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 A major problem in today’s transportation systems is driving behavior, since 

there are growing worries concerning ensuring the safety of motorists, 

passengers, and other road users. Deep learning algorithms can classify 

people based on their driving behaviors and identify driving trends from 

sensor data. This paper presents a novel model based on a driving behavior 

dataset gathered from cellphones for detecting and classifying aggressive 

driving. The model uses a hyper-deep learning model to create a prediction 

model that classifies drivers into three groups: normal, slow, and aggressive. 

The system starts with pre-processing methods normalization and standard 

scaler approaches to prepare the data. Two methodologies are used: directly 

entering the data into the deep model to classify driving behavior and 

selecting features using principal component analysis (PCA), singular value 

decomposition (SVD), and mutual information (MI). The hyper-

convolutional neural network (CNN)-dense model is then used to train 

features to classify driver behavior. The experimental results show that the 

CNN-dense model with feature selection techniques SVD6 and MI6 

achieves the best results with 100% accuracy rate for aggressive driver 

behavior detection, while the time for SVD6 is the shortest at 43 seconds. 
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1. INTRODUCTION 

Driving behaviors are the most common cause of traffic accidents and a large contribution to 

insurance claims [1]. There have been traffic accidents since Karl Benz invented the vehicle. The number of 

cars on the road increases in tandem with the economy and society, contributing to an increase in traffic 

accidents and congestion [2]. According to research, human factors are responsible for about 90% of 

roadway accidents [3]. Driving style can be described as a driver’s habitual driving behavior that reflects 

their tendency to operate in particular ways regularly [4]. It also describes how a driver’s style of driving 

affects both their own and other drivers’ safety through driving [5]. Abnormal driving is defined as abnormal 

or unsafe behavior that deviates from the norms for a specific set of drivers [6]. There are other types of 

irregular driving, but the most relevant behaviors, like speeding, aggressive driving, and careless driving, are 

related to an increased chance of an accident [7]. Road rage is characterized by verbal abuse, shoving, hitting, 

threatening behavior, and maybe minor or major injuries [8]. It is described as a short-lived, intense 

emotional response to perceived provocation in a conflict situation involving two or more individuals on the 

road [9]. Speeding, tailgating, weaving in and out of traffic, and running red signals are all examples of 

aggressive driving [10]. According to a survey done by the american automobile association (AAA) 

foundation for traffic safety, aggressive driving behavior (ADB) was implicated in roughly 55.7% of fatal 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:noorwalid1995@gmail.com


                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 4, December 2024: 4883-4894 

4884 

traffic accidents [11], and the frequency of road accidents and ADB are positively correlated [12]. ADB, as 

one of the leading causes of traffic issues, is influenced by both situational conditions like traffic congestion 

[13] and human ones like negative emotions [14]. Because of the progressively congested traffic system and 

the rapid pace of life, it is easier for drivers to display ADB, so proper recognition of ADB is critical. 

However, no single definition of ADB exists [15]. Interventions of technology in highway rage and 

aggressive driving are critical to achieving this goal [16]. Deep learning has seen fast development in the 

field of driving behavior identification in recent years [17]. It can help when a model is difficult to train due 

to a small sample size or when data collection is problematic in the target domain [18]. Deep learning has 

been used in various study domains due to its usual advantages. Figure 1 depicts the characteristics that 

influence driving behavior [19]. This paper aims to present a method for the detection of ADB in vehicles, 

focusing on developing a deep learning model by implementation a convolutional neural network (CNN) to 

the identification and classification of driving behaviors, with a focus on investigating how feature selection 

strategies affect model performance, this is something that previous studies did not give much attention to it. 

We will conduct a comparative analysis between the CNN model with feature selection and the model 

without feature selection,evaluate and quantify the impact of employing feature selection techniques on key 

performance metrics to discern the effectiveness of these methods. Demonstrate how the proposed deep 

learning model contributes to advancements in the field of driving behavior classification. Present new 

insights, improved methodologies, and potential applications that can significantly enhance the detection and 

understanding of ADB. Highlight advancements achieved and showcase the model’s higher performance. 

The remainder of this paper is structured as follows: section 2 provides an in-depth examination of 

driving behavior detection and deep learning applications. Section 3 describes the ADB detection 

mechanism, which is based on hyper-deep learning. Section 4 provides the comparison findings and a 

discussion of the implementation of the proposed deep ADB detection model with and without using feature 

selection. Section 5 summarizes the conclusions of this study. 
 
 

 
 

Figure 1. Factors influencing driving behavior [19] 
 
 

2. LITERATURE SURVEY 

This section includes a comprehensive review of literature ranging from representative works 

ranging from the oldest to the latest around this study. Several ways to detect driving behavior have been 

proposed over the last two decades. Moukafih et al. [20] proposed aggressive driver behavior classification 

model using long short-term memory (LSTM)-fully convolutional network (FCN) with real-world driving 

data from mobile phones. The UAH-drive set dataset is used to validate the technique. The method 

outperforms other deep learning and conventional machine learning models in terms of accuracy, with a 

95.88% accuracy score for a 5-minute window duration. Matousek et al. [21] focused on developing a 

reliable method for identifying unusual driving behavior using neural networks. They compare LSTM 

networks and AutoEncoder replicator neural networks to an isolation forest. They show that a recurrent 

neural network (RNN) can reliably detect anomalies in driving behavior, with an accuracy rate of 93%, 

making it suitable for large-scale detection systems. Xing et al. [22] developed a RNN to address driver 

behavior profiling as an anomaly detection problem. The model, trained on data from typical drivers, 

produced significant regression error when predicting ADB, but low error when recognizing regular driving 

behavior. The model achieved an accuracy rate of 88% when classifying ADB, suggesting it could be a 

useful baseline for unsupervised driver profiling and contributing to a smart transportation ecology. 

Talebloo et al. [23] proposed a method to detect ADB using GPS sensors on smartphones. They classify 

drivers’ driving behavior every three minutes using RNN algorithms, ignoring road conditions or driver’s 
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behavior. The algorithm, which uses 120 seconds of GPS data, has a 93% accuracy rate in identifying violent 

driving behavior, indicating that three minutes or more of driving is sufficient. Al-Hussein et al. [24] 

presented a method for profiling driver behavior using segment labeling and row labeling. A safety grade is 

assigned by row labeling to every second of driving data, while segment labeling grades temporal segments 

based on norms. The research uses three deep-learning-based algorithms: deep neural network (DNN), RNN, 

and CNN to classify recorded driving data. CNN was suggested for the system of identification, 

outperforming the other two techniques with 96.1% accuracy. The study suggests that this recognition system 

could increase road safety. The research aims to avoid overfitting and improve road safety.  

Al-Hussein et al. [24] proposed an ADB recognition technique using collective learning. The 

majority class is grouped using a self-organizing map and linked with the minority class to create multiple 

class-balancing datasets. The classifiers are built using CNN, LSTM, and gated recurrent unit (GRU) 

techniques. The ensemble classifier is better suited for identifying ADBs in a tiny percentage of the dataset, 

while the classifier without ensemble learning is better for detecting more abundant ADBs. The LSTM and 

product rule-based ensemble classifier has the highest accuracy of 90.5% [25]. Escottá et al. [26] used inertial 

measurement unit (IMU) sensors on smartphones to identify driving events using linear acceleration and 

angular velocity signals. They evaluated deep-learning models using 1D and 2D CNNs, achieving high 

accuracy values of up to 82.40%. Cojocaru et al. [27] presented a deep learning-based driving behavior 

estimation system integrated into a ride-sharing application. Results that used the driving behavior dataset 

show better accuracy with two classes, with CNN-LSTM achieving the best results at 91.94%, and 

ConvLSTM outperforming classical LSTM networks [27]. Cojocaru and Popescu [28] showed a dataset 

collected utilizing an Android smartphone that exclusively utilizes sensor data from the smartphone. The 

dataset is classified into three categories: slow, normal, and aggressive, and it is accompanied by experiments 

aimed at offering insight into the data capacity. They proposed CNN, LSTM, and ConvLSTM models using 

three machine learning techniques. The results show that ConvLSTM achieved the highest accuracy of 79.5%. 

Abosaq et al. [29] suggested deep learning-based detection methods for anomalous driving behavior using a 

dataset with five categories. The proposed CNN-based model outperforms pre-trained models in performance 

metrics, achieving 89%, 93%, 93%, 94%, and 95% accuracy in classifying driver’s unusual conduct. 
 

 

3. METHODOLOGY 

The methodology used in this study to combine feature reduction with rapid hyper-deep learning 

methods for precise classification of ADB is presented in this section of the paper. The methodical process 

employed to create a strong system that can reliably and precisely recognize ADB is described in this section. 

The model accurately classifies driving behaviors into three categories: slow, normal, and aggressive. It does 

this by utilizing feature selection and reduction approaches in conjunction with the capabilities of DNN. The 

model’s ability to discriminate between different behavior categories with accuracy can support proactive 

efforts to improve traffic control and road safety. The next sections explain the procedures, evaluation 

strategies, and methodologies employed in this research project, going into detail about each stage of the 

process. The system’s components, which include the driving behavior component, are shown in Figure 2. 
 

3.1.  Driving behavior dataset description 

Our main objective is to present a thorough comprehension of the dataset used in our study in the 

section devoted to dataset gathering and description. We understand that the effectiveness of deep learning 

models depends critically on high-quality data. We shall provide comprehensive information in the ensuing 

subsections to achieve this goal. Important details like the data gathering process, the sources it came from, and 

the data cleaning and preprocessing steps will all be covered in our investigation. We hope that this thorough 

explanation will provide readers with a strong basis for comprehending the context of the dataset and its 

significance to our research. The dataset used in this study closely matches the goals of the research as well as 

the requirement for high-quality data to train hyper-deep model. Our study focuses on detecting and classifying 

driving behavior into three groups: normal, aggressive, and slow. Eight features make up the dataset that the 

application uses [27], [28]: i) three for the acceleration in meters per second squared on X, Y, and Z axes; ii) 

three (X, Y, Z) axes rotation in degrees per second (°/s); iii) label for classification (aggressive, normal, slow); 

and iv) date and time stamp. Only the accelerometer and gyroscope were utilized as the primary sensors, and the 

data was gathered in samples (two samples per second) after the gravitational acceleration was eliminated. 

The dataset used in this study was sourced from Kaggle, a popular online platform for sharing 

dataset1. The data collection process involved meticulous recording using a Samsung Galaxy S10 

smartphone and a Dacia Sendero 1.4 MPI vehicle. In terms of the choice of vehicle for data collection, a 

standard car with 75 horsepower was selected. The geospatial coverage of the dataset is focused on the city 

of Craiova, located in the Dolj region of Romania. This specific region was chosen as the data collection area 

to provide a localized perspective and account for any unique characteristics or dynamics present in that 
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location. The dataset employed in the proposed model is described in terms of its characteristics. The 

summarized information is presented in Table 1, which provides an overview of the dataset’s attributes, 

values, and other pertinent characteristics. 
 

 

 
 

Figure 2. The proposed system architecture 
 
 

Table 1. Characteristics and values of the dataset employed in the proposed model 
Characteristic Specification 

Dataset name   Driving behavior 
Number of samples 3644 

Number of features 8 

Missing data No 
Balanced dataset Yes 

Label Yes 

 
 

3.2.  Data preprocessing 

One of the most crucial phases of applications for data analysis is data preprocessing. Many 

inconsistencies, out-of-range numbers, missing values, noises, and/or excesses are among the numerous 

defects that are frequently present in raw data. Low-quality data will impede the learning and mining 

algorithms’ ability to function well in the upcoming stages. Because of this, numerous preprocessing steps 

must be completed to improve the quality of raw data. Under this topic, some of the most popular and useful 

data preparation methods for use in data analysis applications are reviewed in terms of usage, popularity, and 

the algorithms that support them [30]. In this work, two commonly used techniques in data preprocessing 

were used. These techniques are normalization and standard scaler. 
 

3.2.1. Normalize data 

Normalize data: normalization, which involves scaling feature data to specific intervals such as  

[-1.0, 1.0] or [0.0, 1.0], is usually required when a dataset contains features with very different scales. If not, 

features with values on a much larger scale might make a smaller scaled but still significant feature less 

effective [31]. This will have a detrimental effect on the data mining model’s accuracy performance. To 

equalize the size of the features, the normalizing technique is therefore done to them. The three most used 

techniques are decimal scale normalization, z-score normalization, and min-max normalizing [32]. Min-max 

normalization: The difference between the data’s largest and lowest values is used to calculate the 

normalization. In (1) displays the values of the feature as min, max, and v, the values to be normalized, and 

the new range to be normalized is represented by 𝑛𝑒𝑤𝑚𝑎𝑥 and 𝑛𝑒𝑤𝑚𝑖𝑛 [33]. 
 

𝑥𝑛𝑒𝑤 =  
𝑥−min (𝑥)

max(𝑥)−min (𝑥)
 (𝑛𝑒𝑤𝑚𝑎𝑥- 𝑛𝑒𝑤𝑚𝑖𝑛) + 𝑛𝑒𝑤𝑚𝑖𝑛  (1) 
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Where x new represents normalized x. We implemented normalization techniques, notably min-max 

normalization, in our pre-processing due to its simplicity and effectiveness. When preserving the relationship 

between the original dataset is crucial, this method is especially helpful. 
 

3.2.2. Standard scaler 

Standard scaler, which implements Z-score normalization, standardizes characteristics by removing 

their mean from each value and dividing the outcome by the attribute’s standard deviation s, producing a 

distribution with a mean of zero and a variance of one unit [34]. Let 𝑥̅ be the mean of the x variable, and (2) 

transforms (scales) a value 𝑥𝑖  into 𝑥̅𝑖. 
 

𝑥̅𝑖 =  
𝑥𝑖−𝑥̅

s
 (2) 

 

The translational word in this example is the attribute’s sample mean, and the standard deviation 

serves as the scaling factor. This technique has the advantage of transforming both positive and  

negative-valued qualities into a relatively comparable distribution. However, when compared to an attribute 

without outliers, the final distribution of inliers is excessively narrow when outliers are present [35]. Standard 

scaler is used in this system to resize the value distribution so that the mean of the observed data is 0 and the 

standard deviation is 1. 
 

3.3.  Dataset splitting 

Dataset splitting is a strategy that is widely regarded as essential for removing or reducing bias in 

training data in deep learning models. Data scientists and analysts always use this method to keep machine 

learning techniques from overfitting and underperforming on real test data [36]. Large datasets are typically 

divided into several well-defined subgroups by data scientists and analysts, who then use these subsets to 

train different parameters. The goal of this study is to determine which machine learning system parameters 

best fit the training data by considering the significant impact of splitting a dataset into multiple train sets and 

test sets [37]. In order to assess the predictive abilities of classification models, a clean dataset must be used 

for testing. As a result, the original dataset is divided into two subsets: the test dataset comprises 30% of the 

total observations, and the training dataset comprises 70% of the total observations in the original dataset. 

The test dataset is kept clean so that model detection may be made on it, while the training dataset is utilized 

to train the model and fine-tune parameters. 

Finding a balance between a suitably large training set and an equally sizable testing set was the 

major criterion that guided our dataset splitting which offering a solid assessment of the generality of the 

model. By setting aside 70% of the dataset for training, allowing the model to become familiar with and 

adjust to the underlying patterns in the data. In addition, setting aside 30% for testing guarantees a sizable 

collection of unknown cases for assessing the model's effectiveness, achieving a balance between model 

learning and assessment. The model is less likely to overfit since it has enough data to comprehend 

underlying patterns without learning noise, thanks to the bigger part (70%) that is devoted to training. We 

aim to improve the transparency and credibility of our results in the field of aggressive driver behavior 

identification by using this method. 
 

3.4.  Feature relevance assessment methods 

A preprocessing technique that determines essential attributes of a problem is feature selection. 

Reducing the number of features, which means the number of columns in a dataset is the primary method 

used to do it. The model’s accuracy rate and inference quality increase as the number of features is decreased 

without compromising the quality of the dataset, while learning time and available space are decreased. To 

give these advantages, many feature selection algorithms are available. Three methods were employed in the 

suggested model: principal component analysis (PCA), singular value decomposition (SVD), and mutual 

information (MI). In this section, more details about these techniques will be explained. 
 

3.4.1. Using principal component analysis to select features (1st technique) 

Using PCA to select features (1st technique): The first technique used in this system is PCA, PCA is 

a transformation approach that reduces the size of a dataset by transforming it into fewer associated variables 

[38]. PCA is a decomposition of a column-mean-centered data matrix X of size N×K, where N and K are the 

number of samples and features, respectively. 
 

𝑥 = 𝑇𝑃𝑇 + 𝐸 (3) 
 

T is a scoring matrix of size N×A connected to the matrix X projections into an A-dimensional space, P is a 

loading matrix of size K×A related to the feature projections into an A-dimensional space (with 𝑃𝑇𝑃=I), and 

E is a residual matrix of size N×K [39]. 
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3.4.2. Using singular value decomposition to select features (2nd technique) 

The second technique utilized in the proposed system to select the best features that make the 

accuracy of detection and classification almost identical is SVD, as PCA but most specifically, the initial A 

principal components and the SVD of X are used to identify the A-dimensional space. When we denote  

X=𝑈𝑆𝑉𝑇 as the SVD of X and 𝑈̂, 𝑆̂, and 𝑉̂ as the matrices containing the first A columns of U, S, and V, 

respectively, we get: 
 

𝑇 =  𝑈̂×𝑆̂ (4) 
 

𝑃 =  𝑉̂ (5) 
 

And X=𝑇𝑃𝑇  is named the reconstructed data matrix [40]. 

 

3.4.3. Using mutual information to select features (3rd technique) 

The third technique used in the proposed model to increase the accuracy and decrease the time of 

execution is MI. Studies on MI dating from early to the 1990s show that it is one of the most popular feature 

selection techniques [41]. By calculating how much data about one random feature can be obtained from the 

other, MI quantifies the mutually dependent relationship between two random features. It is therefore 

associated with the entropy of a random feature, which is established by the quantity of information included 

in the feature. The MI between two discrete random variables X and Y is defined to be as (6) [42]. 
 

𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑃(𝑥, 𝑦)𝑙𝑜𝑔2(
𝑃(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)𝑦∈𝑌𝑥∈𝑋  (6) 

 

Three separate feature selection techniques were carefully selected in the study to handle the particular 

difficulties involved in identifying ADB. Each of these strategies has unique benefits that complement the 

research objectives and increase the stability and efficacy of the suggested multi-stage system. It was decided to 

combine PCA, SVD, and MI in order to the harness advantages of each technique. The driving behavior dataset 

has high dimensionality, and because PCA effectively lowers dimensionality and preserves important 

information, it is a good fit for our study since our objective is to discover driving behavior's influential features. 

A different viewpoint on the latent structures in the dataset is offered by SVD, which enhances PCA. Capturing 

subtle correlations in driving behavior features was the motivating force behind its usage MI was selected in 

order to evaluate the information gained related to several characteristics in relation to ADB. The intricacy of 

driving behavior datasets is in accordance with its capacity to manage non-linear interactions. 
 

3.5.  Convolution neural network to classify data 

CNN, also known as ConvNet, is a kind of artificial neural network (ANN) with remarkable 

generalization capabilities and a deep feed-forward design [43]. It can learn highly abstracted features of 

things, especially spatial data, and recognize them more effectively than other networks with FC layers  

[44]‒[46]. A deep CNN model consists of a limited number of processing layers that can be trained at 

different levels of abstraction to learn different features of input data (like images) [47]. Higher abstraction is 

achieved by the deeper layers in learning and extracting low-level data, while lower abstraction is achieved 

by the initiatory levels [48]. Figure 3 depicts the conceptual form of the proposed CNN-dense, with different 

sorts of layers discussed in the following section. 

− Convolution layer: the convolutional layer is the most crucial part of any CNN architecture. To create an 

output feature map, it consists of a set of convolutional kernels, sometimes referred to as filters, 

convolved with the input image (N-dimensional metrics) [49], [50]. 

− Pooling layer: layers sub-sample feature maps produced after convolution operations, preserving dominant 

features in each pool step. Pooling operations specify the pooled region size and stride, like convolution. 

Different techniques like max pooling, min pooling, average pooling, gated pooling, and tree pooling are 

used in different layers, with max pooling being the most popular and commonly used technique [51]‒[53]. 

− Leaky ReLU: this activation function, in contrast to ReLU, downscales the negative inputs rather than 

totally ignoring them. The Dying ReLU problem is resolved by using leaky ReLU. leaky ReLU is 

represented mathematically as (7) [54]: 
 

𝐹(𝑥)𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 =  {
 𝑥 𝑖𝑓 𝑥 > 0
𝑚𝑥 𝑥 ≤ 0

 (7) 

 

Where m is a constant, also known as the leak factor, and is often set to a low number (e.g., 

0.001). 
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− Dense: this layer of a standard DNN is what it is called. It is the most often used and common layer. The 

following process is carried out on the input by the dense layer, which then returns the outcome. The 

formulation of this layer is (8) [55]:  
 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑑𝑜𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑘𝑒𝑟𝑛𝑒𝑙)  +  𝑏𝑖𝑎𝑠) (8) 
 

− Flatten: the output of the pooling layer will be a matrix, which the neural network cannot receive. The 

n×n matrix from the pooling layer is converted into n2×1 matrix by the flattening layer so that it may be 

fed into the neural network [56]. 
− Fully connected layers: in a CNN model, one or more fully connected layers are often included just before the 

classification output. Similar to neural network layer topologies, neurons between neighboring layers are fully 

connected, and a completely connected layer consists of a fixed number of disconnected neurons [57], [58]. 
 

 

 
 

Figure 3. Architecture of the proposed CNN-Dense model 
 

 

3.5.1. The proposed convolutional neural network-dense model for driver behavior detection and classification 

The proposed CNN-Dense Model for driver behavior detection and classification: The proposed  

CNN-Dense model for ADB is explained in this section. The proposed CNN model is utilized to classify data 

immediately after the dataset is loaded, processed, and split in this technique. The suggested CNN-dense model 

has 26 layers, which are as follows: i) CNN with 8 layers, ii) leaky ReLU with 7 layers, iii) Max Pooling with 7 

layers, iv) 1 layer should be flattened, and v) dense is 3 layers. Table 2 goes into much detail about these layers. 
 
 

Table 2. The proposed hyper CNN-dense layers 
NO. Layer type  Filters  Size/Stride  Activation function #Param 

1 Convolutional 16 3/1 64 ــ 
3 Max Pooling 0 ــ 2/2 ــ 

3 Leaky ReLU 0 ــ ــ ــ 

4 Convolutional 32 3/1 1568 ــ 
5 Max Pooling 0 ــ 2/1 ــ 

6 Leaky ReLU 0 ــ ــ ــ 

7 Convolutional 64 3/1 6208 ــ 
8 Max Pooling 0 ــ 2/1 ــ 

9 Leaky ReLU 0 ــ ــ ــ 

10 Convolutional 64 3/1 12352 ــ 
11 Max Pooling 0 ــ 2/1 ــ 

12 Leaky ReLU 0 ــ ــ ــ 

13 Dense 64 ــ Linear  4160 
14 Convolutional 32 3/1 6176 ــ 

15 Max Pooling 0 ــ 2/1 ــ 

16 Leaky ReLU 0 ــ ــ ــ 
17 Convolutional 32 3/1 3104 ــ 

18 Max Pooling 0 ــ 2/2 ــ 

19 Leaky ReLU 0 ــ ــ ــ 
20 Dense 32 ــ Linear  1056 

21 Convolutional 16 3/1 1552 ــ 

22 Max Pooling 0 ــ 2/2 ــ 
23 Leaky ReLU 0 ــ ــ ــ 

24 Convolutional 45 3/1 2205 ــ 

25 Flatten  0 ــ ــ ــ 
26 Dense 32 ــ Softmax  138 
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4. RESULT AND DISCUSION 

In this section, we present our research findings and provide a thorough analysis and interpretation 

of them in the context of our study objectives. We have divided this section into several subsections to make 

sure the presentation is well-organized. Two methodologies were used in the proposed model as follows. 

 

4.1.  Classify data using hyper CNN-dense without feature selection “1st methodology” 

In this methodology, the data set is first processed using two pre-processing techniques, then the 

data is separated into two groups, the first is used to train the proposed model and the other is used for 

testing. The data is entered as is to the classification stage and the results of this stage using evaluation 

metrics [59], [60] are shown in Tables 3 and Figure 4.  

 

 

Table 3. The results of proposed CNN-dense without feature selection 
Technique  Accuracy  Precision  Recall  f-measure  Time in sec. 

CNN-Dense  95.2% 95% 94.7% 94.8% 41 

 

 

 
 

Figure 4. Chart of results of proposed CNN-dense without feature selection 
 

 

4.2.  Classify data using hyper CNN-dense using feature selection “2nd methodology” 

A feature selection is merely choosing or eliminating specific features without altering them in any 

manner. Dimensionality reduction is the process of reducing the dimensionality of features. The set of 

features produced by feature selection, on the other hand, must be a subset of the original set of features. The 

set produced by dimensionality reduction does not have to be (for example, PCA decreases dimensionality by 

generating new synthetic features by linearly mixing the existing features and removing the less significant 

ones). In this sense, feature selection is a subset of dimensionality reduction. Feature selection and reduction 

approaches were employed in this study to improve the efficiency of our suggested hyper CNN-Dense model. 

This section digs into how various strategies affect model performance and computational complexity. The 

emphasis is on identifying the most useful traits and how they contribute to improved prediction accuracy. 

Table 4 and Figure 5 display the results of three feature selection strategies (PCA, SVD, and MI) combined 

with the proposed CNN-dense model.  
 

 

Table 4. The results of proposed CNN-Dense with PCA, SVD, and MI feature selection 
Technique  Accuracy (%)  Precision (%)  Recall (%)  F-measure (%)  Time in second 

PCA3 75.4 78.5 78.3 78.3 30 

PCA4 96.8 98.4 98.4 98.4 54 

PCA5 85.7 82.4 82.4 82.3 14 
PCA6 98.7 98.9 98.9 98.9 24 

SVD3 73 75.1 75 75 36 

SVD4 97.6 97.6 97.6 97.6 48 
SVD5 99.9 99.9 99.9 99.9 40 

SVD6 100 100 100 100 43 

MI3 70.5 73.7 72.9 72.8 44 
MI4 91.8 94.5 94.5 94.5 50 

MI5 99 99.3 99.3 99.3 59 

MI6 100 100 100 100 51 
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Figure 5. Chart of suggested CNN-dense results with feature selection 

 

 

The suggested model with SVD6 and MI6 produced the best results, even when utilizing feature 

selection techniques with a 100% accuracy rate for aggressive driver behavior detection, while the time for 

SVD6 was the shortest, at 43 seconds. Feature selection is used in the deep learning process to improve 

accuracy. It also improves the detection capacity of the algorithms by identifying the most important 

variables and removing the redundant and irrelevant ones. This is why feature selection is so crucial. The 

following are three major advantages of feature selection: 

− Reduces over-fitting: less duplicated data implies fewer opportunities to make conclusions based on noise. 

− Improves accuracy: less misleading data implies more accurate modeling. 

− Shortens training time: less data implies faster algorithms. 

This study included three distinct feature selection strategies that were carefully chosen to address 

the unique challenges associated with classifying ADB. The distinct advantages of each of these approaches 

enhance the goals of the research while strengthening the stability and effectiveness of the proposed  

multi-stage system. The decision was made to use PCA, SVD, and MI to fully utilize the benefits of each 

method and then compare the results and determine the best. The Driving Behavior dataset is high 

dimensional, and since our goal is to identify the influential aspects of driving behavior, PCA successfully 

lowers dimensionality while preserving relevant information, making it a strong fit for our study. SVD 

improves PCA by providing an alternative perspective on the latent structures in the dataset. The driving 

force behind its use was the ability to identify tiny correlations in features associated with driving behavior. 

MI was chosen to assess the knowledge acquired on many traits associated with ADB. Driving behavior 

datasets are complex because of their ability to handle non-linear interactions. The drawbacks of these 

approaches include limited interpretability of the major component in terms of original features. For SVD, 

the dataset was sensitive to noise, and MI required a lot of computation, particularly for big feature sets. 

 

4.3.  Results comparison 

When comparing the results obtained from the proposed hyper CNN-dense system with the results 

of previous studies that worked on the same dataset in Table 5 and Figure 6, we notice the superiority of the 

proposed model in all cases, even using the first methodology without feature extraction the accuracy result 

was 95.2%. In other cases, when feature extraction techniques were used the results obtained for accuracy 

were 100% with SVD6 and MI6 as the best accuracy, and with other techniques the accuracy also reached 

99.9% and 99% as well, and the rest of the results were also good compared to the results of previous studies 

[27], [28] that gave detection accuracy of 91.94% and 79.5% respectively when using the same Driving 

behavior dataset. In these two studies they didn’t use feature selection techniques cause of this our detection 

accuracy was better by using three of fearure selection techniques (PCA, SVD, and MI). In addition, time of 

execution for our proposed system was few causes of these used appraoch.  

 

 

Table 5. Comparison results on driving behavior dataset 
Reference Accuracy (%) 

[27] 91.94 
[28] 79.5 

Our proposed CNN-dense 100 
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Figure 6. Comparison results with related works which used the same dataset 

 

 

5. CONCLUSION 

The accurate detection of ADB is the foundation for early and effective warning or assistance to the 

driver, which is critical for increasing driving safety. In this study, an ADB detection model based on  

hyper-deep learning CNN-dense is built using the driving behavior dataset; a proposed classify model is 

built; feature selection techniques are used; and the model is trained and tested using the driving behavior 

dataset obtained in a driving environment that is realistic. Results indicate that the proposed deep learning 

model achieves greater accuracy, prediction, recall, and F1-measure of 100% with SVD6 in 43 seconds and 

MI6 in 51 seconds. In contrast, the proposed model designed without feature selection achieved 95.2% 

accuracy in 41 seconds, where these results were the worest results for the proposed system. This comparison 

result indicates that the suggested model with feature selection is better suited for accurately detecting ADB, 

even with a limited part of the dataset. In terms of future work in this field, we should note that the dataset 

can be enhanced with data that can be measured to identify emotional, environmental, and psychological 

components rather than just behavioral factors. The proposed architecture enables its adaptation to diverse 

datasets and scenarios, making it a valuable asset for addressing various challenges in transportation, safety, 

and urban planning. Future applications can build on this research’s foundation to further many aspects of 

intelligent systems and deepen our understanding of how people behave in dynamic contexts, such as use in 

expand the model’s use beyond aggression analysis of driving behavior. Make use of the architecture to 

categorize and comprehend different driving behaviors, such as following traffic laws, being defensive, or 

driving while distracted. The capacity of the model to identify subtle driving patterns can help improve the 

way self-driving cars make decisions in intricate traffic situations. 
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