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 Brain damage and deficits in interactions among brain cells are the primary 

causes of dementia and Alzheimer’s disease (AD). Despite ongoing research, 

no effective medications have yet been developed for these conditions. 

Therefore, early detection is crucial for managing the progression of these 

disorders. In this study, we introduce a novel tool for detecting AD using non-

invasive medical tests, such as magnetic resonance imaging (MRI). Our 

method employs fuzzy C-means clustering to identify features that enhance 

image accuracy. The standard fuzzy C-means algorithm has been augmented 

with fuzzy components to improve clustering performance. This enhanced 

approach optimizes segmentation by extracting image information and 

utilizing a sliding window to calculate center coordinates and establish a 

stable group matrix. These critical features are subsequently integrated with a 

two-phase watershed segmentation process. The resulting segmented images 

are then used to train an optimal convolutional neural network (CNN) for AD 

classification. Our methodology demonstrated a 98.20% accuracy rate in the 

detection and classification of segmented MRI brain images, highlighting its 

efficacy in identifying disease types. 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is the leading cause of dementia among older adults, characterized as a 

mental health disorder that results in brain damage and impairs the ability to perform daily activities [1]. It is 

a chronic neurodegenerative condition with an insidious onset and gradually worsening symptoms over time. 

The etiology of AD remains unclear, and treatments are often expensive. In recent years, there has been a 

significant focus on early d AD is the leading cause of dementia among older adults, characterized as a mental 

health disorder that results in brain damage and impairs the ability to perform daily activities. It is a chronic 

neurodegenerative condition with an insidious onset and gradually worsening symptoms over time. The 

etiology of AD remains unclear, and treatments are often expensive. In recent years, there has been a significant 

focus on early detection of this form of dementia by academics and researchers. The current global 

demographic of individuals with dementia is estimated to be 47.5 million, projected to increase to 75 million 

by 2030 [2], [3]. The advancement of digital neuroimaging techniques has enhanced the analysis of clinical 

imaging data for diagnosing brain disorders. Techniques such as magnetic resonance imaging (MRI), 

cerebrospinal fluid (CSF) analysis, single photon emission computed tomography (SPECT), and 

fluorodeoxyglucose positron emission tomography (FDG-PET) are instrumental in identifying structural 
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changes in the brain. Since the early 1980s, the medical community has begun utilizing these advanced medical 

imaging techniques to improve the quality of healthcare imagery [4], [5]. The evolution of traditional image 

processing methods alongside machine learning (ML) and deep learning (DL) has led to significant 

advancements in medical image analysis. Analytical image processing techniques are categorized into 

registration, classification, detection, segmentation, and localization, with segmentation being a crucial step in 

isolating the desired tissue or region of interest (RoI) from the collected images [6], [7]. 

The model architecture for diagnosing AD encompasses five key stages: data acquisition, 

segmentation, registration, morphometry, and classification. Various standard datasets, such Alzheimer's disease 

neuroimaging initiative (ADNI), international consortium for brain mapping (ICBM), minimal interval 

resonance imaging in Alzheimer's disease (MIRIAD), Kaggle, open access series of imaging studies (OASIS), 

Harvard Medical School, and others, are utilized to gather extensive data from morphological and anatomical 

images. These images are essential for identifying abnormalities in the affected brain. Effective segmentation 

and classification, particularly in MRI studies, necessitate a robust image pre-processing approach. In the 

development of Alzheimer's detection systems, processes such as noise reduction, smoothing, skull stripping, 

cropping, and normalization are indispensable. Through the registration process, images are aligned to a standard 

reference area, facilitating intra-image and inter-image matching crucial for tracking disease progression and 

identifying affected individuals [8]. Classification, the final stage, involves categorizing patients as normal or 

exhibiting abnormalities. Artificial intelligence (AI), in conjunction with MRI, emerges as a promising method 

for disease classification. The development and application of ML and DL are pivotal in crafting AI-based 

classification algorithms that enhance outcomes, quality, and efficiency [9]. 

In various studies, convolutional neural network (CNN)-based learning has been found to lack 

robustness, prompting the exploration of alternative methods to enhance performance. For MRI brain images, 

a hybrid approach combining enhanced fuzzy C-means clustering with watershed segmentation (Ws) has been 

utilized as a feature detection and extraction mechanism to delineate gray matter (GM), white matter (WM), 

and CSF regions of the brain. Our literature review revealed that limited research has been conducted on 

developing specialized CNN architectures for more effective AD. 

The technique proposed in [10] initiates with a genetic algorithm (GA) for feature selection, 

identifying the most informative subset of features. Fuzzy C-means (FCM) clustering is applied to this selected 

subset. This approach reduces the dimensionality of the feature space, thereby rendering the classification 

process via support vector machine (SVM) both more efficient and understandable. It notably enhances the 

accuracy of early AD detection by accentuating the differentiation between AD and non-AD clusters. The 

results underscore the efficacy of this technique in precisely identifying individuals at rick of Alzheimer's at 

an early stage. To track AD progression, Sappagh et al. [11] introduced a multi-modal ensemble DL technique 

that extracted both local and longitudinal information from each modality. Additionally, prior knowledge was 

utilized to derive local features form MRI, positron emission tomography (PET), cognitive scores, 

neuropathology, and ADNI assessments. Employing a combination of layered CNN-bidirectional long  

short-term memory (BiLSTM), all gathered features were integrated for regression and classification tasks. A 

multi-modal approach for automated hippocampus segmentation using 3D patches was detailed [12]. Utilizing 

sMRI (T1) images from the ADNI dataset, a hybrid multi-task deep CNN and 3D DenseNet+softmax were 

employed for AD classification. The model achieved an accuracy of 88%, sensitivity 86%, and an area under 

the curve (AUC) of 92% [13]. This study presents a method for early detection of Alzheimer's using SVMs 

trained on various texture descriptors, which aid in dimensionality reduction derived from MRI alongside 

SVMs trained on markers obtained from ADNI. Different feature selection methods, each training a distinct 

SVM, were applied to reduce the dimensionality of voxel-based features. Geetha and Pugazhenthi [14] suggests 

a novel approach for Alzheimer's classification from MRIs using a fuzzy neural network (FNN). The wavelet 

transformation (WT) is employed for image decomposition, with the discrete wavelet transform calculating the 

output coefficient vectors. These generated features are then used to train FNN. A CNN model is proposed for 

AD classification using MR images with hippocampus designated as the RoI [15]. The RoI is extracted through 

an automated patch-based separation method that utilizes geometric values from the international consortium 

for brain mapping (ICBM) standard. CNN was applied for dataset classification, demonstrating notable 

performances. A novel methodology combining extreme learning and deep learning for AD classification is 

introduced [16]. This approach evaluates two deep learning models for functional brain-network classification, 

alongside an extreme learning machine (ELM) enhanced framework for learning deep regional-connectivity 

and deep adjacent positional features. The construction of the brain network utilizes the Pearson correlation 

coefficient. In summary, our review highlights three key findings:  

− The majority of the literature were reviewed reported evaluation scores below 92%, whereas our study 

achieved an exceptional performance of 98%. This significant advancement is attributed to our novel 

segmentation and feature extraction model, which effectively reduces variable parameters while enhancing 

computational speed.  
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− Our research introduces a potent classification architecture that utilize different kernel sizes to extract 

essential features. By incorporating two smaller kernels (3×3 and 5×5), our model achieves robust training 

and testing processes, thereby improving its performance and reliability.  

− Furthermore, our study leverages a substantial dataset comprising 6400 brain images, categorized into four 

distinct classes: mild, normal, moderate, and very mild. This extensive dataset offers a comprehensive 

view across various stages of AD, thereby enriching the depth and diversity of our analysis. 

 

 

2. METHOD  

In this paper, we utilize the improved fuzzy C-means clustering (ImFCm) for segmenting brain tissue, 

owing to its efficiency in segmenting homogeneous intensity regions of MRI images. We introduce a hybrid 

approach combining ImFCm with Ws, achieving more effective results in accurately partitioning images and 

enhancing classification performance. The outcomes of these two methods are then integrated into an optimized 

CNN architecture, aiming to improve the accuracy and robustness of the AD detection system. The ADNI 

dataset was employed to validate the findings, with approximately 6400 MRI brain images analyzed. These 

images are annotated into four categories: mild, moderate, very mild, and normal. Figure 1 illustrates the block 

diagram of the proposed approach. Each section of our method is explained in detail in the subsequent sections. 

 

 

 
 

Figure 1. The proposed method 

 

 

2.1. Pre-processing 

Preprocessing is a technique of image enhancement that focus on both the data structure and 

processing constraints. It encompasses the removal enhancement of the image to improve system performance. 

Cropping is used to eliminate unnecessary components from an image. Additionally, converting the images to 

grayscale, an essential step is performed. The contrast adaptive histogram equalization (AHE) filter and Bayes 

wavelet transform (WT) are utilized to reduce noise, enhance brightness and contrast, and normalize the image. 

Figure 1 demonstrates the preprocessing steps. This process aims to remove noise from MRI images. The DB3 

wavelet is used for decomposing the image, and the noise standard deviation is considered when establishing 

wavelet detail coefficient threshold. The type of wavelet applied is determined pywt.wavelist function, with 

bior6.8 selected as the wavelet choice. Soft thresholding is implemented to find the optimal match for the 

original image with additive noise. Contrast limited adaptive histogram equalization (CLAHE) is an advanced 

version of AHE designed to prevent contrast over amplification. CLAHE operates on small sections of the 
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image rather than the entire image, using a ClipLimit parameter to set contrast threshold. The initial value is 

set at 3, with the tile grid size determining the number of tiles per row and column set to 8×8. This approach 

applies a contrast filter by dividing the image into sections. The preprocessing stage concludes with cropping 

and normalizing MRI images. Cropping is a technique in computer imaging used to remove irrelevant areas 

and surroundings from images. Normalization is the process of reducing the intensity variation among pixel 

values, marking the final phase of the preprocessing stage.  

 

2.2. Segmentation process 

Image segmentation methods encompass threshold-based, edge-based, region-based, matching-based, 

clustering-based, fuzzy inference-based, and generalized principal component analysis techniques. Each 

method offers advantages and limitations. Clustering is a method for dividing a collection of objects into 

different groups, each known as a cluster. Members within each cluster exhibit high similarity in terms of 

features, but the degree of similarity compared to members of other clusters is minimal. While many clustering 

algorithms share foundational concepts, differences arise in how similarity or distance is measured and how 

labels are assigned to categories within each cluster. Key strategies include fuzzy clustering, density-based 

clustering, discriminative clustering, model-based clustering, and hierarchical clustering [17]. In our study, we 

have combined ImFCm clustering with Ws to enhance both the accuracy and efficiency of image analysis. 

 

2.2.1. Improved fuzzy C-means clustering (the proposed method) 

In fuzzy clustering, unlike traditional clustering where each sample is assigned exclusively to one 

cluster, a single sample can be associated with multiple clusters. The core principle behind fuzzy clustering is 

that each element can be assigned to different clusters with varying degrees of membership [18]. FCM is a 

widely recognized fuzzy clustering approach. Our objective is to optimize the following methodology [19] 

using the FCM algorithm: 

 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑘
𝑚𝑑𝑖𝑘

2𝑛
𝑘=1 = ∑ ∑ 𝑢𝑖𝑘

𝑚‖𝑥𝑘 − 𝑣𝑖‖2𝑛
𝑘=1

𝑐
𝑖=1

𝑐
𝑖=1  (1) 

 

where m is a positive integer that is greater than one. Moreover, uik is the kth data's level of membership in the 

ith cluster, dik is the ratio of familiarity in the preceding n space, xk indicates the kth data, and vi is the ith 

cluster's center. In our study, we aim to develop an enhanced and robust fuzzy C-means (FCM) clustering 

technique, with modifications implemented in the following areas, as depicted in Figure 2. 

 

 

 
 

Figure 2. Improved fuzzy C-means clustering 
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First part (initial parameters setting): the parameter settings were carefully chosen as follows; we 

initially selected a cluster number of 4, as this count is considered optimal for segmenting MRI brain images 

into four distinct regions, effectively highlighting key tissues within the human brain. The fuzziness degree 

parameter was set to 2, providing increased flexibility in associating data with specific clusters, thereby 

achieving a balance between sensitivity and robustness. To ensure adequate convergence, a limit of 100 

iterations was chosen, this decision being informed by observations from convergence experiments. A neighbor 

effect of 4 was selected to reflect the size of the sliding window used in image filtering, which facilitates the 

computation of local features and captures spatial relationships. An epsilon threshold of 0.05 was established 

for the convergence criteria, indicating a stringent convergence threshold due to its lower value. The kernel 

size was determined to be 3, to aid in capturing spatial information during the image filtering process. 

Second part: the distance window has been utilized to filter the image. A sliding window technique is 

employed to traverse the entire image, aiming to identify stable groups. Initially, padding is created, equivalent 

to half of the kernel size, to ensure the inclusion of image borders during the sliding process. The image mean 

is calculated using this padding, and the cv2.copyMakeBorder function is employed to incorporate edges 

during sliding. Subsequently, a sliding window algorithm is defined, specifying the neighbor effect and window 

size as parameters, focusing on locating stable groups of pixels within clusters. The function for locating stable 

groups operates by identifying stable pixels through a Gaussian filter, where the filter's values are less than or 

equal to the square root of the nan mean for the power difference of Gaussian values and window size. The 

result of this phase is a filtered image, which will be further utilized in the third part to compute fuzziness. 

Third part: the histogram of the image is determined using the CLAHE filter. It is to enhance image 

contrast and calculate the intensity distribution of the enhanced image. This phase is instrumental in 

determining the centroid of the cluster. 

Fourth part: this segment encompasses several critical functions. It begins with the initialization of the 

membership function, which determines the degree to which the pixels of the image belong to each cluster. 

This is followed by the function for computing the centroids of the clusters, which involves the division of the 

numerator by the denominator. The numerator is the sum of the product of the degree of fuzziness, the 

histogram, and the intensity, each raised to the power of membership. Conversely, the denominator is the 

summation of the histogram values raised to the power of membership. The final step in this part is the 

computation of weights, a process reliant on the centroid computation function. This involves dividing the 

numerator by the denominator, where the numerator calculates the absolute differences between the intensity 

raised to a power and the computed cluster centroids. The denominator, on the other hand, sums the absolute 

differences, each raised to the power of the fuzziness degree. Algorithm 1 shows the detailed process. The 

block diagram in Figure 2 shows the process of utilizing the improved fuzzy C-means clustering. 

 

Algorithm 1: ImFCM 
Step 1: Initialize the following parameters:  

- Number of bits. Number of clusters.  

- Degree of fuzziness.  

- Maximum iteration count.  

- Epsilon threshold for convergence check.  

Step 2: Image Filtering Procedure:  

- Generate a padded image using a sliding window with dimensions (kernel_size/2, 

kernel_size/2).  

- Compute the mean based on the padded mask.  

- Pad the resulting mean image to create borders.  

- Utilize a sliding window to account for neighbor effects and kernel size.  

- Determine center coordinates using the spatial distance window with Minkowski 

distance: 

Des_win = ((abs (win_size_y - center_coordinate_y)) ** p + abs ((win_size_y - 

center_coordinate_y) ** p)) ** (1/p), where p = 2.  

- Identify the stable group matrix using a Gaussian filter.  

- Obtain the final filtered image using the formula: 

Final_image = sum (weighted_coefficients * old_window) / sum (weighted_coefficients)  

- Perform CLAHE. 

Step 3: Weight Initialization: Initialize a two-dimensional matrix based on the number of 

clusters and gray levels to compute weights.  

Step 4: Compute Cluster Centroids:  

- Calculate the X and Y values as follows:  

- X = sum (histogram * number of gray levels) * power (weight * number of fuzziness)  

- Y = sum (histogram) * power (weight * number of fuzziness)  

- Z = X / Y  

Step 5: Weight Computation Method:  

- Set power = -2 / number of fuzziness.  

- Calculate the X value using the formula: X = (gray levels - centroid values) * power.  
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- Compute Y as: Y = sum (gray levels - centroid values) * power. Determine Z as:  

Z = X / Y. 

Step 6: Check Convergence: Determine whether the absolute maximum value of (step 5 - step 2) 

is less than the epsilon threshold. If so, stop; otherwise, proceed to step 4. 

 

2.2.2. Watershed segmentation 

In Ws, an image is conceptualized in three dimensions, with the (x, y) coordinates correspond to the 

spatial axes and the intensity represented along the z-axis. This approach treats an image as if it were a 

topographical landscape, with the intensity of each pixel analogous to elevation levels. Consequently, each 

intensity level is associated with a distinct elevation plane on this landscape. Utilizing this topographical 

metaphor, points within the image are categorized into three segemts: regional minima, catchment basins, and 

watershed lines. Catchment basin are areas were, hypothetical, a droplet of water would coverage towards a 

single regional minimum. Watershed lines, conversely, mark the boundaries where a droplet of water could 

potentially be drawn towards multiple regional minima, effectively delineating the division between distinct 

catchment basins [11]. 

Consider the M1, M2, … MR regional minima of an image g(x, y). Let T[n] represent an array of 

points beneath the horizontal axis with a value of n, where n ranges from the image's least to greatest intensity. 

This may be stated mathematically as follows:  

 

T[𝑛] =  {(𝑠, 𝑡)|𝑔(𝑠, 𝑡) < 𝑛}  (2) 

 

Cn(Mi) indicate a collection of regions in the catchment basin that are poured at plane n that are related with 

the region minimum Mi. This could possibly be used to compute it by: 

 

𝐶𝑛(𝑀𝑖) = 𝐶(𝑀𝑖)𝑇[𝑛] (3) 

 

C(Mi) is the set of catchment basin points linked with the regional minimum Mi. The union of all flooded 

catchment basins at a certain stage n represented in C[n]: 

 

𝐶[𝑛] = [𝐶𝑛(𝑀𝑖)] (4) 

 

Algorithm 2 introduces the steps of this technique. Figure 3 illustrate the watershed method in a block diagram. 

 

Algorithm 2: Watershed segmentation  

- Utilize OTSU’s binarization filter to estimate the objects present in the image.  

- Apply morphological opening to eliminate any white noise present in the image, and perform 

morphological closing to address small holes within the objects.  

- Employ the dilate method to create a separation between the background and the image.  

- Utilize distance transform and thresholding techniques to isolate the foreground from the background.  

- Determine the unknown areas by subtracting the foreground from the background. These areas lacking 

clarity will be assigned zero values in the markers. 

- Label the regions of the foreground using the connected components method as markers, and increment 

them by one to ensure all background regions are marked as ones.  

- Employ the distance values obtained from step 5 and the markers from step 6 as input parameters for the 

watershed method to generate the final segmentation map. 

 

 

 
 

Figure 3. Watershed segmentation 
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2.3. Post-processing 

Gamma correction is a technique used for data augmentation that entails adjusting the gamma value 

to modify the image intensity. Gamma represents a non-linear function that can be applied to either encode or 

decode the brightness or intensity of an image [20]. Gaussian noise, another form of distortion, is introduced 

into the image through random values drawn from a Gaussian distribution. Since noise encountered during 

image acquisition and preprocessing can escalate, applying Gaussian noise to a raw image may help the model 

become more resilient to variation in image quality [21]. Our study advocates for the use of these two methods 

as a post-processing measure for datasets that may suffer from loss in contrast and brightness, as well as to 

introduce a slight blurring effect to smooth transitions in pixel value and soften the image edges. The marker-

controlled Ws technique is applied following the ImFCm twice with a marker value range of [10-90] to capture 

images highlighting internal brain features. This process is then repeated with a marker value range of  

[10-200] to obtain images showcasing external brain details. The culmination of this process involves 

combining all three images to produce the final enhanced image. Post-processing steps, including gamma 

correction and Gaussian blur, are subsequently performed to further refine the images, as depicted in Figure 4. 

 

 

 
 

Figure 4. Segmentation stage 

 

 

2.4. Classification 

CNN, a cornerstone of the neural network framework, encompasses numerous layers within its 

architecture and has gained significant prominence in various image processing applications, notably in object 

recognition [22] and image classification, where it has yielded promising outcomes. Previous research indicates 

the feasibility of directly inputting images into a CNN network to extract features for image categorization. 

The architecture of a CNN comprises several fundamental components, including convolutional layers, 

SoftMax layers, pooling layers, non-linear activation functions such as the rectified linear unit (ReLU), and 

fully connected layers (FC) [23], [24]. CNNs operate based on the intensities of images, utilizing dimensions 

such as width, height, and depth to represent the input image intensities. The processing begins from the top 

left corner of the image and progresses to the right. As the filter moves from the top to the bottom of the input 

volume, it changes, with each left-to-right movement constituting a stride. The complexity of the stride is 

augmented by the number of steps it encompasses. ReLU serves as an efficient activation function by 

converting negative pixel values to zero [25]. Following the convolution process, the size of the hidden layer 

becomes significantly large, necessitating the use of a pooling or sub-sampling layer to reduce computational 

complexity. Pooling can be categorized into two types: maximum and average [26]. Within the context of 

pooling, let y = yij represent the matrix. 

 

𝑅𝑒𝐿𝑈(𝑌) = max(0, 𝑌) (5) 

 

As noticed in (6), max pooling is the process that selects the most significant component in y as the output 

 

𝑥 = max(𝑦) (6) 

Post-Processed Image 

ImFCm Ws with marker [10-90] Ws with marker [10-200] Pre-processed Image 

Blended Image 
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Our study analyzed MRI brain images from AD patients, organizing the dataset into four distinct 

categories: normal, mild, moderate, and very mild. Figure 5 illustrates a proposed CNN architectural model 

comprising 13 layers. This model includes four convolutional layers, with each pair of convolutions followed 

by a pooling layer and dropout layers to ensure regularization. The architecture concludes with a fully 

connected layer and a classifier layer. The original images, measuring 176×208 pixels, are resized to 200×200 

pixels before being input into the CNN model. The filter size is varied across the CNN layers to effectively 

identify features. The batch size is set to 32, and the model undergoes training over 50 epochs. Upon completion 

of all epoch cycles, the CNN selects the model iteration with the highest performance metrics for classification 

purposes. The final classification is then applied to the test set to determine the accuracy rate. 

 

 

 
 

Figure 5. CNN model layers 

 

 

Table 1 outlines the internal architecture of the CNN model, detailing the specific layers and 

configurations used within the model. Table 2 lists the hyperparameters applied during the model’s training 

and optimization processes. For optimization, The Adam algorithm is utilized, with a learning rate of 0.001 set 

for the entire training phase. 

 

 

Table 1. CNN model 
Model layers  Image volume Filters  Size of filter  Pooling win size  var.  

conv2d (Conv2D) (200, 200) 32 5x5 2x2 2432 

conv2d_1 (Conv2D) (200, 200) 32 5x5 2x2 25632 

MaxPooling2D (100, 100) 32  2x2 0 

Dropout (100, 100) 32   0 

conv2d_2 (Conv2D) (100, 100) 64 3x3  18496 

conv2d_3 (Conv2D) (100, 100) 64 3x3  36928 
max_pooling2d_1  (50, 50) 64  2x2 0 

dropout_1 (50, 50) 64   0 

flatten (Flatten) (None, 160000)    0 
dense (Dense) (None, 256)    40960256 

dropout_2  (None, 256)    0 

dense_1 (Dense) (None, 4)    1028 

 

 

Table 2. Values of hyper-parameters 
Hyper-parameters  Value  

Split data  3840 train, 1281 validate  

Dropout  0.3, 0.3, 0.5 
Batch size  32 

Learning rate  0.001  

Num. of epochs  50  
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3. RESULTS AND DISCUSSION 

3.1. Experimental dataset  

The MRI images utilized for this research were sourced from the ADNI database. A total of 6400 

ADNI samples were selected for analysis after excluding certain samples with incorrect information. The 

dataset comprises 3140 normal samples, 896 early mild cognitive impairment samples, 64 moderate cognitive 

impairment samples, and 2240 severe cognitive impairment samples. These images are in JPEG format with a 

resolution of 176×208 pixels. 

 

3.2. Evaluation metrics 

3.2.1. Improved fuzzy C-means clustering 

The evaluation criteria used to assess computational complexity focus on how efficiently our method 

performs in terms of computational resources used and the quality of results obtained. It involves evaluating 

the time and scalability of our method when applied to extensive datasets. Consideration is given to techniques 

or optimizations that could enhance the algorithm's efficiency without compromising accuracy. The used 

equation to compute the efficiency of our proposed method is depicted (7): 
 

𝑑 =  ∑ ∑ |𝑈𝑖𝑗 − 𝑜𝑙𝑑_𝑢𝑖𝑗|𝑛
𝑗=1

𝑐
𝑖=1  (7) 

 

where 𝑑 denotes the total absolute difference. 𝑐 signifies the number of clusters. 𝑛 represents the number of 

data points. 𝑈𝑖𝑗  reflects the membership value of data point j in cluster i during the current iteration. 𝑜𝑙𝑑_𝑢𝑖𝑗 

indicates the membership value of data point j in cluster i during the previous iteration. The equation calculates 

the sum of the absolute differences between corresponding elements of the current and prior membership 

matrices across all clusters and data points. This measurement can act as an indicator of convergence or change 

between successive iterations within an optimization algorithm, such as the fuzzy C-means clustering 

algorithm. 

 

3.2.2. Convolutional neural network 

The analysis of ML and DL recognition platforms, aimed at evaluating their capability to accurately 

diagnose AD, relies on several performance metrics, including accuracy (Acy), sensitivity (Sny)/recall, 

precision (Prn), and the F1 score. Each of these performance indicators offers different insights into the 

proposed model's effectiveness. The primary measure for evaluating the classification system is accuracy, 

which is calculated by dividing the number of correct predictions by the total number of predictions made. 

Mathematically, it can be expressed as (8): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝+ 𝑇𝑁

𝑇𝑝+𝐹𝑝+𝑇𝑁+𝐹𝑁
 (8) 

 

where TP and TN are true positive and true negative respectively. FP, FN are false positive and false negative, 

respectively. Sensitivity and specificity are logically specified as (9): 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑝

𝑇𝑝+𝐹𝑁
 (9) 

 

The sensitivity metric acts as an indicator of the effectiveness in detecting AD patients, reflecting the 

model's ability to correctly identify those who are truly affected by the disease. Precision measures the 

reliability of the diagnosis, representing the proportion of individuals identified by the system as having the 

disease who are indeed seriously impacted by it. This can be described as (10): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝+𝐹𝑝
 (10) 

 

The F1 score of the simulation is described as the average of the sensitivity and accuracy. 
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × (
𝑆𝑛𝑦 × 𝑃𝑟𝑛

𝑆𝑛𝑦×𝑃𝑟𝑛
) (11) 

 

3.3. Experimental results 

3.3.1. Comparison results traditional fuzzy C-means and improved fuzzy C-means clustering 

Upon completion of the ImFCm algorithm, convergence was achieved by the 35th iteration, thereby 

exceeding the preset maximum iteration threshold. The cost value experienced a significant reduction, 

descending from 385.01 to 0.049 as the iterations advanced. This decline signifies the algorithm’s convergence 
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towards an optimal solution, highlighting the efficiency of our method in achieving results in a shorter 

timeframe. In comparison, the conventional FCM algorithm attained convergence at the 70th iteration, intiating 

with a cost value of 4907.9, and thus requiring more time relative to the proposed method. Figure 6 depicts the 

cost values for five different images alongside the duration taken by both the FCM and ImFCm algorithms. 

 

 

 

 
 

Figure 6. Cost and time for FCM and ImFCm 

 

 

3.3.2. Convolutional neural network results with traditional fuzzy C-means 

Traditional FCM clustering were employed for segmentation, which was then input into CNN for AD 

classification. Figure 7 illustrates the training and validation results from the segmented MRI brain dataset. 

The classification results demonstrated a test accuracy of 91% achieved over 50epochs. One of the curves 

shows a red line representing training loss and a blue line for validation loss, while another curve illustrates a 

red line for validation accuracy and a blue line for accuracy. According to this technique, the figure indicates 

that both accuracy and validation accuracy converged after 10 epochs. The validation accuracy reached 0.88 

and remained constant from epoch 14 through to epoch 50. By epoch 50, the loss decreased to 0.04, and the 

validation loss reached 0.6. 
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Figure 7. The accuracy and loss curves of classification for traditional FCM 

 

 

Table 3 displays the classification report of the training model for each class using this segmentation 

technique. For the classes mild, normal, moderate, and very mild, the precisions were 91%, 100%, 91%, and 

90%, respectively. The recall rates for these classes were 79%, 89%, 95%, and 90% in that order. The F1-

scores for the classes are 85%, 94%, 93%, and 90%, respectively. 

 

 

Table 3. Classification Report of Traditional FCM 
Class Name  Precision Recall F1-Score 

Mild 0.91  0.79 0.85  

Normal 1.00 0.89 0.94 
Moderate 0.91 0.95 0.93 

Very mild 0.90 0.90 0.90 

Accuracy 91% for predictions 

 

 

3.3.3. Convolutional neural network results with improved fuzzy C-means clustering 

The outcomes of the proposed classification process, as applied to both the training and validation 

sets, are illustrated through accuracy and loss curves in Figure 8. The figure reveals that convergence of the 

training approach's accuracy and loss was observed after 10 iterations, indicating high training and testing 

accuracy. The training accuracy achieved is in the vicinity of 99%, accompanied by a loss of approximately 

3%, whereas the validation accuracy approaches 98%, with a loss near 6%. Analysis of the figures demonstrates 

that the discrepancy between training accuracy and validation accuracy, as well as between training loss and 

validation loss, is minimal. Consequently, 50 epochs have been deemed suitable for the training and verification 

of our model. Figure 8 further indicates that after the initial 10 epochs, the accuracy for both training and 
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validation has stabilized. Based on these results, it can be concluded that the method we proposed has enhanced 

the model's efficiency, enabling it to be trained and validated within fewer epochs. 

 

 

 

 
 

Figure 8. The accuracy and loss curves of the proposed classification results 

 

 

By integrating two powerful segmentation techniques, the updated model reveals more detailed 

features. The attributes derived from these hybrid methods are varied; by combining them, the features become 

more robust, enhancing the classification phase. Table 4 displays the classification report of the training model 

for each class. For the classes mild, normal, moderate, and very mild, the precisions were 97%, 100%, 99%, 

and 97%, respectively. The recall rates for these classes were 99%, 100%, 98%, and 99%, in that order. The 

F1-scores for the classes are 98%, 100%, 98%, and 98%, respectively. The outcomes of the adapted model 

used in this study generally demonstrate exceptional performance, indicating that employing advanced MRI 

segmentation techniques to enhance AD diagnostic classification performance is beneficial. After 

comprehensive training, the system undergoes evaluation using a testing set, which consists of images that 

were not exposed to the system during the training phase. Employing our recommended segmentation 

technique, the CNN model achieves an accuracy of 98.98% and demonstrates efficient performance on MRI 

images. 

 

 

Table 4. Classification report of the proposed method 
Class name  Precision Recall F1-Score 

Mild 0.97 0.99 0.98  
Normal 1.00 1.00 1.00 

Moderate 0.99 0.98 0.98 

Very mild 0.97 0.99 0.98 

Accuracy 98.20% for predictions 
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3.4. Comparative examination from diverse researches models 

Our proposed methodology distinguishes itself through a comparative analysis with existing research 

efforts aimed at early AD detection, utilizing a detailed four-class classification framework, as detailed in  

Table 5. The suggested ImFCm-Ws-CNN model exhibits notable advancements in accuracy, precision, and 

F1-score metrics. It achieves an impressive 96.25% accuracy, 98.0% precision, and a 97% F1 score, surpassing 

the performance of previous studies. This comparative assessment underscores the advantages of incorporating 

ImFCm-Ws techniques into CNN models, highlighting enhanced diagnostic capabilities without sacrificing 

performance metrics. 

 

 

Table 5. A summary of new studies implementing techniques using DL 

Ref. Image Dataset 
Extracted 

Features 
Classifier Acc precision Recall F1 Others 

[27] T1-MRI MIRIAD --- CNN 89.0  89.0  89.0  89.0  AD Vs Non 
[28] MRI OASIS --- HT-MGWRO 93.16 90.74 94.23 92.45 AD Vs Non 

[29] MRI+EEG ADNI+ 

Rowan 
Univ 

Texture 

properties 
of an image 

Hybrid 

CNN+DBN 

92.50 --- 90.89 --- AD Vs Non 

[30] MRI ADNI FreeSurfer DNN 85.19 76.93 72.73 74.77 Multiclass 

[12] SMRI (T1) ADNI 3D Patches Hybrid multi-
task deep 

CNN and 

DenseNet+sof
tmax 

88.90 --- 88.60 --- AD Vs Non 

[31] MRI ADNI Bag of 

Features 
(BoF) 

SVM 93 ---- ---- ---- Multiclass 

[32] MRI 

 

OASIS Statistical 

measures of 
the mean 

and 

standard 
deviation 

Hybrid 

AlexNet+ 
SVM 

94.0  93.0  97.0  ---  Multiclass 

[11] MRI, PET, 

Cognitive 
scores, 

Neuropathology, 

assessment 

ADNI Local and 

longitudinal 
features 

Stacked 

CNN-
BiLSTM 

92.62 --- 98.42 --- AD 

progression 

Proposed MRI ADNI ImFCm-Ws CNN 98.20 98 98 98 Multiclass 

 

 

4. CONCLUSION 

This study introduces a novel methodology for the precise identification of AD progression through 

the integration of feature extraction using the ImFCM-Ws technique with an optimized CNN architecture. 

Utilizing the standardized ADNI dataset, our model effectively categorizes the different stages of AD. The 

evaluation revealed that the CNN model, enhanced with ImFCM-Ws features, outperformed existing methods, 

achieving an exceptional accuracy of 98.20%. Through meticulous feature extraction, our approach accurately 

identifies brain regions associated with Alzheimer's pathology, providing invaluable assistance to healthcare 

professionals in evaluating the disease’s severity based on levels of dementia. By allowing the data to inform 

our analysis, our findings underscore the significance of our methodology in improving the detection and 

diagnosis of AD. On the other hand, several limitations must be introduced despite the results and promising 

contributions of our study. One of these limitations, our approach relies on the ADNI dataset, which, although 

comprehensive, may not include all data sources in AD. This limitation could introduce bias if inaccuracies 

have occurred in generalizing our model to specific populations or cases with specific characteristics. To 

prevent this limitation, we suggest for future to add multimodal data sources such as neuroimaging scans, 

genetic information, and clinical assessments that could refine our model to capture additional information to 

detect this disease. 

 

 

5. FUTURE WORK 

Our study employs a synergistic approach, combining ImFCm with Ws for effective feature 

extraction, and leveraging CNN for classification. While our findings illuminate the effectiveness of this 

methodology in detecting AD, several areas warrant further investigation. Future research could focus on 

optimizing the parameters and algorithms of ImFCm and Ws to enhance the accuracy and efficiency of feature 
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extraction. Additionally, the exploration of innovative fusion techniques for integrating multimodal 

neuroimaging data may significantly enhance the diagnostic accuracy and robustness of the classification 

model. Moreover, the application of advanced ML and DL architectures beyond CNN, such as recurrent neural 

networks (RNNs) or graph neural networks (GNNs), could provide novel perspectives on AD diagnosis and 

progression monitoring. These prospective research avenues aim to propel forward the domain of 

neuroimaging-based AD detection, contributing towards the creation of more precise and dependable 

diagnostic tools. 
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