
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 13, No. 3, September 2024, pp. 3157~3163 

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i3.pp3157-3163      3157 

 

Journal homepage: http://ijai.iaescore.com 

Machine learning for potential anti-cancer discovery from black 

sea cucumbers 
 

 

Muhammad Fahrury Romdendine1, Rizka Fatriani2, Wisnu Ananta Kusuma1,2,3, Annisa1,  

Mala Nurilmala4 

1Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia 
2Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia 
3Indonesian Society of Bioinformatics and Biodiversity, Jakarta, Indonesia 

4Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 19, 2024 

Revised Feb 20, 2024 

Accepted Feb 28, 2024 

 

 Despite being an abundant marine organism in Indonesia, black sea 

cucumbers (Holothuria atra) is still underutilised due to its slightly bitter 

taste. This study aims to identify potential anti-cancer compounds from 

black sea cucumbers using machine learning (ML) to perform drug 

discovery. ML models were used to predict interactions between compounds 

from the organism with cancer-related proteins. Following prediction, all 

compounds were computationally validated through molecular docking. The 

validated compounds were then screened using absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) Lab 2.0 to assess their drug-

like properties. The results showed that ML predicted seven out of 86 

compounds were interacted with cancer-related proteins. Computational 

validation from the results showed that four out of seven compounds 

demonstrated stable interaction with proteins where only one compound 

meet the criteria of drug-like compound. The framework of ML and 

computational validation highlighted in this study shows a great promise in 

the future of drug discovery specifically for marine organisms. Since 

computational method only works in prediction realms, wet lab validation 

and clinical trials are imperative before the drug candidate can be produced 

as actual anti-cancer drug. 
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1. INTRODUCTION  

The black sea cucumber (Holothuria atra), a marine organism, has been traditionally used in 

medicine for various purposes with its potential medicinal properties [1]. Recent in vitro and in vivo studies 

have suggested that extracts from black sea cucumbers exhibit anti-cancer properties [2], [3]. However, it is 

crucial to conduct additional research to identify bioactive compounds in black sea cucumber extracts that 

specifically target cancer-related proteins. 

The process of identifying new drugs has been transformed by introducing cutting-edge 

technologies, including machine learning (ML), molecular docking, and absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) prediction. These cutting-edge techniques have greatly improved the 

discovery and development of prospective medicinal medicines [4]–[6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The burden of cancer in Indonesia is considerable, with cervical cancer now holding the distressing 

position of being the second-leading cause of death [7]. Between 2014 and 2018, the Indonesian government 

allocated Rp3.5 trillion to cancer-related expenditures. The top five cancers in terms of prevalence during this 

period were cervical, breast, lung, colorectal, and liver cancer. Therefore, it is crucial to explore innovative 

strategies beyond conventional medicines to improve patient outcomes, overcome drug resistance, and 

address unmet medical needs associated with this devastating disease. 

The process of identifying new drugs has been transformed by introducing cutting-edge 

technologies, including ML, molecular docking, and ADMET prediction. These cutting-edge techniques have 

greatly improved the discovery and development of prospective medicinal medicines [4]–[6]. 

In predicting drug-target interactions (DTI), one of most fundamental process in drug discovery, 

numerous computational approaches leverage the capabilities of ML algorithms. For example, Wang et al. [8] 

conducted a DTI study employing a newly developed algorithm based on chemogenomics feature space. In 

another study, Chu et al. [9] demonstrated that a general-purpose novel algorithm called cascade deep forest 

(CDF) outperformed other state-of-the-art DTI algorithms. Other DTI studies also incorporated ML 

algorithmic options [10]–[13]. However, none have been found to continuously perform the three 

computational approaches mentioned before to identify black sea cucumber’s bioactive compounds as a 

potential alternative cancer medicine. 

This study aims to identify anti-cancer agents from black sea cucumbers through an integrated 

approach of DTI predictions using ML and computational validation using molecular docking, and ADMET 

analysis. The significance of the research lies in its capacity to demonstrate the role of ML in discovering 

novel compounds and understanding their interactions with target proteins. The findings can potentially 

contribute to developing effective anti-cancer therapies, signifying the role of ML in modern drug discovery, 

and expanding treatment options in cancer research. 
 

 

2. METHOD 

This study used cancer-related protein data from three sources: the cancer genome atlas [14], ijah 

analytics (http://ijah.apps.cs.ipb.ac.id/), and the human protein atlas [15]. Only proteins from cervical, breast, 

lung, colorectal and liver cancers were taken. Protein interaction data with common known compounds were 

taken from BindingDB [16]. Finally, the compound data from black sea cucumbers was taken by liquid 

chromatography-mass spectrometry (LC-MS) procedure in the wet lab. All the data taken was then 

preprocessed so that it was suitable for the ML modeling process later. One of the crucial preprocessing steps 

is the generation of negative interaction data between common compounds and cancer proteins. 

The interaction data acquired from BindingDB typically comprises a substantial volume, whereas 

the computational capacity available to researchers is constrained. The potential for failure during the ML 

model training process arises when attempting to employ the entire interaction dataset concurrently. To 

address this challenge, we adopted a strategy of dataset fragmentation through random sampling. Ten distinct 

data subsets were extracted for each feature combination, with each subset containing samples calculated 

based on the minimum sample size determined in (1). This calculation incorporated a margin of error of 0.01 

and a 95% confidence interval. A visual depiction of this data sampling process is presented in Figure 1. 
 

𝑛′ =
𝑛

1+
𝑧2×𝑝̂(1−𝑝̂)

𝜀2𝑁

 (1) 

 

with, z = Z score, ε = margin of error, N = population size, and p̂ = population proportion. The Z-score was 

derived from the calculation of the confidence interval, while the population proportion used was set at 50% 

due to the binary nature of the case. 

Data on common compounds and cancer proteins obtained are still in the form of strings, namely 

SMILES and FASTA. Feature engineering is first done before it can be modeled with ML. Feature extraction 

from FASTA strings for protein data is done using protein descriptors including: AAC [17], AAIndex1 [18], 

PAAC [19], and ATC [20]. Meanwhile, SMILES string extraction was performed using molecular 

fingerprints including: ECFP [21], Klekota-Roth [22], MACCS, Morgan [23], and PubChem [24]. The 

extraction results of both types of features are then combined so that it will produce twenty different types of 

feature space combinations. The illustration of the combined feature space is presented in Figure 2, where m, 

n, and i represent the dimensions of each feature space, and r represents the number of compound-protein 

pairs. 

The ML algorithms used in this study included CDF, extreme gradient boosting machine 

(XGBoost), light gradient boosting machine (LightGBM), logistic regression (LR), multi-layer perceptron 

neural networks (MLPNN), random forest (RF), and k-nearest neighbors (KNN). The DF21 (package source 
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code available at: https://github.com/LAMDA-NJU/Deep-Forest) package was utilized to implement the 

CDF algorithm, while the Scikit-Learn [25], XGBoost [26], and LightGBM [27] packages were used for the 

other algorithms. All algorithms were executed with default hyperparameter configurations. The performance 

performance metrics used for each algorithm are accuracy, precision, recall, F1-score, and area under the 

curve (AUC) score. Algorithm with best performance were then used to perform DTI between cancer-related 

proteins with compounds from black sea cucumbers. Following the successful prediction of positive 

interactions through ML, the findings undergo computational validation through molecular docking and 

ADMET analysis. 
 
 

 
 

Figure 1. Illustration of data sampling process 
 
 

 
 

Figure 2. Illustration of combined feature space in final dataset for modeling 
 

 

3. RESULTS AND DISCUSSION 

3.1.  Data acquisitions and preprocessing 

A total of 550 unique cancer-related proteins were acquired. Querying the interactions of these 550 

proteins in the BindingDB database resulted in 139,881 interaction data. Meanwhile, 86 bioactive compounds 

were obtained from wet lab identification using LC-MS. The interaction dataset from BindingDB only 

contained known interaction between small molecules and proteins of interest (positive instances). To meet 

the ML modeling criteria, negative interaction instances were generated with a 1:1 ratio, resulting in 269,235 

interaction instances. Illustration of negative sample generation is presented in Figure 3. 
 

 

 
 

Figure 3. Illustration of negative sample generation that generates negative interaction samples from acquired 

compound-protein interactions dataset 
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3.2.  Performance evaluation of machine learning models 

The performance metrics indicated that CDF was outperformed in almost every metric, except for 

the recall value, which was surpassed by RF. The highest overall performance was achieved by CDF, with an 

accuracy of 81.5%, F1-score of 81.4%, an AUC score of 93.7%, a precision of 91.8%, and Cohen's Kappa of 

74.9%. On the other hand, the highest recall value was obtained by KNN (87%), followed by LightGBM 

(86.2%) and CDF (86.1%). The recall value difference was not appreciably siginifcant, so CDF was still 

preferred. The overall performance metrics calculation (averaged from all feature space combination) is 

presented in Table 1. The selection of the ML algorithm for the prediction stage was based on comparing the 

AUC score, as it was deemed to represent the overall effectiveness of an algorithm [28]. The AUC scores are 

calculated from ROC curves, which are presented in Figure 4. 
 

 

Table 1. Overall performance metrics of each ML algorithm.  
CDF RF XGBoost LightGBM KNN LR NN 

overall accuracy 0.815 0.813 0.814 0.807 0.757 0.771 0.762 
overall F1-score 0.814 0.807 0.779 0.759 0.685 0.543 0.437 

overall ROC-AUC 0.900 0.889 0.862 0.846 0.750 0.655 0.503 

overall precision 0.858 0.834 0.779 0.768 0.661 0.570 0.469 

overall recall 0.780 0.784 0.778 0.752 0.716 0.566 0.448 

overall kappa 0.652 0.633 0.570 0.537 0.372 0.236 0.003 

 

 

 
 

Figure 4. ROC Curve of each feature combination in multiple algorithms 
 

 

3.3. Drug-target interactions predictions and validations 

The prediction was carried out using CDF algorithm since it gained best AUC score. This process 

identified seven compound-protein pairs with positive interaction. The predicted results are presented in 

Table 2. Additionally, provided is the confidence score value, representing the probability of the prediction 

falling into the positive class. This value is directly extracted from the prediction results using CDF. The 

PubChem ID and Uniprot ID of the predicted interacting compound and protein are also included. 
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Validation through molecular docking revealed that only four out of the seven compound-protein 

pairs exhibited favorable binding affinity values below -6.0 kcal/mol. These four pairs are afimoxifene-

PIK3CB (-12.7 kcal/mol), danazol-CYSLTR2 (-12.3 kcal/mol), taxifolin-PIK3CB (-10.0 kcal/mol), and 

terfenadine-UBE2F (-6.6 kcal/mol). Subsequently, validation via ADMET analysis indicated that only the 

taxifolin compound demonstrated optimal drug properties, successfully meeting most of the tested 

parameters in the ADMET analysis. 
 

 

Table 2. DTI prediction results that are labeled positive yielded by CDF 
Bioactive compound name (PubChem ID) Protein/gene name (Uniprot ID) Confidence score 

Meclizine (4034) UBE2F (Q969M7) 0.8445 

Taxifolin (439533) PIK3CB (P42338) 0.7906 

Terfenadine (5405) UBE2F (Q969M7) 0.8560 

Afimoxifene (449459) PIK3CB (P42338) 0.8921 
Selegiline (26757) UBE2F (Q969M7) 0.8752 

Phencyclidine (6468) UBE2F (Q969M7) 0.8962 

Danazol (28417) CYSLTR2 (Q9NS75) 0.8027 

 

 

3.4. Discussions 

The superiority of CDF algorithm in this study is due to its nature of addressing limitations of neural 

network-based algorithms. This algorithm leverages the properties of neural networks, such as layer-by-layer 

learning, simultaneous feature transformation, and complex structure, to achieve comparable performance. 

With similar reliability, this algorithm aims to overcome the dependence of neural networks on 

hyperparameter tuning, which is often done through trial and error and is inefficient. CDF is built using a 

layered structure like neural networks, but each node is replaced with ensemble learning techniques, such as 

RF. This design choice reduces the number of hyperparameters required for CDF. 

The complexity of the CDF structure can adapt to the complexity of the training data. Unlike neural 

network, whose complexity is determined upfront, the number of layers in CDF depends on the data. The 

addition of layers in CDF is based on the evaluation of the previous layers, and the process will be stopped if 

there is no significant improvement in performance. Additionally, unlike neural networks, CDF does not 

require backpropagation, which means it does not rely on training with a large amount of labelled data to 

achieve good performance. Considering the characteristics of this algorithm, the superior performance of 

CDF in this study is not surprising. 

Discussing Taxifolin as a compound from black sea cucumbers selected in this study, a literature 

search shows that Taxifolin compounds indeed exhibit promising anti-cancer activities [29]–[33]. This 

further demonstrates the significance of the ML approach implemented in this study as an effort in modern 

drug discovery. 
 

 

4. CONCLUSION 

This research successfully utilized ML, molecular docking, and ADMET analyses, to identify novel 

anti-cancer agent from the black sea cucumber. The results highlighted the effectiveness of the CDF 

algorithm in determining DTI. Through molecular docking validation, four promising compounds were 

identified: afimoxifene, danazol, taxifolin, and terfenadine. Subsequent ADMET analysis provided valuable 

insights into these compound‘s absorption, distribution, metabolism, excretion, and toxicity characteristics. 

Among them, Taxifolin exhibited the most favourable results, passing the highest number of ADMET 

parameters. These findings underscore the significance of ML in discovering novel compounds and 

comprehending their interactions with target proteins, contributing to modern drug discovery efforts. 

Taxifolin has shown promise as a lead compound, warranting further development for anti-cancer drugs. 

However, additional experimental validation is necessary to ascertain the efficacy and safety of these 

compounds, ultimately paving the way for potential therapeutic interventions against cancer. 
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