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ABSTRACT

Molecular toxicity prediction is a crucial step in the drug discovery process. It
has a direct relationship with human health and medical destiny. Accurately
assessing a molecule’s toxicity can aid in the weeding out of low-quality com-
pounds early in the drug discovery phase, avoiding depletion later in the drug
development process. Computational models have been used automatically for
molecular toxicity prediction. In this paper, a machine learning-based model has
been proposed. TF/IDF representation scheme has been used for N-gram and
integrated with simplified molecular-input line-entry system (SMILES). Multi-
ple machine learning classifiers such as logistic regression (LR), support vector
machine (SVM), random forest (RF), decision tree (DT), k-nearest neighbors
(KNN), AdaBoost, multi-layer perceptron (MLP), and stochastic gradient de-
scent (SGD) classifiers have been implemented. A wide range of N-gram mod-
els have been implemented and trigram reported the best results. RF and SVM
achieved 85% and 84% accuracy respectively. Comparable to state-of-the-art
models, our results are acceptable as we used minimum available resources.
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1. INTRODUCTION
Numerous therapeutic candidates have recently, failed in late-stage clinical trials [1]. Chemical respi-

ratory toxicity is a primary cause of clinical trial failures, and it has also resulted in the withdrawal of numerous
medications from the market [2], [3]. Since there are no known adverse effects of medicinal products in human
respiratory systems [4], [5], it is important to analyze potential for respiratory toxicity from compounds as
soon as possible during drug discovery. Rapid screening of drug candidates is made possible by accurately
anticipating the properties of drug molecules, which helps to save both time and money. Pharmacokinetic char-
acteristics absorption, distribution, metabolism, excretion, and toxicity (ADMET) are major concerns during
the screening stage of drug candidate [6], [7].

At an early stage of the drug development process, the ADMET property assessment approach can
effectively address the issue of species differences, significantly increase the success rate and reduce the cost
of drug discovery. The process of bringing Food and Drug Administration (FDA) medicine to market requires
more than ten years and $200 million [8], [9]. The main cause of such high costs is medication safety, which
accounts for 96% of therapeutic failures [10]. In the final stages of drug research, drug toxicity, and side effects
are a crucial practiced challenge [11]–[14]. Therefore, to avoid high-cost consumption, predicting molecular
toxicity should be performed as soon as possible during the development stage of a drug.

Machine learning techniques are becoming very popular in the pharmaceutical sector, which makes it
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possible to analyze a great deal of data available faster and easier [15]. Classification, regression, clustering,
and pattern recognition are some of the main tasks carried out by artificial intelligence algorithms in a wide
data set. New molecular characteristics, interactions, biological activities, and side effects of medicines are
predicted by a wide variety of machine learning methods in the pharmaceutical industry [16]–[19].

According to Wang et al. [20], for predicting the chemical respiratory toxicity, six machine learning
methods with nine types of molecular fingerprints have been used. According to Peng et al. [21], a novel
method of molecular representation and developed the corresponding deep neural network framework, inte-
grates designed data preprocessing techniques, a recurrent neural network (RNN) based on the bidirectional
gated recurrent unit and fully connected neural networks for end-to-end molecular representation learning
and chemical toxicity prediction. For predicting chemical toxicity, a graph convolution neural network have
been developed and trains by mean teacher algorithm, based on the success of semi-supervised learning (SSL)
algorithm [22]. According to Jaganathan et al. [23], using machine learning algorithms, and systematic tool se-
lection methods to select features of the molecular describer sets, authors set up quantitative structure-activity
relationship models. According to Huang [24], different conventional machine learning and deep learning
algorithms have been applied to an online chemical database and model environment, creating a series of com-
putational models. According to Feng et al. [25], to predict the compound’s reproductive toxicity, ensembles
of learning models have been developed using 9 molecular fingerprints, random forest (RF), extreme gradient
boosting methods and support vector machine (SVM). Zhang et al. [26] studied a combination of deep neural
networks with predictors based on the coherence forecasting framework in order to generate high probability
models with clear uncertainties. Hua et al. [27] focusing on using machine learning and deep learning tech-
niques to predict chemically induced hematotoxicity in silico, using QNPR descriptors and the random forest
regression (RFR) and classification method.

The rest of this paper is shown as follows. Section 2 presented materials and data preparation,
section 3 introduced method, section 4 presented results and discussion. Finally, the conclusion is presented in
section 5.

2. MATERIALS AND DATA PREPARATION
2.1. Dataset

The dataset used in this study was collected by gathering positive data from the three datasets [20].
The first database is the Pneumotox database, which includes medicines that cause respiratory disorders [28].
Adverse drug reaction classification system (ADReCS) database that contains a wide range of undesirable
reactions [29]. We’ve been focusing on the negative effects of medicines on the respiratory system. From the
hazardous chemical information system, we selected substances that have a detrimental effect on respiratory
systems (published on May 9, 2018). In addition, from the relevant literature we have obtained positively and
negatively charged chemicals [30]–[35]. In the ChemIDplus database, all chemicals were matched to simplified
molecular-input line-entry system (SMILES) [36].

2.2. Molecular representation

In this section, we discussed the most common techniques that are used for molecule representation,
string representation and molecular graphs. String representations, with a large selection of sequence modeling
techniques, e.g. RNN, attention mechanisms, and dilated convolutions, have been quickly adopted for gener-
ative models that represent chemical structures as a string. SMILES is the most often used string encoding
for generative machine learning models [37]. The SMILES technique preserves atom and edge tokens while
traversing the spanning tree of a chemical graph in depth-first order. Specific tokens for branching and edges
that are not part of a spanning tree shall also be used by SMILES. Because there are multiple spanning trees
on a molecule, numerous SMILES strings could be representing the same molecule. Is it possible to create the
SMILES string uniquely from a molecule, its ambiguity can also enrich and improve generative models [38].

Molecular graphs, graph representations have been used in chemoinformatics for a long time to store
and analyze biological data. Each node on the molecular graph represents the atom, and all edges represent a
connection. In such a graph, the hydrogens can be specified directly or implicitly. The number of hydrogens
can then be calculated based on their atomic value in this case.

Character N-gram model for toxicity prediction (Eman Shehab)
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3. METHOD
Figure 1 represents the general structure of the proposed model. It comprises of six phases: dataset

gathering, data pre-processing, feature extraction, data splitting, learning models and evaluation. Details of
dataset gathering and pre-processing aforementioned. The feature extraction phase has been implemented
using the ngram term frequency-inverse document frequency (TF-IDF) based model. The dataset must be ran-
domly split into train and test sets with a ratio of 8:2 respectively. Logistic regression (LR), SVM, RF, decision
tree (DT), k-nearest neighbors (KNN), AdaBoost, multi-layer perceptron (MLP), and stochastic gradient de-
scent (SGD) classifiers have been used to train the proposed model. The last phase is the evaluation of the
performance of the proposed model. These procedures were put into practice in scikit-learn 0.24.1 [39].

Figure 1. Shows the proposed model for predicting the chemical respiratory toxicity

3.1. Feature extraction
In machine learning algorithms, the TF-IDF with n-gram provides numerical weights to textual con-

tent for mining. It measures how important a term is within a compound relative to a collection of com-
pounds. Choosing the right feature parameters can help to increase the classification accuracy of predecting
toxicity [40].

3.2. Logistic regression
LR is a multivariate analytic discrete choice model. This approach is most commonly used for statisti-

cal analysis of biostatistics, sociology, quantitative psychology, clinical practice, econometrics, and marketing
as well as to compare it with machine learning studies. It offers numerous benefits such as accuracy and strong
power [41].

3.3. Support vector machine
SVM is a very commonly used algorithm of machine learning. It is capable of both linear and non-

linear classification [42]. We set the kernel parameter to Gaussian radial basis kernel function (RBF). By using
a grid search, the parameters C and gamma have been determined.

3.4. Random forest
RF are an ensemble method of machine learning. RF generates a large number of DT randomly from

the training set and can infer values for various DT to forecast their overall severity deficit [41]. The parameters
used in the dataset are criterion (entropy), class weight (balanced), and n estimators (n=200).

3.5. Decision tree
This classifier has a tree structure, with internal nodes that represent features, branches that reflect

decision mechanisms, and leaves representing the outcome. It is easy to understand since it mirrors the human
thought process. This classifier’s internal decision-making process is recognized for its tree structure. This can
easily process multidimensional data and requires very little training time [43].

3.6. K-nearest neighbor
The KNN classification method is an easy and clean way of classification [44]. The parameters con-

sidered for KNN are n neighbors(n=4) with a step size of 1. We set the parameter weights to distance.

3.7. AdaBoosting
AdaBoosting classifier is an ensemble strategy for machine learning that combines weak learner mod-

els and produces strong learners. When a machine learning system receives weights from training data, it acts
as a base learner. We used sklearn.ensemble import AdaBoostClassifier to implement AdaBoost classifier. At
first, a randomly training set will be used, and the model will be trained continually. In next iteration, mis-
classification observations are considered to have more weight and a greater likelihood. This technique will be
continued as long as the data in the training database are not entirely aligned with the model [45].
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3.8. Multi-layer perceptron
MLP is a powerful artificial neural network that mimics the operation of the human brain and map its

collection of inputs and outputs accordingly. For the experiment, we import MLP classifier via
sklearn.neural network. It’s parameters include activation function, distinct classes of deficit severity,
input/output layers, learning rate, and iterations [45].

3.9. Stochastic gradient descent
SGD is a machine learning algorithm that performs the discriminative analysis of differential clas-

sification with loss functions. The benefit of adopting SGD is that it is simple to implement and increases
efficiency. In order to assist in determining different loss functions and penalties, a SGD classifier is used for the
implementation of SGD. The SGD classifier is created by importing SGD classifier from
sklearn.linear model [45].

3.10. Performance evaluation
This section explores a set of evaluation metrics for assessing the quality of generative models. Various

metrics have been calculated such as false positives (FP), true positives (TP), false negatives (FN), true negatives
(TN), recall, precision, F1-score, accuracy, and area under the curve (AUC) [46]. An additional instrument for
assessing the effectiveness of machine learning classification the confusion matrix.

4. RESULTS AND DISCUSSION
This section display the results of the proposed models. Machine learning algorithms have been im-

plemented using bigram and trigram TF-IDF based models. The RF and SVM achieved the highest results with
trigram representation as shown in Table 1. All performance metrics have been calculated for each classifier.
Precision values range from 0.73 to 0.84, F1-score values vary from 0.78 to 0.87, recall varies from 0.81 to
0.90 and the accuracy value is between 0.74 and 0.85. For bigram TF-IDF based models, RF, KNN, and SVM
reported accuracy of 0.85, 0.81, and 0.80 respectively. As shown in Table 2, AUC scores for bigram models
range from 0.72 to 0.84 for all algorithms. RF, KNN, and SVM outperformed all other models resulting AUC
of 0.84, 0.80, and 0.79 respectively.

As shown in Table 1, different evaluation metrics have been calculated for all algorithms and tri-
gram models. The precision score varies from 0.75 to 0.85, F1-score ranges from 0.80 to 0.87, recall varies
from 0.81 to 0.92 and accuracy ranges from 0.76 to 0.85. RF and SVM with trigram model reported accu-
racy of 0.85 and 0.84 respectively. As shown in Table 2, AUC scores for trigram models range from 0.74
to 0.84 for all algorithms. RF and SVM outperformed all other models resulting in AUC of 0.84 and 0.83
respectively. Figures 2 and 3 show the confusion matrices and AUC for all algorithms with trigram model.
Figures 2(a) to 2(h) represent the confusion matrix for Adaboost, DT, KNN, LR, MLP, RF, SGD, and SVM
respectively. Figures 3(a) to 3(h) represent the AUC for Adaboost, DT, KNN, LR, MLP, RF, SGD, and SVM
respectively.

Table 1. Results of the proposed system with eight classifiers in percentage with bigram and trigram
N-gram Algorithms Accuracy Precision recall F1-Score
Trigram Random forest 0.85 0.83 0.92 0.87
Bigram 0.85 0.84 0.90 0.87
Trigram SVM 0.84 0.85 0.87 0.86
Bigram 0.80 0.81 0.85 0.83
Trigram K-neighbors 0.81 0.84 0.81 0.82
Bigram 0.81 0.83 0.82 0.83
Trigram AdaBoost 0.78 0.79 0.84 0.81
Bigram 0.79 0.79 0.84 0.81
Trigram SGD 0.81 0.81 0.85 0.83
Bigram 0.77 0.76 0.84 0.80
Trigram Decision tree 0.76 0.75 0.86 0.80
Bigram 0.75 0.75 0.81 0.78
Trigram Logistic regression 0.78 0.76 0.87 0.81
Bigram 0.74 0.73 0.84 0.78
Trigram MLP 0.77 0.75 0.87 0.81
Bigram 0.74 0.74 0.84 0.79
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Table 2. Results of AUC of the proposed system with eight classifiers with bigram and trigram
N-gram Algorithms AUC
Trigram Random forest 0.8408
Bigram 0.84428
Trigram SVM 0.8353
Bigram 0.7947
Trigram K-neighbors 0.8046
Bigram 0.80265
Trigram AdaBoost 0.7763
Bigram 0.77876
Trigram SGD 0.7985
Bigram 0.756
Trigram Decision tree 0.7489
Bigram 0.728
Trigram Logistic regression 0.76202
Bigram 0.722
Trigram MLP 0.7523
Bigram 0.73073

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2. Confusion matrix of (a) Adaboost, (b) DT, (c) KNN, (d) LR, (e) MLP, (f) RF, (g) SGD, and (h) SVM
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3. AUC of (a) Adaboost, (b) DT, (c) KNN, (d) LR, (e) MLP, (f) RF, (g) SGD, and (h) SVM

The results revealed that trigram produced higher performance than bigram. RF, SVM, and KNN
classifiers outperformed all other classifiers. To our knowledge, the proposed model resulted in a considerable
performance according to the resources that used to train the models. The reported results of the proposed
models are close to the reported results in [20], [47].

5. CONCLUSION
In this research, machine learning techniques and N-gram model were integrated and used to classify

chemical respiratory toxicity. For this purpose, different standard models were used for detailed analysis. We
gathered chemicals associated with respiratory toxicity from various databases and the literature. This study
used SVM, RF, LR, AdaBoost, DT, MLP, SGD, and KNN as classification algorithms. The proposed model
have been evaluated using accuracy, confusion matrix, F1-score precision, and sensitivity. Results showed
that the trigram model outperforms the bigram model. On the other hand, RF and SVM achieved the highest
results in terms of accuracy with trigram representation. For future work, we will study to improve the model
interpretability and prediction performance using different AI techniques and molecular properties. In addition,
different representation models can be experimented with other learning models.
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