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 In the field of digital image processing, content-based image retrieval 

(CBIR) has become essential for searching images based on visual content 

characteristics like color, shape, and texture, rather than relying on text-

based annotations. To address the increasing demands for efficiency and 

precision in CBIR systems, we introduce the HybridEnsembleNet 

methodology. HybridEnsembleNet combines deep learning algorithms with 

an asymmetric retrieval framework to optimize feature extraction and 

comparison in extensive image databases. This novel approach, specifically 

custom-made for CBIR, employs a lightweight query structure skilled at 

handling large-scale data under resource-constrained environments. The 

experiments were performed on the ROxford and RParis datasets. The deep 

learning component of HybridEnsembleNet significantly refines the 

accuracy of image matching and retrieval. RParis The ROxford dataset, 

specifically in the medium and hard difficulty benchmarks, demonstrates an 

enhancement of 5.53% and 10.44%, respectively. Similarly, the RParis 

dataset, under medium and hard benchmarks, exhibits improvements of 

3.01% and 5.83%, showcasing superior performance compared to existing 

models. By overcoming the traditional limitations of CBIR systems in mean 

average precision (mAP) metrics, HybridEnsembleNet provides a scalable, 

efficient, and more accurate solution for retrieving relevant images from vast 

digital libraries. 
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1. INTRODUCTION 

Every day, a significant amount of images, amounting to terabytes of data, are transmitted and 

stored on the internet. The inherent continuity of this process enables the formation of a substantial collection 

of images. The task of identifying relevant images from a vast collection poses a significant challenge, 

thereby generating prospects for exploring novel opportunities in multimedia research. There exist two 

primary approaches for retrieving images based on language and content: Text-based image retrieval (TBIR) 

and content-based image retrieval (CBIR) [1]. The effectiveness of TBIR relies on the textual information, 

known as metadata that is associated with the image. Textual data can be generated using a variety of 

techniques or manually inputted into a system. TBIR encounters two significant challenges within the 

domain of image annotation: The manual annotation process necessitates a significant investment of time and 

https://creativecommons.org/licenses/by-sa/4.0/
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effort. It is crucial to recognize that the interpretation of annotated data may demonstrate variability among 

various individuals [2]. 

The development of CBIR was driven by the need to address the inherent limitations of TBIR. 

CBIR is a methodology that utilizes visual information to enhance the process of retrieving images. CBIR is 

a methodology that employs various attributes, such as shape, color, and texture, to effectively classify 

images based on their inherent visual properties[3]. CBIR is a well-established field of study that continues to 

be actively researched. The phenomenon can be attributed to several factors, including the substantial 

increase in image datasets, the diverse range of usage scenarios, and the numerous applications associated 

with CBIR. In contemporary times, a multitude of search engines are employed to facilitate the storage and 

retrieval of extensive collections of images from the internet. These collections can reach sizes of terabytes 

and are accessed daily. CBIR is a specialized domain that encompasses a range of applications, which can be 

classified into three main categories: association search, image search, and category search [4]. 

The fundamental principle underlying CBIR revolves around the notion of an image's contents, 

specifically denoting its distinct characteristics. The process consists of three primary phases: representation, 

extraction, and feature selection. The primary objective of a content-based retrieval system is to efficiently 

distinguish and segregate the unique visual attributes that serve as defining characteristics for various forms of 

media, such as images, videos, and audio files [5]. The procedure of CBIR encompasses various 

characteristics, such as type, form, texture, and key point descriptors. The attributes of the picture dataset play 

a critical role in determining the feature selection process. Various color models are employed to extract color 

attributes. The previously mentioned models offer distinct methodologies for perceiving and representing 

colors, each designed to suit particular circumstances and applications. The assessment of texture within an 

image is of utmost importance for evaluating its material properties and overall visual representation. The 

process involves arranging components in various spatial positions relative to each other [6].  

The concept of spatial texture organization refers to the arrangement of texture attributes within an 

image. The information provided presents valuable insights regarding various characteristics, including 

directionality, smoothness, coarseness, regularity, and uniformity. The utilization of shape attributes offers 

benefits in scenarios where objects possess distinct and identifiable structures, such as traffic signs, company 

names, and logos. Accurate extraction and representation of shape information play a crucial role in the 

successful implementation of CBIR applications. The effective management of images with clearly defined 

forms is of utmost importance. In the field of CBIR research, there has been a shift in focus among 

researchers towards the integration of multiple low-level features as a means to enhance system performance. 

In the domain of CBIR systems, it has been observed that the integration of multiple characteristics has 

demonstrated better efficacy compared to the sole reliance on individual features [7]. 

The identification of identical or similar photographs in response to a specific query image has 

become more challenging due to the significant growth in the number of images accessible on the internet. 

The utilization of manual feature extraction techniques significantly increases the complexity of this task. 

Deep learning algorithms are widely acknowledged as a practical and effective method for addressing this 

specific problem. In recent years, there has been an observed shift towards the adoption of learning-based 

techniques, specifically deep learning methods, instead of manual feature extraction and representation 

methods. These methods facilitate the automated extraction of abstract features from the data [8].  

Several design options were presented to effectively accommodate the specific data type being 

processed. Convolutional neural networks (CNNs) are frequently employed for image data processing, while 

artificial neural networks (ANNs) have demonstrated their efficacy in handling one-dimensional data [9]. The 

application of recurrent neural networks (RNNs) [10] offers numerous benefits in the examination of  

time-series data. The incorporation of various advanced methodologies has facilitated the development of 

deep learning algorithms utilized in image retrieval. The learning paradigms discussed in this context are 

specifically related to network-based learning. This approach employs a diverse range of architectures, such 

as neural networks, convolutional networks, artificial networks, attention networks, Siamese networks, and 

triplet networks. Furthermore, the topic at hand encompasses various learning approaches, including 

supervised learning, unsupervised learning, semi-supervised learning, and self-supervised learning [11]. 

The performance of CBIR systems is undeniably influenced by the quality of images stored in the 

database. Performance degradation in CBIR systems can occur as a result of various factors, such as the 

presence of noise, low visibility, and insufficient texture within images. Several factors can inhibit the 

retrieval of relevant images that correspond to the user's query. The challenges arise from the distortion or 

loss of crucial visual data, which obstructs the accurate evaluation and comparison of images using CBIR 

techniques [12]. CBIR systems frequently encounter difficulties in achieving precise query-image matching, 

leading to suboptimal performance. In addition to assessing the image quality, the storage of CBIR data 

involves additional complexities. The implementation of effective techniques for managing image data is 

essential to optimize system resources and achieve rapid retrieval times. When dealing with a large number 
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of images, it is essential to give careful thought to storage architectures, indexing techniques, and retrieval 

algorithms. The choice of a data storage strategy has a direct impact on scalability, resource utilization, and 

retrieval speed. The effectiveness and precision of image retrieval rely significantly on the preservation, 

categorization, and organization of these images. Achieving an optimal balance between retrieval 

performance and storage efficiency is crucial for effectively managing various picture sizes, types, and 

feature representations [13]. 

To effectively address these challenges, it is vital to implement a comprehensive approach. The 

recommended strategy should integrate advancements in feature extraction, image enhancement, and storage 

technologies. At present, there is active research and practical implementation underway to enhance the 

performance and reliability of these systems. The main goal of their research is to develop innovative 

methodologies for improving image quality, mitigating visibility issues, and optimizing data storage in CBIR 

systems [14]. 

The exponential growth in the volume of images uploaded to the internet daily underscores the 

importance of efficient and accurate image retrieval systems. The field of CBIR is particularly crucial in this 

context, as it leverages the visual content of images-such as color, shape, and texture-to facilitate the retrieval 

process. CBIR's significance is amplified by its ability to directly analyze the visual information, avoiding the 

need for manual annotation. This approach is not only more aligned with how humans perceive images but 

also crucial for handling the sheer scale of data. With the advent of deep learning techniques, particularly 

CNN, CBIR systems have seen substantial improvements in identifying and classifying complex patterns 

within images. The motivation for continued research in CBIR is clear: to keep pace with the relentless 

growth of image databases and to meet the demands of diverse applications that rely on quick, accurate 

image retrieval—be it for digital libraries, medical diagnostics, or multimedia systems. The pursuit of more 

refined CBIR systems is not just an academic interest but a necessity for the infrastructure of an increasingly 

digital world. The contribution is mentioned here. 

− Advanced asymmetric retrieval model: HybridEnsembleNet technique is designed that implement a 

lightweight query structure that optimizes performance under resource constraints, enhancing retrieval 

accuracy in CBIR systems. 

− Deep learning integration: Utilizes deep neural networks for refined feature extraction, significantly 

improving pattern recognition and accuracy in image retrieval. 

− Efficient feature embedding strategy: Employs aligned embedding spaces for query and image sets, 

streamlining the image comparison process for faster and more precise CBIR results. 

The research organization is carried out in this paper in four sections: the first section depicts a brief 

overview of CBIR. The second section discusses the related work, and in the third section, the proposed 

methodology is designed. In the fourth section, the performance evaluation is carried out where the results 

are displayed in graphs and tables. 

 

 

2. RELATED WORK 

The abundance of image formats available on the internet makes it difficult to identify a particular 

visual item from a vast database. The retrieval of similar images based on different contents of query images 

is a technique that is utilized in various domains. These domains include digitally acquainted libraries, crime 

prevention, fingerprint identification, information systems of biodiversity, medicine, and historical place 

research. CBIR is a distinct approach to image retrieval that diverges from keyword-based methods by 

prioritizing the analysis of visual attributes within images instead of relying solely on predetermined 

keywords. CBIR is a technique that leverages visual elements, including color, form, and texture, to address 

the challenge of identifying visual entities [15]. 

Computer vision encompasses a wide range of applications, among them is CBIR. CBIR is a 

process that focuses on the retrieval of images from a database that contains a vast number of images. The 

objective of this study is to examine the practical application of a two-stage process for the retrieval of 

images based on their content. CNNs are utilized for image detection during the initial phase. The CNN 

demonstrates the ability to process an image efficiently within a single pass. The system can identify and 

classify multiple objects present in the image, where each object is assigned to a specific class. The problem 

of detecting multiple classes is resolved by employing a CNN. During the second phase of the process, the 

acquisition of relevant images takes place after the execution of object detection. The achievement of 

assigning priority to images within the same class is made possible through the utilization of a relevance 

ranking system [16]. 

The cloud classification system categorizes clouds into three distinct levels: high, middle, and low. 

The cloud categorization process employs the use of CBIR and k-means clustering algorithms. The 

developed approach classifies clouds into three distinct categories: low, medium, and high. The precipitation 
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amount is significantly influenced by the type of cloud [17]. The effect of high resolutions on search 

precision and result organization is not well-established and can exhibit variability. The primary aim of this 

study is to examine the influence of picture resolution on both search accuracy and result sorting. It is 

strongly recommended to resize images before adding them to the image database, especially if resizing has 

any effect on the images. 

The process involves the identification of visual characteristics, the correlation of these features 

based on their effects, and the assessment of the impact of these factors on retrieval. Low-level visual 

features are identified to target specific perceptual components of visual data, in addition to encompassing 

high-level characteristics that facilitate image retrieval approaches. The primary goal of this study is to 

analyze the various components involved in improving the efficiency of CBIR search results [18]. 

A novel CBIR model that aims to efficiently retrieve images by utilizing query pictures. The 

proposed model employs an Adadelta-optimized residual network to improve the retrieval process. The 

proposed model employs a feature extractor obtained from ResNet 50 to extract a suitable set of features. 

Additionally, the Adadelta optimizer is utilized to effectively optimize the hyperparameters of the ResNet-50 

model, resulting in enhanced retrieval performance. 

The theoretical foundations and practical implementations of a CBIR system demonstrate high 

effectiveness. The authors provide an in-depth analysis of the concepts and discuss the real-world 

applications of this system. The essential components of the system include its characteristics related to 

colors, textures, and forms. The multilayer searching capability is achieved through the implementation of 

three subsequent searching processes. The proposed systems (PS) differ significantly from previous methods 

as they integrate all features concurrently for the single-level search of a typical CBIR system. The PS utilize 

a sequential approach, wherein each feature is evaluated independently. The output of one step is then used 

as the input for the next step, following a hierarchical pattern [19]. 

CBIR is a technique that distinguishes itself from keyword-based image retrieval by prioritizing the 

analysis of visual contents and attributes of images, including color, form, and texture. In contrast to  

keyword-based retrieval, which depends on explicit image descriptions, CBIR utilizes visual features to tackle 

the mentioned problem. The objective of this paper is to present a novel approach to picture retrieval by 

utilizing a hybrid feature combination technique. The technique employs the color histogram method for 

extracting color features and subsequently producing the color gradient. The Gabor wavelet method is utilized 

to extract both outer and inner edges. By implementing the aforementioned techniques, a feature vector will be 

generated as a result. This feature vector can then be utilized to retrieve visually similar images [20]. 
 

 

3. PROPOSED METHODOLOGY 

Considering the disadvantage of traditional deep learning of heavy architecture, this research work 

develops HybridEnsembleNet. That combines the ensemble architecture of various deep learning models and 

heterogeneous retrieval approaches that make it efficient for higher effectiveness. Moreover, the ensemble 

network comprises the various deep learning model (deep local and global features [21], [22]).  
 

3.1.  Problem definition 

Assume ϑi(. ) and ϑs(. ) represents the query structure irrespectively, the visual system of the image 

set ϑi(. ) is trained and used to map the images ϖ with the feature vectors. Testing the query structure ϑs(. ) to 

process the queries ℊ wherein the retrieval is reduced through the nearest neighbor in the embedded search 

space. Whereas the evaluation metric is used to enhance the performance of the retrieval system shown as 

τ(ϑs(. ) ,ϑi(. )). The retrieval system in symmetry, the query structure is similar to an image set as 

ϑi(. )= ϑs(. ). This deploys a powerful model to reach a high accuracy which is not satisfied through the 

resource-constrained scenario. 

The asymmetric retrieval model, the model ϑi(. ) is trained and fixed. Incorporate  

resource-constrained scenario, this requires a compatible lightweight query set as ϑs(. ) that is significantly 

less than the ϑi(. ) in aspect of parameter sizes and computational complexity. The core asymmetric model 

for feature embeddings of the query and image set is mutually interpreted. The core asymmetric model 

achieves an accuracy similar in terms of the symmetric model as τ(ϑs(. ) ,ϑs(. )) ≈τ(ϑq(. ) ,ϑq(. )) to ensure a 

balance between performance and efficiency. 

 

3.2.  Deep similarity matching 

The initial step involves training a feature space compressor (FSC) using the characteristics gathered 

by the image set. The centroids of the quantization function serve as data points for describing the structure 

of the space. During the training process of the query set, the image set remains in a frozen state. The query 

and image set are responsible for mapping each training sample into two separate embeddings. The next step 
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involves computing the similarities between the two embeddings and comparing them to the centroids to 

determine the structural similarities. Finally, this approach aims to enhance the query set by restricting the 

level of consistency between two structural similarities. After undergoing training, the embedding space of 

both the query set and the image set data points exhibit a high degree of alignment due to their shared nature. 

Figure 1 shows the proposed architecture. 

 

 

 
 

Figure 1. Proposed architecture 

 

 

3.3.  Data points generation 

A comprehensive characterization of the embedding space, this approach selects the respective data 

points in the gallery gallery-embedded model. These data points are references in the embedded space which 

converts query and gallery features in similar structures. A similar approach is used for clustering to generate 

a series of data points. This method requires a large number of data points to specifically characterize the 

space structure. The clustering is adapted that requires the training samples within the computational 

complexity with several numbers of centroids. The large set of centroids included and the clustering cost 

incurred is high. The quantization function is employed here to effectively expand the data points at less  

cost. The training data exists here denoted by α = {z1, z2,……….,zp} for the generation of data points. The 

image set is denoted as ϑi(. ), first employs to extract the features as I = [i1, i2 … … iP] ∈ TP∗f images in α as 

given in (1). Wherein, each feature vector Ik ∈ I is segmented into O separate vectors as  

wl(Ik) ∈ Tf∗, l = 1,2, … . . , O as mentioned in (2). 
 

Ik = ϑi(. ) ∈ Tf,k = 1,2, … … . P (1) 
 

I1
k, … … … , If∗

k ,…………,If−f∗+1
k , … . , If

k, (2) 

w1(Ik)wO(Ik) 
 

Here IL
k represents the l − th feature dimension ofik, f ∗ = f/O and f is a multiple of O. When 

clustering is performed on each set [wl(I1); wl(I2); … … . ; wl(IP)] ∈ TP∗f∗ , l = 1,2, … … , O, specifically to 

obtain El ∈ TM∗f∗, where M is the number of centroids. The data points in the gallery space are defined as the 

multiple defined as the Cartesian product. Within any centroid vector that is formed by integrating O 

different sub-centroid vectors. In comparison with the clustering, the quantization has distinct advantages. It 

is easy to generate a large number of data points E. The total number of data points directly, to store O ∗
Msub centroids, while training the adoption of splitting mechanism to evaluate the similarity by segments, 

instead of directly computing the similarities between feature vectors and the data points to reduce the 

overhead training. 
 

E = E1*E2*………*EO ∈ TMO∗f (3) 
 

3.3.1. Query modelling 

While learning the process of query learning, the feature query vectors and image set which is first 

converted into similarity structures upon evaluation against the data points. The image z is the training 

dataset μ. Let I and s be the feature vectors extracted as shown as given in (4). The structure similarities are 

evaluated as Uk
i  and Uk

i  upon computation of each sub-vector as w1(I) and w1(s) as the adjacent centroid 
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vectors in the feature space compression function before training as given in (5). Table 1 shows the data 

points generation. 
 

I = ϑi(z) ∈ Tf, s = ϑi(z) ∈ Tf (4) 

Split it into o − sub vectors as 

I → w1(I), w2(I), … … … , wO(I), 
S → w1(s), w2(s), … … … , wO(s) 
 

Uk
i = [u(wk(I), E1

k, : ), … … … … u(wk(I), EM
k , : )] ∈ Tm (5) 

Uk
s = [u(wk(s), E1

k, : ), … … … … u(wk(s), EM
k , : )] ∈ Tm  

 

 

Table 1. Data points generations algorithms 
Input Train the data α = {z1, z2,……….,zp}; image set ϑi(. ); sub-vector set O; number of centroids per subvector M 

Step 1 For each image zk  in training dataα do 

Utilizing the image set, extract image features by (1) 

Divide image features into O sub-vectors 

 wl(Ik) ∈ Tf∗, l = 1,2, … … , O in accordance with (2) 

end 

Step 2 For each vector set 

[wl(I1); wl(I2); … …;wl(IP)] ∈ TP∗f∗do 

Evaluate clustering with M centroid 

Obtaining adjacent sub-vectors as El ∈ TM∗f∗ 

end 

Output Data points E = E1*E2*………*EO ∈ TMO∗f 

 

 

Here El
k represents the k − th centroid vector within the l − th sub-space and u(. , . ) is considered as 

the similarity metric. This is formulated as given in (6). By evaluating the constraints γe for the structure 

similarities as s and i in the embedding space of the image set. The data points are shared between the query 

and image set; their embedding space is aligned properly. 
 

[u(wk(I), El
k, : ) =

Ek
l ,wk(I)V

||Ek
l ||2||wk(I)||2

 
 (6) 

 

3.3.2. Similarity matching of query and dataset model 

The asymmetric retrieval, a query set ϑs this maintains feature compatibility and also ensures the 

structure similarity in i in the embedded space of the image set. This method focuses on ensuring the 

consistency of in between the two similarities as Uk
i  and Uk

i  for the adjacent sub-vector pair  

wk(I) and wk(M). The Kullback-Leibler (KL) divergence is adapted to estimate the distance between  

wk(I) and wk(M). Initially Uk
i  then converted into the probability distribution as given in (7). 

 

rk
i = [

exp(
Uk,1

i

μi
)

∑ exp(
Uk,n

i

μi
)M

n=1

, … … … . ,
exp(

Uk,1
i

μi
)

∑ exp(
Uk,n

i

μi
)M

n=1

] (7) 

 

μi is the temperature value used to control the sharpness assignment. The probability distribution corresponding 

to the k − th vector of the query feature s is assigned as given in (8). The similarity constraint between the two 

parameters for the probabilities on the same sub-centroid vectors is denoted as mentioned in (9). This consists of 

the cross-entropy of rk
i  and rk

s  and the loss is encountered by rk
i . this is independent from the feature query set 

which does not affect the training. The final objective is defined as the sum of all the consistency in the loss 

adjacent to the O sub-vectors as mentioned in (10). Table 2 shows the query model training. 
 

rk
s = [

exp(
Uk,1

s

μs
)

∑ exp(
Uk,n

s

μs
)M

n=1

, … … … . ,
exp(

Uk,M
s

μs
)

∑ exp(
Uk,n

s

μs
)M

n=1

] (8) 

 

γ kll
k = KLL(rk

i ||rk
s) = ∑ rk,n

i log
rk,n

i

rk,n
s

M
n=1  (9) 
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γloss = ∑ γ KLL
kO

k=1  (10) 
 

The centroids of the quantizing function serve as the data points in the embedded space of the image 

set. Upon quantizing the feature, the conversion of feature regression into an assignment task. The 

temperature set is μi = 0, the probability Uk
i  shown in (7) is one vector with only one single index at 1 index 

shown as i = arg max  l (Uk,l
i ). This is further simplified as given in (11). 

 

γ kll
k = ∑ Uk,n

iM
n=1 log

Uk,n
i

Uk,n
s = log

1

Uk,l
s  (11) 

 

The query set is encouraged to optimize the loss to degenerate the data point, which is the quantized 

feature i. The degeneration of the details feature of the image set by the query set is prevented by this. However, 

neglecting the discriminatory information conveyed by the associations between the feature vector and data 

points leads to poorer performance. To achieve the desired outcome, utilize soft assignments as the prediction 

target, specifically by setting μi to a value greater than zero. The overall learning process is summarized in 

Table 2. 
 

 

Table 2. Query model training algorithm 
Input The training set μs; to train the image set ϑi(. );, random initializing the query set ϑs(. ); data points E 

Step 1 For each image z in training set μ do 

end 

Step 2 Extract image features within the gallery and query set according to (4); 
Step 3 Segment i and s into O sub-vector according to (4); 

Step 4 Evaluate the structure similarities as Uk
i  and Uk

s  according to (5) 

Step 5 Select the consistency constraints γe considering the structural similarities as U 
i and U 

s to fine-tune ϑs(. ) according to (11) 

Step 6 end 

output Query set ϑs(. ) incompatibility with ϑi(. ) 

 

 

4. PERFORMANCE EVALUATION 

The evaluation of HybridEnsembleNet emphasizes its efficacy in enhancing image retrieval 

scenarios through its unique combination of ensemble architecture and heterogeneous modules. The 

assessment involves measuring the model's performance against relevant benchmarks, highlighting 

improvements in retrieval accuracy and efficiency. Additionally, a thorough analysis of 

HybridEnsembleNet's capabilities, such as its ability to capture both local and global features, provides 

insights into its effectiveness in addressing the limitations of traditional deep learning architectures for image 

retrieval. 
 

4.1.  Dataset details 

The experiments were performed on the ROxford and RParis datasets, which are widely 

acknowledged in the field of image retrieval [23]. The dataset comprises a total of 70 query photos, which are 

categorized into three distinct groups: easy, medium, and hard. The hard split is designed to specifically 

address challenging questions, whereas the medium split encompasses a combination of both easy and difficult 

questions. 
 

4.2.  Results 

Mean average precision (mAP) is the mean of the average precision (AP) scores for each query. In 

scenarios where there are multiple queries or test samples (like different objects to be detected in object 

detection or multiple search queries in a retrieval system), AP is calculated for each query separately, and 

mAP is the mean of these AP scores. mAP is a highly important metric because it considers both the 

precision (how many retrieved items are relevant) and the recall (how many relevant items are retrieved) 

across all queries. It gives a single-figure measure of quality across recall levels, making it particularly useful 

for evaluating systems where the retrieval of all relevant documents is important. 
 

4.2.1. Results on ROxford 

Table 3 presents a comparison of various methods based on their performance on the ROxford 

(Medium) benchmark. The methods listed include a mix of individual approaches like deep spatial matching 

(DSM), image retrieval transformer (IRT), how based aggregated selective match Kernel (how+ASMK), 

deep orthogonal fusion of local and global features (DOLG),deep attentive local and global modeling 

(DALG), graph-based reasoning attention pooling with curriculum design (GRAP-CD), multiple dynamic 

attentions (MDA), contextual similarity distillation (CSD), tokenbased representation (TBR), deep local and 
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global featuresglobal (DELG), deep local and global features based α-weighted query expansion (DELG 

global+αQE), deep local and global features based geometric verification (DELG global+GV), deep local 

and global features based reranking transformer (DELG global+RRT), deep local and global features based 

graph convolution based re-ranking (DELG global+GCR). Performance scores range from 65.3 for DSM to 

88.96 for PS, suggesting a progression in effectiveness or an improvement in the techniques used. DELG 

global and its extensions show a consistent performance in the 70s, indicating a solid baseline. Notably, the 

entry existing system-based graph convolution-based re-ranking (ES+GCR) scores 84.3, showing an 

improvisation on ES at 79.3, The increment suggests that GCR provides a substantial improvement. The 

highest score of 88.96, PS, stands out, possibly indicating a particularly effective method that significantly 

outperforms others in this benchmark. Figure 2 shows the comparison on ROxford (Medium). 

Table 4 displays a set of methodological approaches evaluated on the ROxford (Hard) benchmark. 

The performance scores indicate how well each method copes with more challenging conditions. The scores 

span from a low of 31.2 for GRAP-CDto a high of 76.98 for PS, suggesting a wide range of effectiveness 

among the methods. Notably, traditional methods like DSM and IRT are on the lower end of the performance 

spectrum, while TBR scores a relatively high 66.6, indicating its robustness. The DELG global method and 

its variations show moderate performance, with scores generally in the 50s and low 60s, but with the GCR 

enhancement, it reaches 63.1. ES stands at 62.8, and its enhanced version with GCR significantly 

outperforms the basic version at 69.7, demonstrating the value of the GCR enhancement. The PS method 

outshines the others with a notable score of 76.98, which could signify a breakthrough or a particularly 

advanced approach to the ROxford (Hard) benchmark conditions. Figure 3 shows the comparison on 

ROxford (Hard). 

 

 

Table 3.Comparison ofROxford (Medium) 
Methods ROxford (Medium) 

DSM [24] 65.3 
IRT [25] 67.2 

How+ASMK[26] 79.4 

DOLG [27] 81.5 
DALG [28] 79.9 

GRAP-CD [29] 70.8 

MDA [30] 81.8 
CSD [31] 77.4 

TBR [32] 82.3 

DELG global [21] 73.6 
DELG global + αQE [33] 76.6 

DELG global + GV [21] 79.2 

DELG global + RRT [34] 78.1 
DELG global + GCR [34] 82.1 

ES (Existing System) [35] 79.3 

ES+ GCR [35] 84.3 
PS (HybridEnsembleNet) 88.96 

 

 

 
 

Figure 2.Comparison of ROxford (Medium) 
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Table 4.Comparison of ROxford (Hard) 
Methods ROxford (Hard) 

DSM [24] 39.2 
IRT [25] 42.8 

How+ASMK[26] 56.9 

DOLG [27] 61.1 
DALG [28] 57.6 

GRAP-CD [29] 31.2 

MDA [30] 62.2 
CSD [31] 59 

TBR [32] 66.6 

DELG global [21] 51 
DELG global + αQE [33] 54.6 

DELG global + GV [21] 57.5 

DELG global + RRT [34] 60.2 
DELG global + GCR [34] 63.1 

ES (Existing System) [35] 62.8 

ES+ GCR [35] 69.7 

PS (HybridEnsembleNet) 76.98 

 

 

 
 

Figure 3.Comparison of ROxford (Hard) 
 

 

4.2.2. RParis 

Table 5 showcases various methods and their corresponding performance scores on the RParis 

(Medium) benchmark. The spectrum of scores is broad, with DSM at the lower end at 77.4, reflecting a base 

level of effectiveness, and the highest score achieved by PS at 94.67, indicating superior performance. 

Middle-tier scores are occupied by methods such as IRT, HOW+ASMK, and GRAP-CD, which fall between 

80.1 and 81.6, suggesting moderate effectiveness. Notable high performers include DOLG and DALG, which 

are close competitors with scores of 91 and 90, respectively. The DELG global method, along with its 

variations, demonstrates strong performance, particularly with the GCR enhancement, which achieves a score 

of 89.2. The ES method scores 84.4, but with the addition of GCR, it significantly outperforms its 

unenhanced counterpart with a score of 91.9. This data underscores the impact of enhancements like GCR on 

method performance and highlights the PS method as potentially embodying a more advanced or efficient 

approach. Figure 4 shows the comparison analysis on RParis (Medium). 

Table 6 and Figure 5 offer a performance evaluation of various computer vision methods on the 

ROxford (Hard) dataset. Scores range significantly, highlighting the varied effectiveness of these methods 

under challenging conditions. The lowest score, at 31.2 by GRAP-CD, suggests some methods may struggle 

with the dataset's complexity. In contrast, the highest score, at 76.98 by PS, indicates a notably robust 

approach. DELG global and its enhancements display a progressive improvement, especially with the GCR 

addition, which scores 63.1. Another key observation is the performance jump from ES at 62.8 toES+ GCR 

at 69.7, confirming the substantial benefit of the GCR enhancement. The scores of TBR and MDA, at 66.6 

and 62.2, respectively, denote methods that are more effective than the baseline but not as high as the leading 

scores. Overall, this table reflects the performance of the diverse methods in image retrieval tasks, with 

particular enhancements offering significant improvements. 

 

 

0
10
20
30
40
50
60
70
80
90

m
A

P

Method

ROxford (Hard)



   ISSN:2252-8938 

Int J Artif Intell, Vol. 13, No. 4, December 2024: 4843-4855 

4852 

Table 5.Comparison of RParis (Medium) 
Methods RParis (Medium) 

DSM [24] 77.4 
IRT [25] 80.1 

How+ASMK[26] 81.6 

DOLG [27] 91 
DALG [28] 90 

GRAP-CD [29] 81.2 

MDA [30] 83.3 
CSD [31] 87.9 

TBR [32] 89.3 

DELG global [21] 85.7 
DELG global + αQE [33] 86.7 

DELG global + GV [21] 85.5 

DELG global + RRT [34] 86.7 
DELG global + GCR [34] 89.2 

ES (Existing System) [35] 84.4 

ES+ GCR [35] 91.9 
PS (HybridEnsembleNet) 94.67 

 

 

 
 

Figure 4.Comparison analysis on RParis (Medium) 

 

 

Table 6.Comparison analysis on RParis (Hard) 
Method RParis (Hard) 

DSM [24] 56.2 

IRT [25] 60.5 

How+ASMK[26] 62.4 
DOLG [27] 80.3 

DALG [28] 79.1 

GRAP-CD [29] 62.6 
MDA [30] 66.2 

CSD [31] 75.7 

TBR [32] 78.6 
DELG global [21] 71.5 

DELG global + αQE [33] 73.2 

DELG global + GV [21] 67.2 
DELG global + RRT [34] 75.1 

DELG global + GCR [34] 72.4 

ES (Existing System) [35] 74.4 
ES+ GCR [35] 79.9 

PS (HybridEnsembleNet) 84.56 
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Figure 5. Comparison analysis on RParis (Hard) 
 

 

4.3.  Comparative analysis 

Table 7 compares the performance improvements of different methods on the ROxford and RParis 

benchmarks, with the ES serving as the baseline and the PS method representing the improved technique. 

Across the table, the PS method shows a positive uplift in performance. For ROxford (Medium), there's a 

moderate improvement of 5.53%, while a more substantial gain is observed in the ROxford (Hard) setting, 

where the improvement is 10.44%, indicating that the PS method significantly outperforms ES under more 

challenging conditions. Similarly, for RParis (Medium), the enhancement is more at 3.01%, which showcases 

that the PS method shows an advantage even when the baseline performance is already high. Lastly, RParis 

(Hard) showcases a 5.83% increase, reinforcing the trend that PS provides consistent improvisation over ES.  

 

 

Table 7. Comparison analysis 
Method ES PS (HybridEnsembleNet) Improvisation in (%) 

ROxford (Medium) 84.3 88.96 5.53 
ROxford (Hard) 69.7 76.98 10.44 

RParis (Medium) 91.9 94.67 3.01 
RParis (Hard) 79.9 84.56 5.83 

 

 

5. CONCLUSION 

This research work presents HybridEnsembleNet methodology as a significant leap forward in the 

field of CBIR. By seamlessly integrating deep learning with an asymmetric retrieval model, 

HybridEnsembleNet addresses the critical challenges of accuracy and computational efficiency in handling 

large-scale image datasets. Its innovative approach to feature extraction and embedding not only enhances 

the precision of image retrieval but also ensures scalability and speed, crucial for modern digital applications. 

The successful implementation of HybridEnsembleNet underscores its potential as a transformative solution 

in CBIR, promising to elevate the standards for image search and retrieval technologies. This methodology 

not only meets the current demands of diverse CBIR applications but also lays a robust foundation for future 

advancements in the field, marking a pivotal moment in the evolution of image retrieval systems. As part of 

future work, an important focus will be on further optimizing HybridEnsembleNet to reduce image retrieval 

time. 
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