FL and XAI 

have revolutionary implications for medical practise and upcoming research in medical image diagnosis, 

promising improvements in precision, interpretability, collaboration, and patient-specific care. 
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