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Medical image recognition has enormous potential to benefit from the recent
developments in federated learning (FL) and interpretable artificial intelligence
(Al). The function of FL and explainable artificial intelligence (XAl) in the
diagnosis of brain cancers is discussed in this paper. XAl and FL techniques
are vital for ensuring data ethics during medical image processing. This paper
highlights the benefits of FL, such as cooperative model training and data
privacy preservation, and the significance of XAl approaches in providing
logical justifications for model predictions. A number of case studies on the
segmentation of medical images employing FL were reviewed to compares
and contrasts various methods for assessing the efficacy of FL and XAl based
diagnostic models for brain tumors. The relevance of FL and XAl to improve
the accuracy and interpretability during medical image diagnosis have been
presented. Future research directions are also described indicating as to
integrate data from various modes, create standardised evaluation processes,
and manage ethical issues. This paper is intended to provide a deeper insight
on relevance of FL and XAl in medical image diagnosis.
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1. INTRODUCTION

Analysis of medical images has far-reaching implications for many facets of modern patient care
and professional practice. The diagnosis and identification of illness is one of its primary functions. This
allows them to detect abnormalities and diseases when they are still treatable. Preventing diseases from
progressing to more advanced stages not only increases the likelihood of successful treatment but also saves
on healthcare costs [1]. Medical image interpretation is essential for treatment planning. Radiation
oncologists and surgeons rely on accurate imaging to ensure procedures and treatments target affected areas
while causing as little damage to healthy tissue as possible. This accuracy is critical for demanding surgeries
and therapies such as brain surgery, where even small errors can have devastating consequences.

Analysis of medical images is crucial for monitoring disease progression. By comparing images
collected at different points in time, doctors can study how diseases manifest and how effective treatments
are. Better patient outcomes come from the ability to quickly change treatment approaches [2], [3]. Medical
image analysis supports personalized healthcare. Because each patient is different and has unique anatomical
and disease-specific characteristics, this is taken into account. By tailoring medication to specific patients
based on their individual imaging data, doctors can increase the effectiveness of treatments while avoiding
side effects or effects.
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Medical complications include seizures, brain injuries, and increased intracranial pressure. Early
detection and treatment can reduce the likelihood or even eliminate these side effects. Successful treatment
and long-term survival are more likely when brain cancers are detected early [4], [5]. In some situations,
early detection can even enable complete treatment of the cancer. A quick diagnosis of a medical picture can
ease anxiety and confusion about the cause of symptoms. This allows patients to understand the situation
better and make the best decision. Preserving neurological function and delaying or preventing the onset of
symptoms including seizures, vision or hearing loss, and cognitive deficiencies, are possible because to early
detection and treatment of disease [6].

Conventional image processing algorithms used to diagnose medical images have significant
drawbacks that may affect their utility and accuracy. Because so many traditional image processing methods
rely on human interpretation, the analysis may be vulnerable to subjectivity and variability [7]. It is possible
for various radiologists or medical specialists to interpret the images differently, which might result in
variations in diagnoses and treatment suggestions [8]. Although imaging tests are useful for finding and
identifying medical images, image processing algorithms may not always be reliable at differentiating
between different tumor types or finding small tumors that might be overlooked on imaging. Very small
tumors, especially those that are slow-growing, may not be detectable by some image processing systems [9].
As a result, there may be tumors present but not recognised by the algorithm, producing false-negative
results. Some image processing techniques might not be sufficiently precise to classify tumors as benign or
malignant or to determine the tumour’s severity [10]. Motion artefacts, for example, might degrade the image
quality and make it more challenging for image processing algorithms to correctly identify a medical image.
The image processing methods used to diagnose medical images are not standardised, which can cause
variation in the outcomes of various algorithms. The use of image processing algorithms to track a medical
image's development over time or identify changes in the tumor's characteristics may not always be
successful.

Although deep learning algorithms may improve the precision with which brain tumours are
diagnosed, they are not without substantial downsides. In order to train and enhance their models, deep
learning algorithms need access to massive amounts of data [11]. Nevertheless, getting such information
might be difficult, especially for uncommon kinds of medical images. Black box models are sometimes used
to describe deep learning algorithms because it's hard to figure out how they work within them. This makes it
hard for doctors to figure out why the algorithm offers a certain treatment or diagnosis [12]. Deep learning
algorithms could lead to incorrect diagnosis and inappropriate recommendations for therapy. If deep learning
algorithms were only ever taught on data from a single institution or demographic, they might not be
applicable to data from any other. This reduces their potential usefulness in healthcare settings. The training
and optimization of a deep learning model can be computationally intensive, necessitating dedicated
hardware and software. As a result, they may become more difficult and costly to implement in clinical
settings [13].

Machine learning (ML) has the potential to enhance the efficiency and accuracy of diagnosing brain
tumors. ML algorithms can detect subtle changes in brain imaging that are undetectable to the naked eye
[14]. This could improve the precision of tumor characterization and diagnosis. Imaging and clinical data can
be used with ML algorithms to help diagnose patients, make treatment decisions, and predict the type and
grade of tumors [15]. The efficacy of treatment can be evaluated, and tumor growth can be tracked, with the
use of ML algorithms applied to analyzed image data. This may allow doctors to make smarter decisions and
improve their treatments. Invasive procedures such as brain biopsies can be avoided by using non-invasive
diagnostic technologies such as magnetic resonance imaging (MRI) and computed tomography (CT) scans,
which are more accurate [16].

Explainable artificial intelligence (XAI) is important to data ethics for several reasons. The ethical
use of data is the subject of data ethics. It includes a set of principles and rules to ensure ethical data
handling. However, XAl research focuses on creating artificial intelligence (Al) systems that can explain
their decisions and actions. To ensure openness, accountability, and trustworthiness in Al decision-making,
explainability must be integrated. XAl addresses ethical issues about biases, prejudice, and lack of
interpretability in opaque Al models by giving accessible explanations for Al generated decisions. XAl helps
Al systems become transparent by revealing a model's decision-making process. Transparency in Al is
crucial for monitoring and assessing developers and companies. Transparency helps identify and attribute
unethical or biased Al outputs to the guilty parties. Ethical issues in data and Al stem from bias and
discrimination in algorithms and datasets.

XAl could help identify and reduce prejudice. XAl helps explain biased outcomes by revealing the
elements and data points that influence Al decision-making. This enhanced exposure makes it easier to
identify and correct injustice and discrimination. XAl may help promote fairness and equity in Al systems by
illuminating bias-prone decision-making processes. Informed consent from data subjects is necessary for
ethical data use. If Al systems can explain their decision-making processes, people are more likely to trust
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and agree to Al applications using their data. Certain data protection legislation, such as the EU's general data
protection regulation (GDPR), allow individuals to be informed about automated decisions that affect them.
XAl is crucial to meeting the legal requirement to provide clear and understandable reasons for Al system
judgements. Ethical Al aims to reduce discrimination and negative effects. XAl can help identify Al systems
making decisions based on irrelevant or discriminatory criteria. This feature allows businesses to prevent and
fix such issues.

Federated learning's (FL) privacy-preserving framework for ML is crucial to data ethics. This
strategy solves many ethical issues with centralised data gathering and processing. FL is important in data
ethics for various reasons. First, it lets data contributors train ML models collaboratively while protecting
their anonymity. This distributed strategy keeps sensitive data local, reducing the hazards of centralising
massive databases. FL also increases fairness and inclusivity by using varied datasets from different sources
for model training. This reduces biases from using a single, centralised dataset. ML traditionally uses
centralised models, which require the storage of sensitive data. However, this practise may compromise
privacy. FL is an innovative method for training ML models with user-owned data. This strategy reduces data
exchange, addressing privacy issues and hazards. FL respects data ownership and governance. In a FL
system, individuals and organisations own and govern their data. This decentralised approach lets people
actively train models while maintaining data control. This is congruent with ethical ideals that value data
autonomy and control.

Ethical data practises emphasise data minimization, or restricting data gathering and processing to
what is necessary. FL uses decentralised data sources to update models without sharing raw data. FL
emphasises informed consent and active engagement in ML model training. This observation follows ethical
norms that value informed consent and data transparency. FL can improve data security and confidentiality
by restricting data exposure. Data is stored on the user's device, preventing data breaches and unauthorised
access. This technique efficiently addresses ethical issues related to data security and confidentiality. FL's
capacity to use many data sources during model training might reduce bias and discrimination in Al models.
FL's distributed nature allows the training process to reflect data source variety, minimising bias and
prejudice in Al models. This technique may help overcome biased Al system ethics and promote justice and
inclusion in Al applications. This strategy promotes justice and resolves bias-related Al ethical issues. FL
follows data ethics principles like privacy, data ownership, permission, fairness, and data minimization. The
approach being described is interesting for ML since it addresses ethical issues connected with typical data
practises and centralised processing.

In section 2, we brief as how FL can help diagnose malignant brain tumors. In section 3, we outline
the role of XAl in the diagnosis of brain tumors. Section 4 discusses the existing methods for diagnosing
medical images using FL and XAl. Section 5 presents the evaluation of medical image diagnosis methods
using FL and XAI. Section 6 discusses case studies of medical image analysis using XAl and FL.
In section 7, we discuss about the results and possible directions for future study.

2. FEDERATED LEARNING FOR MEDICAL IMAGE DIAGNOSIS-SOME REFLECTIONS

ML method FL allows for collective model training on dispersed data. FL allows training models
directly on data spread across numerous devices or locations while keeping the data local and ensuring
privacy, unlike typical ML methods [17]. FL disperses the data so that it can be used in the model-training
process, rather than having it all kept in one central location. It's important to keep this in mind if data
sharing is restricted for any reason, whether it be due to privacy concerns, security concerns, or legal
requirements. FL provides a workaround by enabling edge nodes to collaborate and collaboratively train a
shared model without releasing their unique data [18]. Figure 1 depicts the implementation of FL in medical
image analysis.

In FL, a central server sets up and communicates the model framework to all client devices. The
distributed model is trained using local data collected from each device. Training can make use of deep
neural networks and other ML techniques [19]. Devices update the central server with their refined model
parameters or gradients after completing in-house training. Using methods like averaging and weighted
averaging, the server collects model updates from numerous devices and merges them into a unified model.
Iterative processes are used for both regional training and model aggregation [20].

FL's ability to maintain user anonymity is a major selling point. Local data is stored on each device,
and only model updates are exchanged. This distributed approach helps guarantee personal data is kept
hidden [21]. The trained model can then be deployed for inference on additional data, either on the central
server or on the participating devices, after the FL process reaches the required level of model performance.
The healthcare industry, where patient confidentiality and data security are of the utmost importance, is just
one area where FL has been widely adopted and successfully put to use. While protecting patients'
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anonymity, it facilitates model-training collaboration between healthcare facilities [22]. Medical image
analysis, disease prediction, and clinical decision assistance are just a few examples of successful
applications of FL. However, FL also presents difficulties such as inefficient communication, data
heterogeneity between devices, and dealing with data that is not independently and identically distributed.
These issues are the topic of ongoing research aimed at making FL even more versatile and efficient [23].

Medical imaging is an area where FL presents both opportunities and obstacles. Protecting users'
anonymity is a major perk. FL paves the way for cooperation across hospitals without jeopardizing patients'
right to privacy. FL ensures compliance with data protection standards [24] by storing data locally and only
communicating model updates. Additionally, FL allows access to diverse and large-scale data by aggregating
information from multiple sources. This leads to more robust and generalizable models. Another advantage is
the reduction in data transfer and storage requirements. By exchanging model updates instead of raw data, FL
minimizes bandwidth usage and storage costs [25]. Furthermore, FL facilitates collaborative learning in
resource-constrained environments. Local training on edge devices or distributed systems makes FL suitable for
medical imaging applications in remote or low-resource settings. However, FL also faces challenges.
Heterogeneity of data, arising from variations in imaging protocols, equipment, and patient populations, can
impact model performance. Handling non-identically distributed (Non-11D) data remains an ongoing research
challenge. Communication and computational overhead pose additional hurdles, particularly when dealing with
large-scale medical imaging datasets. Efficient compression and transmission techniques are being explored to
mitigate these challenges. Ensuring fairness, model interpretability, and addressing security concerns are also
important considerations in FL for medical imaging. Despite these challenges, FL holds great promise in
advancing medical imaging research and applications while safeguarding patient privacy [26]-[30].

Hospital C Hospital D

Figure 1. Implementation of FL in medical image analysis

3. EXPLAINABLE Al FOR MEDICAL IMAGE DIAGNOSIS- SOME REFELECTONS

Building ML or Al systems with human-comprehensible explanations for their predictions and
actions is the focus of XAl study [31]. In contrast to the black box nature of complex Al models, XAl aims to
make the decision-making process understandable to humans. This is achieved through interpretable model
architectures, such as decision trees, or by generating post-hoc explanations that highlight the key factors
influencing the model's outputs [32]. To account for the model's behaviour over the entire dataset, XAl
considers both local and global explanations. Predictions can be improved with the use of local explanations.
User-centric explanations are made specifically for the target group, making them meaningful and
understandable. Users can judge the dependability and fairness of Al systems by evaluating the quality and
credibility of explanations, which is a key component of XAl. When used to healthcare, XAl can improve
doctors' ability to understand Al-based diagnoses, build trust, and streamline collaboration between humans
and Al. XAl's overarching goal is to promote transparency, accountability, and trust in Al systems by

Impact of federated learning and explainable artificial intelligence for ... (Sivakumar Muthuramalingam)



3776 O ISSN: 2252-8938

bridging the gap between how they make decisions and how humans can understand them [33]. Figure 2
illustrates the importance of XAl in the detection of medical images.

Interpretability is of utmost importance in medical image diagnosis as it enhances the understanding
and trust in Al systems' decisions. Accurate and trustworthy diagnoses are crucial in medical imaging for
patient care and treatment planning. Radiologists and physicians benefit from being able to analyse Al
models so that they can understand the thinking behind the factors used in these systems' classifications and
forecasts [34]. Interpretability helps validate a diagnosis since it provides clear justifications for the model's
decisions about which parts of a picture to focus on. Additionally, it allows doctors to assess the model's
efficacy, spot any biases or errors, and make educated decisions based on the Al system's findings.
Additionally, interpretability encourages collaboration between human specialists and Al systems, enabling
radiologists to employ Al as a tool in their diagnostic workflow while guaranteeing a sound and credible final
diagnosis [35].
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Figure 2. XAl in medical image analysis-a high level view

Al models can be utilized in a variety of ways to create explanations for medical imaging diagnosis.
With the use of gradient-weighted class activation mapping (CAM), we can generate heat maps that show
where in the input image the model's prediction was most strongly impacted [36]. Visualization is a powerful
tool for learning more about the characteristics and potential sites of a brain tumor. Model-independent local
interpretation is achieved by tweaking the input image and monitoring the model's predictions to create
explanations. It identifies the most important regions or pixels for a prediction, providing insight into what
drives the model's decision [37].

Shapley additive explanations (SHAP) provides relevance values to various aspects in the input
image based on how much they contribute to the model's output. It provides a unifying framework for feature
attribution, helping doctors to grasp the relative value of various picture attributes in medical image
diagnosis. Rule-based explanations generate a set of interpretable rules based on the Al model's learnt
decision boundaries [38]. These rules can specify explicit requirements or thresholds that aid in
understanding how various elements or combinations of features affect the model's predictions. Feature
visualisation techniques create visual representations of the model's learned characteristics. These
visualisations assist physicians in comprehending the learnt representations and identifying relevant patterns
or structures in imaging data that are symptomatic of medical image characteristics [39].

4. STATE-OF-THE-ART TECHNIQUES FOR MEDICAL IMAGE DIAGNOSIS USING FL AND XAl
In the field of medical imaging diagnostics, FL can be utilized to enable collaborative model
training across several institutions, while simultaneously safeguarding the confidentiality of patient data. The
following are some FL-based ways for analysing medical images and making a diagnosis. FL makes it
possible for many institutions or hospitals to collaborate on the training of a medical image diagnosis model
without releasing raw patient data. Instead, the model is trained at each individual institution using the
institution's own data, and only model updates or gradients are sent to a centralized server for the purpose of
aggregation. This decentralized technique safeguards data while simultaneously capitalizing on the
accumulated knowledge contained across diverse datasets [40]. By utilizing pre-trained models from a
variety of institutions, FL makes transfer learning possible in the field of medical picture identification. Each
institution is able to train a base model using its own data, and then transfer the model to a shared, federated
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dataset in order to make additional adjustments to it. The model's convergence can be achieved more quickly
with this strategy, and diagnostic performance is enhanced.

By training multiple models at different institutions and then pooling their predictions, FL can be
used to build an ensemble of brain tumour diagnosis models. The ensemble is built by aggregating the
predictions of individual models trained by different institutions [41]. The diagnostic system may be made
more accurate and robust through the use of ensemble learning. Brain tumour imaging data can benefit from
FL's ability to assist the extraction of collaborative features. Institutions are able to apply pre-trained deep
learning models to extract features from their local data, and they can then just release the extracted features
as opposed to the original, unfiltered imagegraphs. After that, a global model for analysing unexpected
information can be constructed by using these traits as building blocks [42]. The term federated transfer
learning refers to the process that results when FL and transfer learning are combined. Institutions collaborate
in order to train a standardized baseline model with the use of their own data, and then they share this model
with one another so that they can fine-tune it using their own data. The federated model that was produced as
a result [43] draws upon sources from a wide range of organizations.

These FL-based methods improve medical image diagnosis by using the potential of distributed data
while maintaining privacy. By employing FL, institutions can collectively train models with larger and more
diversified datasets, resulting in enhanced diagnostic model accuracy and generalisation. Model-agnostic
strategies seek answers that are independent of the exact Al model employed. Model behaviour and the
impact of input features on model predictions are analysed using these methods [44], regardless of the
model's underlying architecture. Note that the specific Al model, data characteristics, and the requirements of
doctors or end-users will all play a role in deciding which explanation technique to adopt. To create thorough
and contextually appropriate explanations for medical image diagnosis, many methodologies might be
integrated or altered [45].

Transparent and easily interpretable XAl approaches can improve the efficacy of models used in the
diagnosis of brain tumors. In this article, we show many XAl-based approaches for detecting brain tumors
[46]. In order to produce maps that highlight the regions of the brain that contributed most to the model's
conclusion, a heat map visualization approach such as grad-CAM might be used. These heat maps provide
visual explanations for medical image identification by identifying which portions of the image were most
influential in the diagnosis [47]. XAl approaches can evaluate the significance of various picture features or
regions in the diagnosis of medical images. Clinicians can determine which features the model depends on
for predictions by measuring the importance of specific features such as forms, textures, or intensity patterns.
Rule-based techniques generate interpretable rules based on the Al model's learned decision limits [48].
These rules can be explicit conditions or thresholds that assist doctors in understanding how individual
aspects of the image or combinations of features contribute to medical image diagnosis. Model-agnostic
strategies seek answers that are independent of the exact Al model employed. These methods concentrate on
analysing the model's behaviour and the impact of input variables on its predictions, allowing physicians to
comprehend the decision-making process across different models or architectures [49]. Contextual
explanations can be provided by XAl techniques by analysing the reasons behind the model's predictions
within the framework of medical knowledge and guidelines. By relating the model's results to standard
medical metrics, these justifications increase the diagnostic process's interpretability and reliability.

XAl algorithms can create natural language explanations of the reasoning and elements impacting
medical image diagnosis [50]. These human-readable explanations can assist physicians in understanding and
communicating the model's decisions to patients or other healthcare professionals. Clinicians can improve
their understanding of Al model decision-making, the factors influencing forecasts, and the model's outputs
by applying XAl methods into brain tumor diagnoses. This promotes openness, trust, and cooperation
between Al systems and medical staff, leading to improved diagnostic accuracy and clinical interpretability
of medical images [51].

Combining FL and XAl approaches can provide an effective approach for medical image
identification. Here are some examples of how to integrate FL and XAl. Using FL, researchers from different
institutions can work together to fine-tune a single XAl model. Any organization can participate in the
training process by contributing local data while yet protecting user privacy. The resulting XAl model would
explain the algorithm's reasoning for its predictions in language that clinicians could understand [52]. Instead
of aggregating solely model updates or gradients in FL, the federated aggregation process might incorporate
explanations given by XAl approaches. This will enable the aggregation server to aggregate not just the
model parameters but also the generated explanations from other institutions, resulting in an intelligible and
transparent final model.

Multiple XAl models can be trained in tandem across organizations using FL XAl models for
hypothesis generation in brain tumour diagnosis are developed independently by each institution [53]. The
ensemble, which is comprised of the individual models' forecasts and explanations, then makes the ultimate
call. This method yields both accurate predictions and a variety of interpretable explanations. In this method,
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institutions work together to extract interpretable features from their local medical image imaging data using
XAl approaches. Rather than distributing raw images or models, the extracted features are distributed and
utilised to train a global XAl model. This enables the extraction of shared knowledge and the production of
transparent and interpretable explanations for medical image diagnosis [54].

Advantages of FL and XAl in brain tumour diagnosis include interpretable decision-making,
protection of patient privacy, and group learning. It combines the power of distributed data and model
training with the capacity to offer explanations for physicians that improve transparency, trust, and
understanding. Hybrid approaches, which combine the capabilities of FL and XAl, offer the potential to
increase accurate and interpretable medical image diagnosis while resolving privacy concerns [55].

5.  EVALUATION OF FL AND XAI-BASED MEDICAL IMAGE DIAGNOSIS TECHNIQUES

Quantitative assessments of accuracy, precision, recall, specificity, and overall performance of FL
and XAl-based approaches in identifying brain tumours are provided by the performance evaluation metrics.
The area under the ROC curve (AUC-ROC) and average precision metrics are frequently used to evaluate the
discriminatory power and precision-recall tradeoff of models [56]. Table 1 depicts some of the evaluation
metrics employed by FL and XAl-based diagnostic techniques.

Table 1. Metrics used in evaluation of medical image diagnosis techniques

Metrics Formula Description
Accuracy (TP+TN) / (TP+TN+FP+FN) Overall correctness of diagnostic predictions
Precision TP/ (TP+FP) Proportion of correctly predicted positive cases
Recall (sensitivity) TP/ (TP+FN) Proportion of correctly predicted positive cases
Specificity TN/ (TN+FP) Proportion of correctly predicted negative cases
F1 Score 2x(precisionxrecall) / (precision+recall) Harmonic mean of precision and recall
AUC-ROC - Measures the model's ability to distinguish between positive and
negative cases
Average precision - Average precision across different recall levels based on the

precision-recall curve

The evaluation techniques used for medical image diagnostic techniques based on FL and XAl also
have certain challenges and limitations. Some common challenges and limitations associated with these
evaluation techniques are limited ground truth data, data heterogeneity, and lack of evaluation protocols,
interpretability and ethical considerations [57]. Obtaining a reliable and comprehensive ground truth for
medical image diagnosis can be challenging. The availability of high-quality ground truth data is crucial to
the reliability of the evaluation metrics. An incomplete or inaccurate ground truth can introduce biases and
affect the performance evaluation. Variations in picture acquisition techniques, equipment, and patient
demographics can introduce unavoidable discrepancies into FL data. Performance evaluations can be
impacted by such data heterogeneity, making it hard to generalize results to other settings or datasets [58].
The absence of standardized evaluation protocols for FL and XAl based medical image diagnosis poses
challenges in comparing and replicating results across different studies. The variations in evaluation
methodologies and metrics used make it challenging to establish consistent benchmarks and assess the
progress in the field.

XAl techniques aim to provide interpretable explanations for model decisions [59]. However, there
can be a trade-off between interpretability and performance. While more complicated models may be more
accurate, they may not be explainable, while simpler models with better interpretability may be less effective.
Balancing interpretability and performance are a challenge in evaluating and selecting medical image
diagnostic techniques. In some cases, the FL or XAl based medical image diagnostic models may utilize
black-box models that are inherently complex and lack interpretability. Even though XAl methods can offer
explanations after the fact, they might not be able to reveal all of the black-box models' inner workings.

It is common practice to evaluate FL and XAl based brain tumour diagnostic methods on predefined
datasets that may not be representative of the complexity and variety of actual clinical settings [60].
Generalizing the performance results to diverse patient populations, imaging protocols, and clinical
environments can be challenging. Evaluation techniques should also consider ethical aspects, such as
fairness, bias, and accountability [61]. Ensuring that the evaluation metrics and methodologies address these
concerns can be challenging, particularly in complex and sensitive domains like medical imaging.
Addressing these challenges and limitations requires ongoing research and collaboration between the medical
and Al communities. Developing standardized evaluation protocols, improving access to high-quality ground
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truth data, and advancing interpretability techniques are crucial for reliable and meaningful evaluation of FL
and XAl based medical image diagnostic techniques [62].

Future research in FL and XAl for medical image diagnostic techniques holds significant potential
for advancements in accuracy, interpretability, and clinical applicability. There are some promising directions
for future research in this field. Developing more efficient and secure FL frameworks specifically tailored for
medical imaging applications can further improve collaborative medical image diagnosis [63]. This includes
addressing challenges related to data heterogeneity, communication efficiency, privacy preservation, and
model aggregation techniques. Combining imaging modalities including MRI, CT, and positron emission
tomography with clinical and genetic data improves our understanding of brain tumors [60]. In order to
improve diagnostic precision and choice-making, future studies can investigate FL and XAl methods that
enable the integration and analysis of multi-modal data.

Knowledge can be transferred from well-established datasets to domains with minimal labelled data
by exploring transfer learning and domain adaption approaches within the FL and XAl frameworks [64]. This
approach can improve model performance and generalization in medical image diagnosis across different
healthcare institutions or regions. Advancing XAl techniques specific to deep learning models can provide
more detailed and actionable explanations for medical image diagnosis. Within this framework, novel
techniques for feature extraction, visualization, and comprehending the decision-making process of deep
neural networks can be investigated. The interpretability and decision-making power of FL and XAl models
can be enhanced with the incorporation of clinical knowledge and domain experience [65]. Incorporating
medical guidelines, previous knowledge, and expert annotations can improve the diagnosis processes explain
ability and reliability.

It is essential to examine methods for evaluating model robustness and calculating uncertainty in
brain tumour detection using FL and XAl. Uncertainty estimate helps clinicians learn how confident they can
be in model predictions, which improves their ability to make decisions and handle risks. To demonstrate the
efficacy, reliability, and impact of FL and XAl-based medical image diagnosis approaches, comprehensive
validation studies in real-world clinical settings are required [66]. Collaboration with healthcare institutions
and clinicians is critical to evaluate the performance, usability, and integration of these techniques into
routine clinical practice. Future research should address ethical and legal challenges associated with FL and
XAl-based diagnostic techniques, including privacy, data ownership, bias, and accountability. Ensuring
transparency, fairness, and compliance with regulatory requirements are crucial for the responsible
deployment of these technologies. By exploring these research directions, FL and XAl-based medical image
diagnostic techniques can advance the field of medical imaging, improving accuracy, interpretability, and the
overall quality of patient care [67].

6. CASE STUDIES
6.1. Explainable artificial intelligence in healthcare

The novel method to Parkinson's disease diagnosis makes use of XAl. To make DaTscan images
more easily understood, the authors employ local interpretable model-agnostic explanations (LIME). This
research shows how crucial it is for medical Al to be open and explainable to both doctors and patients [65].
To deal intensively with the topic of XAl in biomedicine and emphasize the crucial importance of developing
trustworthy Al systems for medical professionals and patients. The article examines various methods and
tactics for establishing interpretability in Al-driven medical decision-making and emphasizes the importance
of ethical and transparent Al. XAl to gain new insights into tumor microenvironmental factors associated
with improved outcomes in breast cancer patients. The study not only proves the diagnostic capabilities of
Al, but also its ability to explain medical data in an understandable way, thus leading to better patient care
[66]. Developed an XAl model for glaucoma diagnosis. Aside from accurate diagnostic performance, the
model's interpretability allows clinicians to understand the reasons behind its predictions. This strategy
increases confidence in Al-powered medical decision-making and delivers actionable insights for healthcare
professionals [67]. To be used XAl to diagnose biological mental illnesses. The study not only helps identify
mental health problems by creating a model with explainable properties, but also provides interpretable
insights into the diagnostic process, supporting more effective treatments and interventions [68].

To examine the ability of XAl to predict cardiovascular events using molecular data. Explainable
models enable clinicians to gain an understanding of the aspects that contribute to risk assessment, enabling
more informed patient treatment and prevention initiatives [69]. In-depth research on the uses of XAl in
healthcare over the past decade was undertaken [70]. The comprehensive analysis examines the growth of XAl
in healthcare including varied application cases and shows the revolutionary importance of interpretability in
medical Al. The study examines numerous applications of XAl in medical diagnostics and surgical decision
making. It highlights the importance of transparency in Al-driven healthcare, enabling physicians to not only
trust but also understand Al-generated suggestions, leading to better patient outcomes [71].
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To proposed an automatic diagnosis strategy for myocarditis diseases using depth transformers and
XAI in cardiac MRI processing. This method helps doctors’ better plan patient care by enhancing diagnostic
precision and illuminating how Al arrives at its conclusions [72]. To be involvement of XAl in deep
learning-based medical image processing. By making Al-generated data interpretable, the work contributes to
the credibility of image-based diagnostics and makes them more accessible for clinical use [73]. To be
developed a methodology to assess blood test parameters that may be helpful in COVID-19 diagnosis. By
providing clear and understandable insights into diagnostic assessments, the interpretable Al models used in
this work help address pandemic-related health challenges [74]. In advanced stage ovarian cancer, found that
XAl can be used to predict complete surgical cytoreduction. The work enables individual treatment plans and
surgical planning by integrating interpretability into the diagnostic process [75]. According to reported the
use of XAl in lung cancer screening models. The interpretability of the Al system helps doctors not only
diagnose diseases but also understand the underlying elements that impact diagnostic evaluations [76]. To
categorize prostate cancer, created an XAl model using ultrasound and MRI data. The study increases trust in
Al-powered healthcare workflows while improving diagnostic accuracy and providing insights into the
variables that influence Al conclusions. Sadeghi et al. [58] performed a systematic analysis of XAl's
applications in healthcare in 2023. It highlights XAl's promise to improve the openness and interpretability of
Al systems, while describing the various applications of XAl in medical diagnosis and therapy [77]. A
scoping review carried out in 2023 to examine the developments, advantages and possible uses of XAl in
medicine. The increasing use of XAl in healthcare and its potential impact on clinical practice are highlighted
in the review [78].

6.2. Federated learning in healthcare

To address privacy and security issues, developed a FL paradigm for edge-based analysis of
healthcare data. It represents a ground breaking method for data protection and collaborative analysis [79].
For FL, address dynamic contracts in smart healthcare applications. The study focuses on resource-efficient
model training that enables healthcare companies to operate efficiently while limiting data sharing [80]. To
examined the future of digital health from a FL perspective. They emphasize the opportunities for
collaborative research and privacy protection in healthcare, laying the foundation for a more secure and data-
driven healthcare ecosystem [81]. Li et al. [82] examined FL applications in the context of the internet of
things (IoT) in depth, with a particular focus on healthcare. In addition to discussing the potential of FL for
lIoT applications in healthcare, the poll also covers privacy and security concerns. Clinical outcomes in
patients with COVID-19 were predicted using FL. The benefits of FL for healthcare decision support are
highlighted by this real-world example, which is especially relevant in the context of pandemics [83]. Used
biological data to conduct a systematic review of FL applications. The potential of FL in health research is
demonstrated, and the most important results and successes in this sector are summarized in the overview
[84]. To be presented FL and fine-grained privacy for use in medical image analysis. They stress the need for
confidentiality safeguards even as medical imaging diagnostics benefit from the pooled resources of multiple
data sources [85].

Propose a FL strategy for protecting healthcare data in big data environments. The study addresses
data security concerns while allowing healthcare companies to collaborate on data-driven research [86].
Developed work using FL to diagnose heart problems in a hospital setting. In this context, Al techniques for
protecting privacy are crucial, and research suggests that the potential for secure analysis of medical data is
being discussed [87]. Liu et al. [88] investigated the development of intelligent healthcare systems based on
FL that are both secure and efficient. Their efforts ensure that Al-driven healthcare solutions are trustworthy
by bolstering data security and model accuracy [88]. Privacy-protecting FL algorithms in healthcare systems
were analysed. The evaluation highlights potential privacy concerns related to collaborative health research
and provides recommendations for enhancing data protection [89].

To offered a reinforced FL technique for healthcare 10T devices using particle swarm optimization.
This method improves model performance and data security as well as the effectiveness of Al-driven
healthcare applications [90]. Patients' lengths of stay in hospitals can be predicted via FL, researchers are
able to improve healthcare resource allocation and patient care planning while keeping private medical
information secure [91]. To investigated XAl's function in chronic wound categorization and showed its
potential applications beyond diagnosis. Wound treatment is the centre of the study, although the broad
applications of XAl in medicine are also discussed [92]. Introduced a better, more understandable Al tool for
hospital recommendations. By selecting hospitals based on transparent and interpretable criteria, this
platform improves healthcare and patient outcomes [93]. FL to estimate the length of stay of hospital
patients, resulting in more efficient resource management and patient care planning [94]. The study shows
the value of FL in healthcare. A method for detection and forecasting based on Al was presented [95].
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6.3. Lessons learned

In medical image diagnosis, grad-CAM and LIME offer significant advantages that can be exploited
depending on the specific diagnostic goals and the type of underlying deep learning models. Grad-CAM
excels at spatial localization and visual explanations, making it particularly valuable for cases where it is
critical to understand where the model focuses within an image. This is particularly beneficial in scenarios
such as radiology, where precise location of an abnormality or lesion in an X-ray or MRI image is essential
for an accurate diagnosis. Radiologists and healthcare professionals can benefit from grad-CAM's clear
visualizations that highlight areas of interest and provide insight into the model's decision-making process.

On the other hand, LIME's model-agnostic approach proves advantageous when dealing with a
variety of deep learning architectures and data types commonly encountered in medical image analysis. Its
ability to provide local, case-specific explanations can help understand why a particular diagnosis was made
for a particular image. In cases where model interpretability is critical to building trust and ensuring the
ethical use of Al in healthcare, LIME's ability to explain individual predictions contributes to transparency
and accountability. Additionally, LIME can be valuable for uncovering the reasons for unexpected model
behaviour, such as misclassifications or cases where the confidence level of the model is low. Ultimately, the
choice between grad-CAM and LIME in medical image diagnosis should depend on the specific
requirements of the diagnostic task, the type of medical image data to be analysed, and the level of
interpretability required for medical professionals to confidently incorporate Al-driven insights integrate their
clinical workflows. In some scenarios, combining both methods can provide a comprehensive solution that
enables both spatial localization and instance-specific explanations to improve the diagnostic process and
improve patient care.

7. DISCUSSION

This study investigated the effects of FL and XAl for medical image diagnosis. While earlier studies
have explored the impact of FL and XAl in various domains, they have not explicitly addressed its influence
on the specific challenges and nuances associated with medical image diagnosis. Existing research has
primarily focused on general applications of FL and XAl, overlooking the unique requirements and
considerations essential for the accurate and reliable diagnosis of medical images. This research gap
highlights the need for a dedicated investigation into the tailored implementation and effectiveness of FL and
XAl techniques in the context of medical image diagnosis, addressing issues such as interpretability,
transparency, and trustworthiness in the healthcare domain.

In our investigation into the impact of FL and XAl for medical image diagnosis, we identified a
noteworthy correlation between the application of FL and XAl techniques and improved diagnostic
outcomes. The integration of FL demonstrated a significant enhancement in collaborative learning across
decentralized medical data sources, leading to heightened accuracy and robustness in image diagnosis.
Additionally, the incorporation of XAl not only contributed to accurate predictions but also provided
valuable insights into the decision-making process, fostering transparency and interpretability in the
diagnostic outcomes. Our findings underscore the potential of FL and XAl in revolutionizing medical image
diagnosis by addressing issues of data privacy, model transparency, and diagnostic reliability in a
collaborative healthcare environment.

While this study delves into the impact of FL and XAl for medical image diagnosis, offering a
comprehensive analysis of their influence on diagnostic outcomes, it is crucial to acknowledge certain
limitations into consideration. The scope of our investigation may not encompass the full spectrum of
medical imaging conditions or diverse patient populations, potentially impacting the generalizability of our
findings. The dynamic nature of healthcare practices and evolving technology landscapes introduce an
inherent challenge in capturing real-world variations that may affect the application of FL and XAl in
different clinical settings. The interpretability of XAl models, while improved, may still pose challenges in
complex medical scenarios.

Our study on the impact of FL and XAl for medical image diagnosis reveals promising outcomes in
terms of diagnostic accuracy and interpretability. To further advance this field, future research could delve
into exploring the optimal configurations of FL and XAl models for specific medical imaging modalities.
Investigating the integration of real-time feedback mechanisms to continuously improve model performance
and interpretability in dynamic clinical environments would be valuable. Examining the ethical
considerations and addressing the challenges associated with deploying these technologies in real-world
healthcare settings should be a focal point for future investigations. By addressing these aspects, future
research can contribute to refining and optimizing the practical implementation of FL and XAl, ultimately
enhancing their impact on medical image diagnosis in a meaningful and responsible manner.
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8. CONCLUSION

There have been important discoveries made in the field of medical image diagnosis as a result of
the use of FL and XAIl. FL allows for the training of collaborative models across several institutions without
the need to share private patient information. FL-based medical image diagnostic models have demonstrated
improved accuracy in detecting and classifying tumors, benefiting from the aggregation of diverse datasets.
XAl approaches provide interpretable explanations for model predictions, improving doctors' understanding
of decision-making processes and allowing them to make more informed therapeutic judgements. FL and
XAl's transparency aids in model validation and develops trust in their diagnostic skills. Furthermore, FL
protects data privacy by keeping patient data decentralised, assuring regulatory compliance. FL-based models
have demonstrated the ability to generalise across institutions, incorporating differences in imaging methods
and patient groups. When FL and XAl are used in clinical treatment, ethical considerations including fairness
and bias are essential for ensuring responsible and ethical use. Brain tumour identification relies heavily on
the accuracy, interpretability, cooperation, and privacy afforded by FL and XAl when applied to medical
imaging.

9. FUTURE RESEARCH

There are important clinical and future research implications for using FL and XAl systems to detect
brain tumours. FL and XAI, when used to the diagnosis of brain tumors in a clinical setting, can improve
both model accuracy and interpretability, leading to more informed treatment decisions. Due of FL's
collaborative character, knowledge sharing across institutions is encouraged while patient privacy is
maintained, leading to more reliable and generalizable models. Transparent explanations for model
predictions are provided by XAl techniques, enhancing physician acceptance and fostering greater trust. FL
and XAl have applications in healthcare that include better patient outcomes, individualized treatment
strategies, and more efficient use of available resources. Future research should concentrate on creating
standardised evaluation procedures, addressing problems with data heterogeneity, and enhancing the
readability of FL and XAl models. Furthermore, for the discipline to advance, study is needed on the ethical
implications of FL and XAl, transfer learning, and the integration of multimodal data. Overall, FL and XAl
have revolutionary implications for medical practise and upcoming research in medical image diagnosis,
promising improvements in precision, interpretability, collaboration, and patient-specific care.
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