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 Accurate localization is crucial for mobile robots to navigate autonomously in 

indoor environments. This article presents a novel visual odometry (VO) 

approach for localizing a TurtleBot4 mobile robot in indoor settings using 

only an onboard red green blue – depth (RGB-D) camera. Motivated by the 

challenges posed by slippery floors and the limitations of traditional wheel 

odometry, an attempt has been made to develop a reliable, accurate, and low-

cost localization solution. The present method extracts oriented FAST and 

rotated BRIEF (ORB) features for feature extraction and matching using 

brute-force matching with Hamming distance. The essential matrix is then 

computed using the 5-point algorithm and decomposed to recover the relative 

rotation and translation between poses. The absolute pose is obtained by 

chaining the incremental motions estimated from VO. Through 

experimentation and comparison with wheel odometry, the findings 

demonstrate the effectiveness of our VO system, achieving a positional 

accuracy with minimal error of 4-5%. The article also compares VO with 

wheel odometry and shows the advantages of using a visual approach, 

especially in environments with slippery floors where wheel slippage causes 

large odometry errors. Overall, this work presents an effective VO system for 

reliable, accurate, and low-cost localization of TurtleBot4 in indoor 

environments without relying on external infrastructure. 
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1. INTRODUCTION 

Over the last few decades, the field of mobile robotics and autonomous systems has garnered 

considerable global interest, leading to significant advancements and breakthroughs. Presently, mobile robots 

demonstrate the capability to independently execute intricate tasks, a departure from the past where human 

input and interaction were imperative [1]. The applications of mobile robotics span diverse fields, including 

military, medical, space, entertainment, and domestic appliances. In these applications, mobile robots are 

anticipated to carry out complex tasks, necessitating navigation in intricate and dynamic indoor and outdoor 

environments without human intervention [2]. Among various aspects, navigation emerges as a key issue 

closely tied to the concept of autonomy in mobile robots. Specifically, the capacity for safe navigation within 

its environment and effective path planning are critical tasks that characterize a mobile robot as an autonomous 

entity [3]. A key capability required by mobile robots to operate autonomously is self-localization, i.e., the 

ability to determine their pose (position and orientation) within the environment. Accurate and reliable 

localization is crucial for navigation, path planning, and other higher-level decision-making. 

https://creativecommons.org/licenses/by-sa/4.0/
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Various sensors and techniques exist for localizing mobile robots, such as global positioning system 

(GPS), WiFi, ultra-wide band radios, laser scanners, and cameras. However, many indoor environments lack 

GPS signals, and installing external infrastructure like landmarks or beacons for localization is cost-prohibitive 

and labor-intensive. Camera sensors provide a low-cost and infrastructure-free alternative for localization in 

indoor environments by utilizing visual information [4]. Visual odometry (VO) is one such technique where a 

robot estimates its motion by examining the changes in camera images over time [5]. It is analogous to wheel 

odometry, which integrates wheel rotation measurements to estimate the change in pose. However, wheel 

slippage has no impact on VO because it only uses images from a camera. With recent advances in computer 

vision and parallel processing hardware, VO has emerged as a promising approach for accurate and robust 

localization of mobile robots in indoor environments. 

In this work, a VO framework for localizing is presented on a widely used mobile robot, TurtleBot4, 

in indoor environments. TurtleBot4 is equipped with a red green blue – depth (RGB-D) camera, which provides 

both color and depth information. This VO approach utilizes the RGB images and operates by tracking features 

across consecutive frames to estimate the incremental motion of the robot. The absolute pose is determined by 

chaining together these relative motions. The main contributions to this work are: i) an evaluation of VO for 

TurtleBot4 localization in lab environments using only its on-board RGB-D camera; ii) a comparison between 

VO and wheel odometry in conditions with wheel slippage; and iii) an open-source implementation of the 

complete VO framework. 

The rest of the article is organized as follows: section 2 provides an overview of related work in VO. 

Section 3 describes the methodology and the experimental setup. Section 4 analyzes the results and compares 

VO with wheel odometry. Section 5 concludes the article. 

 

 

2. RELATED WORK 

VO is a key technique for egomotion estimation and localization for autonomous robots and vehicles 

using cameras. It has been an active research area in mobile robotics for over two decades, with a rich literature 

exploring various methods and system designs. This section provides an overview of related work in VO.  

Stein et al. [6] presented an approach for egomotion estimation using optical flow to match feature points 

between consecutive frames. Visual motion estimation from image sequences was formulated as an optimization 

problem using optical flow constraints. Nistér et al. [4] developed a real-time VO system that used Harris corners 

and normalized correlation for feature matching. They introduced an absolutization step to recover the initial 

position and scale, which are unobservable from VO alone. Whereas Konolige and Agrawal [5] described a 

stereo VO system for large outdoor environments using sparse bundle adjustment over keyframes. They also 

proposed efficient techniques for outlier rejection and reducing computational complexity to achieve real-time 

performance. Some other VO systems from this early period rely on optical flow to directly estimate egomotion 

from differences between subsequent images [7], [8]. Optical flow provides dense tracking but can be noisy 

and difficult to compute reliably. 

Few researchers have explored the use of local invariant feature descriptors like scale-invariant feature 

transform (SIFT) [9] or speeded-up robust features (SURF) [10] for establishing sparse feature 

correspondences. These feature-based methods offered more robust matching than optical flow techniques. 

Examples include the work of Clemente et al. [11], who used a single handheld camera along with SIFT 

features and random sample consensus (RANSAC) for egomotion estimation. Pretto et al. [12] developed a 

VO system based on a sparse set of SURF features tracked using the Kanade-Lucas-Tomasi tracker. In recent 

years, there has been growing interest in using machine learning techniques to improve VO and simultaneous 

localization and mapping (SLAM) systems. Supervised learning methods leverage large datasets with ground 

truth to train convolutional neural networks (CNNs) for tasks like feature learning, pose estimation, and loop 

closure. Wang et al. [13] optimized a CNN model to generate keypoint locations, descriptors, and scores that 

rival traditional handcrafted features like SIFT. DeTone et al. [14] used self-supervised learning from videos 

to train a deep VO model that outperformed classical methods. Some end-to-end learning-based VO 

frameworks have also emerged. For example, vector of locally aggregated descriptors (VLAD)-VO formulates 

VO as sequence-to-sequence learning using recurrent CNNs trained on street view datasets with ground truth 

poses. Costante et al. [15] explored self-supervised pose regression and outlier rejection with deep networks 

showing competitive accuracy. However, such end-to-end techniques require large amounts of training data. 

They are also computationally intensive compared to classic methods. 

Another direction is the use of stereo cameras or RGB-D sensors to provide depth information along 

with images for improving odometry. Examples include RGB-D SLAM systems like dense VO [16] and elastic 

fusion [17] that leverage depth data for tracking and mapping. Stereo systems like stereo parallel tracking and 

mapping (S-PTAM) [18] demonstrate high accuracy by combining stereo matching with visual SLAM. Depth 

information provides direct scale estimation and improves pose tracking and mapping quality. Some 

noteworthy VO systems built over the years include parallel tracking and mapping (PTAM) by  
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Klein and Murray [19], which introduced the separation of tracking and mapping threads. Strasdat et al. [20] 

developed double window optimization for efficient bundle adjustment in monocular SLAM. Fovis by  

Huang et al. [21] uses fisheye cameras for improved field-of-view coverage and robustness. Semi-direct 

monocular visual odometry (SVO) [22] demonstrates accurate, high-speed odometry by directly using image 

intensities for motion estimation. Large-scale direct monocular (LSD)-SLAM [23] performs direct alignment 

of images using photometric error. Oriented FAST and rotated BRIEF (ORB)-SLAM [24] presents a versatile 

visual SLAM system supporting monocular, stereo, and RGB-D configurations using ORB features with  

graph-based optimization. 

More recently, visual-inertial techniques that fuse cameras and inertial measurement units (IMUs) 

have become popular. For example, visual-inertial system (VINS)-Mono [6] demonstrates accurate and robust 

odometry estimation on drones and other platforms using a monocular camera and IMU. Visual-inertial 

systems take advantage of complementary sensing modalities for improved performance across different 

environments. While VO has been extensively researched, as highlighted above, relatively little work has 

evaluated VO specifically targeted for low-cost, widely used robotic platforms like TurtleBot. Most prior VO 

systems were designed for drones, smartphones, and ground vehicles. The limited onboard computation makes 

directly deploying popular VO approaches challenging on resource-constrained robots. This motivates work to 

develop and validate a lightweight yet accurate VO system designed for the TurtleBot robot using its RGB-D 

sensor. 

The proposed approach draws on established techniques like ORB features [25], essential matrix 

decomposition [26], and pose graph optimization [27]. ORB provides efficient feature extraction and matching 

suitable for limited computational budgets. The essential matrix allows recovery of the incremental motion 

between frames. Pose graph optimization improves the global consistency of the VO trajectory. However, these 

components were adapted and optimized for the TurtleBot platform with a focus on accurate, real-time 

odometry estimation using only its RGB-D camera. Additionally, some studies also evaluated the performance 

of a multilayer clustering network for similar problems [28], [29]. In summary, while VO is a mature research 

field, relatively little work exists on evaluating VO performance specifically targeted for popular consumer 

robots like TurtleBot. Most VO systems are designed for drones, phones, or cars with more powerful sensors 

and computational resources. This article aims to fill this gap by developing and validating an efficient VO 

system for accurate, real-time localization of TurtleBot in indoor environments using its onboard RGB-D 

camera. 

 

 

3. METHOD 

This section presents the methodology of the VO framework for TurtleBot4. The input to the 

algorithm is a stream of left RGB images from the RGB-D camera. The output is an estimation of the 

incremental motion of the robot from frame to frame. By chaining these relative motions, the full trajectory of 

the robot is obtained in the environment. The VO framework consists of the following key stages:  

i) feature detection and description; ii) feature matching; iii) motion estimation; and iv) pose graph optimization 

Figure 1 shows an overview of the VO system. Features are detected in consecutive frames and 

matched using brute-force matching with Hamming distance. The essential matrix is computed using the  

5-point algorithm and decomposed to recover the incremental pose. Pose graph optimization improves the 

odometry trajectory. 
 
 

 
 

Figure 1. VO framework 
 

 

3.1.  Detection and description 

The first step in the VO framework is detecting distinctive image features in each camera frame that 

can be tracked across frames. Good features for VO should be repeatable across viewpoints, allow precise 

localization, and be efficient to match. The ORB feature detector and descriptor [24] is used in the present 

approach due to its balance between accuracy, distinctiveness, and computational efficiency. ORB builds on 
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FAST keypoint detection [30] and the BRIEF descriptor [31], with additions to improve rotation invariance. 

FAST detects key points by looking for points that stand out from their surroundings within the image based 

on a corner response function. ORB improves on this by using a pyramid and FAST at multiple scales to extract 

around 2000 keypoints per image in a scale-invariant manner. Each keypoint is assigned an orientation based 

on image gradients to achieve rotation invariance. BRIEF generates a binary descriptor vector by comparing 

the intensities of points on a smoothed image patch around the keypoint location. ORB's rBRIEF descriptor 

rotates this patch by the keypoint orientation to obtain rotation-invariant descriptors. The resulting ORB 

keypoints and descriptors provide a lightweight yet high-quality visual feature representation. Matching 

descriptors using Hamming distance is also extremely efficient, enabling real-time tracking and motion 

estimation. This makes ORB highly suitable for computationally constrained platforms like TurtleBot. 

ORB is specifically chosen over other features like SIFT and SURF due to its computational efficiency 

and accuracy trade-off. SIFT descriptors [18] are high-quality but slow to extract and match. SURF [10] 

accelerates this using box filters but is not as fast as ORB. Learning-based features [13] can outperform 

handcrafted ones given sufficient training data but require powerful GPUs for inference, which are not available 

on this robot. Overall, ORB offers the right balance of speed, distinctiveness, and invariance needed for  

real-time VO on TurtleBot using only its CPU. The ORB feature representation forms the basis for establishing 

reliable correspondences between frames to estimate incremental motion. 

 

3.2.  Feature matching 

Distinctive 2D feature points (keypoints) are detected in each image to capture the environment’s 

structure. The ORB feature detector is used to identify key points, which are scale, rotation, and illumination 

invariant. ORB provides a good balance between feature quality and extraction speed [32]. Around 2000 

keypoints are detected per frame. Each keypoint is described using a 256-bit binary string generated from the 

ORB descriptor. This allows for efficient feature matching using Hamming distance. 

 

3.3.  Motion estimation 

Once feature correspondences are established between two frames, the next step is to estimate the 

relative 6-DOF motion between the camera poses. Recovering this incremental camera motion provides the 

basic odometry information for localizing the robot as it moves frame-by-frame. The essential matrix 

formulation is utilized for motion estimation. The essential matrix E encapsulates the relative rotation and 

translation between two camera viewpoints with a small baseline separation. It has the following key properties: 

i) E is a 3x3 matrix with rank 2 satisfying the constraint: E=[Tx] R, where [Tx] is the skew-symmetric cross 

product matrix of the translation t; and ii) for noise-free correspondences a ↔ a', we have the epipolar 

constraint: aT Ea'=0. 

The 5-point algorithm created by Nistér et al. [4] can estimate the essential matrix E can be estimated 

from a set of point correspondences across frames. This technique efficiently computes the exact E using only 

five keypoint matches. The minimal sample size makes it robust to outliers under RANSAC. The 5-point 

algorithm is combined with RANSAC to robustly estimate the essential matrix between consecutive frames. 

The best E is then decomposed using singular value decomposition (SVD) to recover the relative rotation R 

and translation T up to an unknown scale [26]. The basic odometry estimate between different camera poses is 

this incremental rotation and translation from the essential matrix. Chaining these frame-to-frame motion 

estimates yields the full camera trajectory and VO output. The essential matrix approach is efficient, flexible, 

and works well with monocular cameras. It does not require fully calibrated rigs or additional depth sensors. 

The 5-point algorithm produces accurate short-baseline odometry suitable for incremental VO estimation from 

a single moving camera.  

 

3.4.  Pose graph optimization 

Chaining the incremental motion estimates from VO over time yields an estimate of the full robot’s 

trajectory. However, small errors in incremental motions accumulate into drift over longer sequences. To 

improve global consistency and reduce drift, pose graph optimization is employed. The idea is to optimize the 

full robot trajectory by minimizing the reprojection error between matching keypoints observed from multiple 

poses [12]. This takes into account all constraints between matched features visible across different parts of 

the trajectory. Specifically, a pose graph is built where nodes are camera poses and edges represent relative 

pose constraints from VO between frames. The reprojection error across all matches provides a non-linear least 

squares objective to refine the pose graph. This global optimization distributes odometry errors throughout the 

graph to obtain a more consistent trajectory. The Levenberg-Marquardt algorithm is used to efficiently solve 

this non-linear optimization. The optimized pose graph finally provides drift-reduced VO output, combining 

all incremental motions and global constraints. This improves localization accuracy over long sequences by 

correcting drift and inconsistencies in the VO trajectory. 
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The pose optimization stage is key to achieving reliable performance for VO on TurtleBot4 over 

extended trajectories. While essential matrix decomposition provides accurate frame-to-frame motion 

estimates, global pose graph optimization leverages all constraints to reduce the accumulation of errors and 

drift as the robot traverses large distances. This enables accurate VO-based localization over long durations in 

indoor environments. 

 

3.5.  Experimental setup 

TurtleBot4, used in the present study, is a low-cost, open-source wheeled robot equipped with a 

Raspberry Pi 4 and an Intel RealSense D435i RGB-D camera integrated into it. The RGB camera provides 

1080 p color images, while the depth camera outputs 640x480 depth images at 30 FPS. Figure 2 shows the 

experimental setup, including the mobile robot platform as shown in Figure 2(a) and intel RealSense D435i 

RGB-D camera in Figure 2(b). 
 

 

  

(a) (b) 
 

Figure 2. Experimental setup (a) mobile robot platform and (b) intel realSense D435i RGB-D camera 
 

 

Two datasets designated as sequence 1 and sequence 2 were collected with TurtleBot4 driving 

autonomously in the Robotics and Mechatronics Research Lab (RMR Lab), Chitkara University, Punjab, and 

the corridor adjoining the RMR Lab, as shown in Figure 3. For ground truth poses, manual markings were 

marked on the floor tiles and measured. Sequence 1 consists of 1100 frames captured over a 10x12 m area of 

the lab with chairs and other furniture shown in Figure 3(a). Sequence 2 is 1400 frames long and recorded over 

a 20-metre traverse in a corridor with plain walls, doors, and windows, as shown in Figure 3(b). Both datasets 

include color images from the left RGB camera.  
 

 

  
(a) (b) 

  

Figure 3. Working environment (a) RMR Lab and (b) corridor adjoining RMR lab 

 

 

4. RESULTS AND DISCUSSION 

This section presents the experimental results to evaluate the performance of VO on the two 

TurtleBot4 datasets. The VO trajectory is also compared with raw wheel odometry to analyze the benefits of 

VO. To quantitatively evaluate the VO trajectory, two standard metrics are used: i) translational root mean 

square error (RMSE) from ground truth; and ii) relative pose error (RPE). 

RMSE measures the global consistency of the estimated trajectory, while RPE evaluates local  

frame-to-frame accuracy. For RPE, the error is computed between estimated incremental motions and ground 

truth over a window of 5 frames. Additionally, timings are provided for feature detection, matching, and motion 

estimation modules for analyzing the runtime performance of the VO system. A reliable and good-quality VO 

dataset is required to get the error metrics, which should be verified with the actual situation. This is critical 

since it not only examines the performance of the algorithm under consideration but also shows how altering 

specific parameters might result in various outcomes and error levels. The error may be computed by taking 

the root mean square of the variations between the expected and real coordinates and using the equation (1): 
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Error=√𝛥𝑥2 + 𝛥𝑦2 (1) 

 

Table 1 summarizes the trajectory accuracy of the VO framework in terms of RMSE and RPE metrics 

for the two sequences. For sequence 1, VO achieves an RMSE of 0.35 m over the entire run, which is only 

4.4% of the total distance. This demonstrates accurate and consistent odometry estimation in the lab 

environment. RPE is 0.18 degree and 0.012 m, showing precise frame-to-frame motion estimates. Whereas on 

sequence 2, the RMSE of 0.52 m over a 20 m distance corresponds to 5% error. RPE also rises slightly to  

0.22 degree and 0.018 m. This is likely because the corridor offers fewer distinguishing features, resulting in 

some drift accumulation. Overall, VO demonstrates competitive localization accuracy across diverse 

environments using only visual information. 

To highlight the benefits of VO, it is compared against raw wheel odometry computed from the 

TurtleBot's wheel encoders. This represents odometry estimated by integrating incremental motions from 

wheel rotations. Table 2 shows wheel odometry performs significantly worse than VO, with 2-3x larger errors. 

On sequence 1, wheel odometry accumulates 1.5 m of error over the entire run, causing localization failure. 

Even on sequence 2, wheel odometry shows 1.8 m RMSE compared to 0.52 m for VO. This is because wheel 

odometry suffers from slippage on the office floors, resulting in incorrect motion estimates. VO does not rely 

on wheel measurements and is unaffected by wheel slippage. This highlights the robustness of VO for 

localization. 
 

 

Table 1. Accuracy of VO on the two datasets 
Metric Sequence 1 (RMR Lab) Sequence 2 (corridor) 

RMSE (m) 0.35 0.52 

RPE (deg/m) 0.18/0.012 0.22/0.018 

 
 

Table 2. Comparison of wheel vs VO 
Odometry Sequence 1 (RMR Lab) Sequence 2 (corridor) 

Wheel 1.5m RMSE 1.8m RMSE 
Visual 0.35m RMSE 0.52m RMSE 

 

 

Videos were captured using the on-board RGB-D camera as the mobile robot moved independently 

throughout the lab and corridor as shown in Figure 4. The video contained an appropriate quantity of features, 

as well as favourable weather and lighting circumstances. Figure 4(a) shows the mobile robot moving ahead 

and taking a slight right turn as the rack on the left side begins to disappear from the camera and the chair 

enters the frame after the video has been sliced into frames. Similarly, videos were captured and sliced into the 

frame for the corridor as well. It can be seen from Figure 4(b) that the mobile robot is moving forward in an 

almost straight line as the door on the right side starts disappearing from the picture and the railing of the stair 

is in the center of the frames of the particular segment of the captured video.  

Figure 5 shows the camera trajectory and ground truth obtained using the experimental results.  

Figure 5(a) illustrates the observed movement of the mobile robot in the RMR Lab, aligning with the actual 

camera trajectory. The graph indicates deviations of approximately 0.3 to 0.5 meters in both the x and y 

directions at various locations throughout the entire travel. In contrast, Figure 5(b) demonstrates the correlation 

between the monitored movement of the mobile robot and the real camera trajectory in the corridor. The 

deviation becomes evident as the robot gradually diverges from the camera trajectory, resulting in a disparity 

of 0.3 meters in the x-axis and approximately 0.5 meters in the y-axis.  
 

 

  
(a) (b) 

 

Figure 4. Video frame sequence sample of (a) RMR Lab and (b) corridor 
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(a) (b) 

  

Figure 5. Camera trajectory and ground truth in (a) lab and (b) corridor 
 

 

Figure 6 shows the feature detection (line) of the RMR Lab environment Figure 6(a) and corridor 

Figure 6(b) for the single frame of the whole run. Using the estimated motion data supplied by on-board wheel 

odometry, the features picked in the previous picture are projected into the second image. Following that, a 

correlation-based search exactly re-establishes the 2D locations in the second picture. The comparison of two 

successive frames after implementing the VO technique is shown in Figures 7(a) and 7(b) for the lab 

environment and corridor, respectively. 
 

 

  
(a) (b) 

  

Figure 6. Feature detection (line) in (a) RMR lab and (b) corridor 
 

 

  

(a) (b) 

 

Figure 7. Comparison of two consecutive frames after implementing the VO algortihm (a) RMR lab and  

(b) corridor 
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5. CONCLUSION  

This article introduces a VO system designed for localizing the TurtleBot4 mobile robot in indoor 

environments, utilizing solely its onboard RGB-D camera. The proposed approach involves the detection and 

matching of ORB features across frames to estimate incremental motion, subsequently chained to recover the 

full trajectory. The findings obtained from real-world datasets illustrate that the VO system achieves accurate 

and reliable localization, demonstrating competitiveness with state-of-the-art VO systems. Notably, the visual 

approach outperforms standard wheel odometry, especially in conditions involving wheel slippage. The 

presented system offers a cost-effective, infrastructure-free solution for precise indoor localization of 

TurtleBot4 using visual information. The open-source implementation enables researchers to develop advanced 

navigation and mapping solutions, building upon a robust VO-based pose estimation. This work contributes to 

realizing the immense potential of autonomous mobile robots functioning safely in indoor environments.  
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