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 In the global context, seismic movements represent a constant for the 

population due to geophysical variability and other factors that make them 

possible, carrying with them the risk of losing innocent lives. The main 

purpose of our research is to apply data mining techniques to prevent seismic 

events of any magnitude to anticipate and mitigate future events. In the 

development of the research, we applied knowledge discovery database 

methodology. The clustering analysis results revealed the following:  

cluster 0 encompassed 45 items, with average magnitude of 0.230, 

representing 15.5% of the total events. Cluster 1 comprised 56 items with 

average magnitude of 0.156, equivalent to 19.2% of the total. Cluster 2, the 

largest, consisted of 94 items with average magnitude of 0.156, constituting 

32.3% of the total seismic events. Cluster 3 was composed of 54 items, with 

average magnitude of 0.155, representing 18.3% of the total. Lastly,  

cluster 4 included 42 items, with average magnitude of 0.155, representing 

14.5% of the total. In conclusion, cluster 3 emerged as the most significant, 

with 94 events and average magnitude of 0.141, equivalent to 32.3% of the 

total seismic events. This discovery underscores the need to utilize data 

mining techniques for earthquake prediction, enabling proactive measures 

against potential events, which are frequent in various geographic areas.  
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1. INTRODUCTION 

In the current international context, the study and analysis of seismic activity have become crucial to 

understanding and mitigating the risks associated with seismic events. The increasing complexity of seismic 

patterns and the variability in the magnitude and intensity of earthquakes pose significant challenges for 

seismology experts and for communities exposed to such events. The need for advanced strategies to 

anticipate and understand the evolution of seismic patterns has led to a growing interest in the application of 

data mining techniques [1], [2]. 

Seismic activity, an inherently unpredictable phenomenon, presents considerable challenges to 

seismic scientists and practitioners. As seismic events of varying magnitudes continue to affect regions 

around the world, the need to understand their behavioral patterns becomes more urgent [3], [4]. Manual 

analysis of extensive seismic data sets over decades proves to be a monumental task and often insufficient to 

reveal the underlying complexities of seismic activity. Geographic variability, temporal evolution, and the 

interrelationship of multiple factors make the task of identifying meaningful patterns challenging. The need 

for advanced methods of analysis becomes evident, and it is in this context that data mining emerges as a 

https://creativecommons.org/licenses/by-sa/4.0/
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powerful tool to unravel the secrets buried in seismic data [5], [6]. In this scenario, the application of data 

mining concepts presents itself as a promising solution. Data mining, a discipline that combines statistical, 

artificial intelligence, and machine learning techniques, offers the ability to explore large data sets for 

patterns, correlations, and trends. The complexity of seismic activity, which is characterized by multiple 

interrelated variables, makes data mining tools especially relevant. By using advanced algorithms, such as 

clustering and regression, we can identify patterns not evident to the naked eye and reveal relationships that 

might escape conventional analysis [7], [8]. 

The rationale for this study is based on the critical importance of improving our abilities to 

understand and forecast seismic activity. Seismic events can have devastating consequences, affecting both 

human populations and critical infrastructure. Traditional analysis often focuses on understanding past 

events, but the ability to forecast and mitigate the impact of future events is essential. Data mining offers a 

promising avenue for uncovering hidden patterns and meaningful correlations in seismic data over time [9], 

[10]. By improving our predictive capabilities, we can advance infrastructure planning, community 

preparedness, and response strategies, thereby contributing to the safety and resilience of seismically prone 

areas. Ultimately, this research seeks not only to understand the complexity of past seismic activity but also 

to provide practical tools to address future challenges associated with seismic events [11]. Data mining, by 

exploring hidden patterns and relationships in seismic data, allows for a deeper understanding of the factors 

influencing seismic activity. Identifying early indicators, predicting emerging patterns, and assessing the 

probability of significant seismic events become possible through the application of data mining algorithms. 

By improving our predictive capabilities, we can advance infrastructure planning, community preparedness, 

and response strategies, thus contributing to the safety and resilience of seismic-prone areas [12], [13]. 

Ultimately, this research seeks not only to understand the complexity of past seismic activity but also to 

provide practical tools to address future challenges associated with seismic events. 

The lack of detailed attention to this specific topic in previous studies highlights the importance of 

our research proposal. By focusing on filling these knowledge gaps, we hope to contribute significantly to the 

global understanding of the effects of seismic events in specific areas. Our rigorous methodological approach 

and the use of advanced data analysis techniques will allow us to obtain a more complete and accurate view 

of this natural phenomenon. In this study, the objective is to apply data mining techniques to seismic events 

that occurred in Peru during the period from 1960 to 2021. The purpose of this research is to identify 

significant patterns of information and relationships that can contribute to the prediction of future seismic 

events. It is anticipated that the developed model will provide valuable information, allowing informed 

decision-making in the face of maximum-magnitude seismic events. This approach seeks to advise the 

population, guiding to avoid panic and adopt appropriate measures in the event of such events. 

 

 

2. REVIEW LITERATURE 

In this literature review section, the topic of data mining applied to earthquake prediction was 

explored. In this regard, it is important to analyze this issue from a scientific perspective, highlighting the 

valuable contributions of seismic experts, and at the same time, identifying limitations and opportunities to 

advance in the development of new solutions to address this challenge. The combination of data mining 

technologies and seismology emerges as a promising approach to prevent or take more cautious measures 

against seismic movements, as neglecting these factors could be tragic for people's lives. 

In an approach focused on data analysis to identify geographical areas with a higher density of 

seismic events through prediction, spatial clustering algorithms based on density were implemented. The 

application of density-based spatial clustering of applications with noise (DBSCAN) proved effective in 

detecting groups in specific geographic coordinates. Over a specific period, the identified clusters allowed the 

construction of a spatial model of earthquake distribution, highlighting areas with higher density on the map. 

Overall, the study's results were successfully compared with the general seismic zoning map of the  

Republic of Kazakhstan, validating the reliability of density-based clustering [14]. In another context, within 

the disciplines of earth sciences and geology, machine learning tools have been employed to identify specific 

patterns associated with extreme terrains. In this study, a deep learning model was proposed whose main 

function is to extract spatiotemporal patterns from data to predict extreme earthquakes. This model utilizes 

spatial visual grids and synthetic deep-learning neural networks.  

The obtained results revealed that the proposed model shows a strong correlation in predictions 

regarding the location and magnitude of earthquakes in Southern California [15]. It is crucial to address the 

challenges faced by urban infrastructure, especially their vulnerability to significant damage during  

high-intensity earthquakes. With this purpose, the research proposed a methodological model that evaluates 

specific characteristics of urban objects to determine their seismic resistance. K-means and hkmeans 

clustering algorithms were employed, using Euclidean distance as a proximity measure in prediction. The 
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elbow method facilitated the identification of prominent variables with a greater impact on seismic 

resistance. The results indicated that the obtained clustering coincided with expert estimates, demonstrating 

that the characteristics of urban objects can be effectively determined through data modeling using clustering 

algorithms [16], [17]. In another instance, the use of big data focused on earthquakes in Lombok, a structure 

located in three active layers in Indonesia designed to optimize seismic damage mitigation, is of great 

relevance. The conic multivariate adaptive regression splines (CMARS) algorithm, based on a chronic 

quadratic programming (CQP) framework, was employed for this analysis. This model highlighted 

independent variables such as epicenter distance (100%), magnitude (31.08%), and depth (3.53%) about peak 

ground acceleration (PGA) value [18].  

In another study, the application of mathematical algorithms to seismic events aimed to identify 

significant patterns in high-magnitude seismic activities. This investigation proposes a comparison between 

predictive models focused on seismic magnitudes before and after applying clustering techniques. Three 

prediction models were used: decision trees, support vector machines (SVM), and k-nearest neighbors 

(KNN). The results revealed that the implementation of clustering improves the accuracy of predictive 

models. The maximum prediction accuracy and homogeneity of seismic sources are achieved by clustering 

earthquakes according to non-spatial attributes. Of the three models tested, the decision tree shows the 

highest accuracy [19].  

In another investigation, devastating high-magnitude earthquakes have caused significant human 

losses in various communities. This research addressed the detection of areas prone to experiencing deadly 

seismic movements by employing the k-means clustering algorithm, implemented through the rapid miner 

tool. The collected data corresponds to 34 provinces in Indonesia, a region prone to such disasters. The 

results were obtained by classifying provinces into four groups based on earthquake magnitudes. Fourteen 

provinces with high magnitudes and a clustering center of 528.25 were identified, along with 14 provinces 

with medium magnitudes and a clustering center of 96.071, and finally, six provinces with low magnitudes 

and a clustering center of 57.604 [20]. Another focus in seismological research centers on the analysis of 

historical tremors. This study aims to perform data analysis using deep learning to detect tremors from 

seismic data over 50 years old, employing the ResNet architecture to extract patterns in seismic waveforms. 

The results indicate that the implemented proposal has great potential for tremor detection, which could be 

crucial for preventive actions and a deeper understanding of the relationships between tremors and 

earthquakes [21]. In a final investigation focused on earthquake prediction from historical seismic data in 

local areas, an approach implementing a deep learning model called electrical properties tomography (EPT) 

was employed. This model uses global feature extraction blocks (GFEB) to identify potential movement 

patterns in the crust and tectonic plates, using data collected from the global historical seismic catalog. 

Finally, the validation of the EPT model was carried out using five sets of historical data, resulting in a model 

accuracy of 90% [22].  

After reviewing studies conducted by experts in the field, data mining algorithms were investigated 

for earthquake prediction, and the most relevant characteristics for analysis were conceptualized. However, 

unresolved gaps were identified, such as the lack of application of an agile methodology to build data mining 

models. On the other hand, the studies provide valuable insights but also present limitations that must be 

considered in future research, such as the dependence on historical data and the complexity of deep learning 

models, which may hinder their interpretation. Additionally, the implementation of complex algorithms could 

require computational resources and technical expertise, limiting their adoption in resource-limited 

environments. These identified gaps offer opportunities for future research and improvements in the 

application of analytical methods and algorithms in seismic prediction. This research aims to address these 

limitations and contribute to advancing solutions to the identified challenges. 

 

 

3. METODOLOGHY 

3.1.  Definition of knowledge discovery database methodology 

The knowledge discovery database (KDD) methodology is fundamentally integrated into the 

process of creating predictive models based on data mining. This methodological approach follows an 

iterative and interactive structure that combines various traditional data analysis techniques with machine 

learning technologies. The underlying motivation for applying the KDD methodology is the identification of 

relevant information, enabling the extraction of crucial results for the researcher. This, in turn, facilitates 

strategic decision-making to address specific issues. In the development of the KDD methodology, various 

stages are implemented, each contributing progressively to the exploration, selection, and refinement of data, 

with the ultimate goal of extracting valuable and applicable knowledge [23], [24]. The stages applied in this 

process are described, as shown in Figure 1.  
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Figure 1. KDD methodology process 

 

 

3.2.  Phases of the knowledge discovery database process 

In this section, the consolidation of the KDD methodology structure will be carried out, taking into 

account the various stages proposed by this approach. It is crucial to recognize that these phases form the 

foundation of the model for the development of solid and reliable results. The KDD methodology, focusing 

on extracting useful knowledge from large datasets, spans from the identification and selection of relevant 

data to the application of advanced analysis and modeling techniques. Each phase plays an essential role in 

the iterative and interactive process, contributing to the progressive construction of a robust analytical 

framework [25], [26]. The proper application of these stages not only supports the acquisition of valuable 

information but also lays the groundwork for informed decision-making and effective resolution of specific 

issues. 

 

3.2.1. Data selection 

In this phase, data collection has been carried out for use in subsequent stages, addressing the 

research topic. In total, around 10,000 records have been gathered, each composed of 8 fields that function as 

important features for the model analysis, as shown in Table 1. The data selection was based on information 

available on the portal of the Geophysical Institute of Peru (IGP), the entity responsible for monitoring 

seismic events such as earthquakes, volcanic eruptions, and torrential rains [27], [28]. In this context, the 

selected data provides extremely valuable information that will allow the detection of significant patterns in 

the chosen records. This approach ensures the quality and relevance of the data for the construction of a 

robust analytical model in the later stages of the KDD process. 

 

 

Table 1. Collected database 
Id Date_utc Time_utc Latitude Length Depth Magnitude Cut_date 

0 19600113 154034 -16.145 -72.144 60 7.500 20223006 

1 19600115 93024 -15 -75 70 7 20223006 

2 19600117 25758 -14.500 -74.5 150 6.400 20223006 

3 19600123 33732 -12.500 -68.5 300 5.800 20223006 
4 19600130 50724 -5.500 -77.5 100 5.700 20223006 

5 19600208 190616 -8.500 -74.500 136 5.300 20223006 

6 19600213 204006 -17.500 -70 150 5.900 20223006 

 

 

3.2.2. Data preprocessing 

The chosen data undergoes various cleaning and transformation techniques to address potential 

issues such as outliers, missing data, or redundancies. This process is carried out using key variables such as 

latitude, longitude, depth, and magnitude [29]. The identification and removal of noise in the data are 

performed, including records with empty spaces or strange characters that could pose complications when 

consolidating the results in the final phase of the model. Data cleaning is essential to ensure the integrity and 

quality of the information that will be used in later stages of the process [30], as mentioned in Figure 2. 
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Figure 2. Data preprocessing stage 

 

 

3.2.3. Data transformation 

At this crucial point in the process, the data previously preprocessed in earlier stages undergoes a 

significant transformation to obtain a more accurate representation suitable for the analysis sought according 

to the objectives outlined in the research [31]. This step involves two fundamental aspects: dimensionality 

reduction and the creation of new features that will enrich the established model. Dimensionality reduction is 

essential for handling datasets with many variables [32]. By applying techniques such as principal component 

analysis (PCA) or feature selection methods, it is possible to preserve essential information while reducing 

the complexity of the dataset. This not only improves computational efficiency but also helps avoid 

overfitting to noise in the data, as mentioned in Figure 3.  

 

 

 
 

Figure 3. Data transformation stage 

 

 

3.2.4. Data mining 

In the data mining phase, we have employed specific mathematical algorithms within the 

RapidMiner Studio tool. In our strategy, we have opted for the use of the clustering algorithm, complemented 

with specific components in the model. Our proposal aims to integrate fundamental concepts of statistics and 
mathematics, reflected in the selected algorithm, with the clear objective of extracting relevant information 

that allows us to anticipate seismic events over time [28], [33].  

‒ K-means algorithms 

In the context of data mining and pattern analysis, a cluster refers to a group or set of elements that 

share certain similarities or common properties. The formation of clusters involves grouping data in such a 

way that elements within the same group are more similar to each other than to elements in other groups. 

Essentially, a cluster is a collection of objects or data points that exhibit affinities with each other based on 

specific criteria [34], [35]. The underlying idea is that elements within the same cluster share closer or similar 

characteristics, while those in different clusters exhibit more pronounced differences. 

a) Euclidean distance 

Euclidean distance is a fundamental measure of the distance between two points in Euclidean space. 

This concept, crucial in both geometry and data analysis, is expressed through a specific formula. In 

particular, the Euclidean distance between two points, p and q, in an n-dimensional space is shown in (1): 

 

𝑑(𝑝, 𝑞) =  √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=0  (1) 

 

b) Centroid of a cluster 

In the context of clustering, centroids are representative points that summarize the information of a 

group or cluster of data. Each centroid is the central or average point of a set of points in a multidimensional 
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space. These central points are crucial in clustering algorithms such as K-Means, where the goal is to 

partition the group of data, called clusters, and assign each point to the cluster whose centroid is closest to 

that point, as mentioned in (2). The centroid of a dataset, denoted as C for a set of points, is calculated as the 

point whose i-th coordinate is the average of the corresponding coordinates of all points in the set. If C is a 

set of points, the centroid is calculated as in (2): 
 

𝑐𝑖 =  
1

|𝑐|
 ∑ 𝑝 ∈ 𝑐𝑃𝑖 (2) 

 

In RapidMiner studio, the previously mentioned criteria are described through specific operators 

that support the clustering algorithm, leveraging the unique features of the tool. In this context, the clustering 

algorithm is grounded in the concepts previously discussed, such as Euclidean distance and centroids. The 

configuration of the model is done using specific operators that allow for setting the necessary parameters to 

obtain coherent results. This process is visualized in Figure 4, representing the graphical interface of 

RapidMiner Studio during the construction and execution of the workflow for clustering analysis. 
 

 

 
 

Figure 4. Data mining stage 

 

 

4. RESULTS 

4.1.  Evaluation of result 

In the application of the K-Means algorithm, the obtained result reveals certain patterns in the 

magnitude of the most devastating earthquakes at periodic intervals. These patterns are grouped into five 

categories, with data-sharing similarities based on Euclidean measurement between them. The clustering of 

this data using RapidMiner shows an output with characteristics that are akin to each other.  

From the results of the clustering process, five data groups were formed, each with a different 

number of records. Specifically, the first cluster contains 45 records (15.5%), the second cluster has 56 

records (19.2%), the third cluster presents 94 records (32.3%), the fourth cluster contains 54 records (18.5%), 

and the fifth cluster exhibits 42 records (14.5%). These figures represent the distribution of records in each 

cluster. The outcome of the clustering process confirms that the planning has been successful according to 

the research objectives. The number of records is shown in Table 2. 
 

 

Table 2. Cluster model-number of items 
Classification of clusters according to their items 

Clúster 0 45 items 15.5 % 

Clúster 1 56 items 19.2 % 
Clúster 2 94 items 32.3 % 

Clúster 3 54 items 18.5 % 

Clúster 4 42 items 14.5 % 

Total, number of items 291 items 100% 

 
 

Initially, it is necessary to assign a value based on the provided records, ordering them in descending 

order based on Euclidean measurement. These values are grouped at the center of the initial cluster, which 

will then undergo the K-Means process. Centroid calculations were performed through 10 iterations to 

determine the final grouping of a total set of 291 objects. From this process, Table 3 with the corresponding 

results was generated. 

‒ Clúster 0. The initial group consists of 45 elements and stands out for having the highest mean, 

normalized in a range from 0 to 1 with a value of 0.230, surpassing the other sets. Additionally, this 
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cluster presents data with earlier dates, spanning the period between 1960 and 1976. Characteristically, 

these data are more dispersed, indicating a greater Euclidean distance between the elements that 

compose them. In summary, the first cluster is distinguished by having the highest average magnitude of 

earthquakes compared to the other clusters. 

‒ Clúster 1. Regarding the second set with 56 elements, its mean has a normalized value of 0.156, 

considered an average value compared to the other groups. This cluster is notable for grouping cases 

with more recent dates, spanning the period between 1998 and 2021, and exhibits the highest magnitude 

peak. Consequently, the second cluster stands out for containing the maximum magnitude value recorded 

among all sets. 

‒ Clúster 2. About the third group, which has 94 elements and is the largest of all, the magnitude mean, 

with a normalized value of 0.141, is the lowest compared to the other clusters, equaling only the fifth 

cluster. The date range extends from 1980 to 2001, placing this cluster in a more central position 

compared to the others. In summary, the third cluster presents a smaller magnitude of earthquakes 

compared to the other groups, highlighting, however, its amplitude and frequency. 

‒ Clúster 3. As for the fourth set with 53 elements, its mean magnitude, with a normalized value of 0.155, 

is considered an average value compared to the other clusters. This cluster covers the most recent date 

range, from 2001 to 2021. Consequently, the fourth cluster is positioned as an average value compared to 

the other groups, as it does not present extremely high or low magnitudes in the mean. 

‒ Clúster 4. The fifth set, the smallest with 42 elements, is characterized by having a mean normalized 

magnitude of 0.141, one of the lowest along with the third cluster. This cluster also aggregates older 

records, dating back from 1960 to 1982. In summary, this cluster is classified with the fewest 

occurrences and presents lower magnitudes compared to the other sets. 

 

 

Table 3. Centroid content 
Attribute Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Latitude 0.613 0.489 0.531 0.402 0.576 

Length 0.495 0.553 0.531 0.535 0.451 

Depth 0.305 0.201 0.188 0.165 0.142 

Magnitude 0.230 0.156 0.141 0.155 0.141 
Id 552.911 13615 .250 190.543 15440.130 1073.071 

Utc_date 19657779.111 20087 495 19917133.202 20116631.537 19701892.381 

Local_time 178369 .289 19363 9.286 124014 .617 65346. 537 539442.952 

 

 

In the bar chart in Figure 5, the percentage distribution of records in each of the clusters generated 

through the K-means process is visually observed. Each bar represents a specific cluster, and the height of the 

bar reflects the percentage of records belonging to that cluster about the total analyzed data. This type of 

representation facilitates the interpretation of the prevalence of each group and provides a clear insight into 

the distribution of seismic events in the different categories identified by the clustering algorithm. On the 

other hand, Figure 6 shows a representation of the groupings based on clusters, relating two of the most 

important variables, such as the date of seismic events on the y-axis and magnitudes on the x-axis, and 

referencing each cluster with a specific color. 

 

 

 
 

Figure 5. Bar graph representation 
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Figure 6. A graphic representation of the clusters 

 

 

In Figure 7, a detailed representation of the correlation matrix obtained through the use of various 

tools in RapidMiner Studio can be appreciated. In this process, specific operators play a crucial role, such as 

the selection of important attributes and the use of the correlation matrix operator. In contrast, Figure 8 

provides a more detailed visualization of the correlation matrix results, presenting the information in a 

structured way in a heat map. This map intuitively reflects the relationships and dependencies between 

specific fields of the selected database. The graphical representation facilitates the identification of patterns 

and trends, which can be invaluable for informed decision-making in data analysis and the exploration of 

relationships between variables. 

 

 

 
 

Figure 7. Correlation matrix operators 

 

 

 
 

Figure 8. Correlation matrix scheme 
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4.2.  Model comparison 

In this section, a comparison of the algorithms used in data mining is carried out to evaluate their 

effectiveness in solving problems related to this discipline. To achieve this, a cartesian coordinate system has 

been chosen as the most distinctive for distinguishing the differences between the algorithms. Figure 9 

presents a comparison between models such as naive Bayes, decision tree, and rule induction. With a score of 

1.0, rule induction stands out as the most outstanding algorithm, while the others yield lower results. This 

analysis contributes to a better understanding of the various algorithms that the tool can construct.  

 

 

 
 

Figure 9. Comparison of algorithmic models 

 
 

4.3.  Comparison of methodologies 

The choice of the KDD methodology over SEMMA and CRISP-DM was based on its suitability for 

the proposed data mining project. The KDD methodology stands out for its comprehensive approach, 

covering all stages of the data mining process, from data selection and preparation to model evaluation. 

Moreover, KDD has proven to be highly effective in identifying patterns and valuable insights in extensive 

datasets, a crucial aspect of our project. KDD surpassed SEMMA and CRISP-DM in versatility and the 

ability to more effectively and comprehensively address the specific challenges of our data mining project, as 

evidenced in Table 4. 
 

 

Table 4. Comparison of methodologies 
Attribute 

comparison 
Methodology KDD Methodology CRIPS-DM Methodology SEMMA 

Structure and 

sequence 
Otras metodologías incluyen la 

selección, limpieza, transformación 
y extracción de datos, así como la 

evaluación y aplicación de 

conocimientos, pero su estructura 

no es tan rigurosa [36]. 

This methodology consists of six 

steps: business understanding, data 
understanding, data preparation, 

modeling, evaluation, and 

implementation [37]. 

The five steps of the SEMMA 

methodology are sampling, 
exploration, modification, 

modeling, and assessment [38]. 

Business 
orientation 

It recognizes the importance of the 
company's business objectives and 

seeks to learn to gain a competitive 

advantage. 

It understands the business 
objectives from the outset and 

ensures that the results are 

actionable and valuable for 

decision-making. 

It performs information analysis 
considering the company's 

objectives and how the results 

are utilized. 

Flexibility Through a broader and less 
structured approach, it provides a 

general framework for knowledge 

discovery. 

It is adaptable to a variety of 
contexts and projects and can be 

scaled for commercial use. 

Although it follows a 
predetermined sequence of 

steps, it is adaptable to various 

projects. 
Interaction It requires iteration. However, it 

lacks an evident structure, similar to 
the Semma or Crisp-DM 

methodology. 

It learns to use an iterative results 

review method. It adapts to projects 
in constant evolution. 

It is a procedure that can be 

carried out in stages as needed. 
Adjustments can be made 

throughout the process. 
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5. DISCUSSION 

In the collected research, the objective is to identify geographical areas with a higher density of 

seismic phenomena through prediction using machine learning algorithms, specifically the K-means 

algorithm. However, the results obtained in this research are not detailed in depth, and when comparing them 

with our model, we structure the K-means cluster model at each stage, obtaining valuable results for each 

particular cluster [14]. In the field of earth sciences and geology disciplines, other research also employs 

machine learning-based tools to identify patterns in the detection of extreme earthquakes. Unlike our 

research, the results of these studies only mention the correlation of predictions in relation to location and 

magnitude [15], which may limit the specificity of the findings. However, it is important to note that for the 

study by the authors [16], [17], which addresses high-density earthquakes affecting urban structures, there is 

a certain coincidence with our research, as both propose the prediction of extreme seismic movements using 

the K-means clustering algorithm. In another study, the CMARS algorithm was applied using quadratic 

programming for analysis [18]. This research aligns with the selected variables in our model, as the results 

related to the epicenter, magnitude, and depth are specified, which were also objectives in our research.  

Research by Hashemi and Karimi [19], which emphasizes the identification of significant patterns 

for seismic activities, the result was that the applied models had greater accuracy in the clustering theme. 

This coincidence is relevant since our results are also accurate according to the established objectives. 

Another coincidence is found in the research proposed in [20], which addresses areas most prone to 

experiencing deadly seismic movements using the K-means algorithm in the RapidMiner studio tool. 

Although the objectives differ, both studies apply K-means, highlighting the stark differences in results due 

to different approaches. In the field of seismology, the aim was to analyze earthquakes with over 50 years of 

history using deep learning [21]. These results align with our proposed model, as both cases seek to predict 

earthquakes considering features such as magnitude and depth, considering the existing relationships between 

tremors and earthquakes. Finally, Purnomo [22] proposed historical seismic data for local areas was 

considered using a deep learning technique called EPT. Although the results do not match the 

implementation of our model, they focused on verifying the model's validation compared to our results, 

which focus on prediction patterns regarding tremors and earthquakes. 

 

 

6. CONCLUSION  

In conclusion, our research, which aimed to apply data mining techniques to seismic events, 

successfully identified the sought-after patterns, thus fulfilling the established purpose at the beginning of the 

study. The obtained results provide valuable information that will be crucial for taking measures in the face 

of possible seismic events in the future. The implementation of the KDD methodology was fundamental to 

structuring the appropriate process for the consolidation of the model and the achievement of the desired 

results. This methodology allowed for managing changes and understanding the data structure while 

maintaining its reliability and quality. Consequently, we conclude that the KDD methodology facilitated 

obtaining reassuring results and laid solid foundations for future research on the subject. The results of our 

implementation demonstrated the utility of the K-means algorithms used in the RapidMiner studio tool for 

seismic data analysis. The perspective provided by the results of each cluster, considering concepts such as 

Euclidean distance and centroids, offers a deeper understanding of the magnitude of seismic events. Our 

research suggests that the performance of our model will benefit many geographical areas with a history of 

experiencing seismic events. The discovery generated confidence in certain institutions dedicated to the 

detection of catastrophic events, as the impact of the results obtained is considered an important solution that 

allows for effective measures to prevent panic among the population. Regarding the limitations of the 

research, it is concluded that no significant obstacles were encountered during the consolidation of the model. 

Our model effectively aligns with the established objective, overcoming certain difficulties that arise in the 

different stages of the KDD methodology. However, it is important to consider additional research that 

allows for a deeper understanding of the proposed model to confirm its validation, which provides accurate 

predictions. Our model effectively aligns with the established objective, overcoming certain difficulties that 

arose in the different stages of the KDD methodology. Therefore, this study not only contributes to the field 

of seismology but also opens doors to new possibilities in the technological and scientific realms, including 

institutions dedicated to making predictions in this scientific field. Likewise, it is essential to highlight that 

our research is not limited to the academic sphere but also has practical and social implications. The results 

obtained can be used by government authorities, disaster management organizations, and local communities 

to enhance preparedness and response to seismic events. This practical application demonstrates the positive 

impact that scientific research can have on society and underscores the importance of investing in science and 

technology. In conclusion, we maintain the vision that our work lays the groundwork for future research in 

seismology and other disciplines such as economics, health, or education. Additionally, we highlight the 
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possibility of applying other technologies, such as developing applications based on this model, creating 

mobile applications that utilize these concepts, or even exploring big data to generate valuable information in 

massive databases. The observations also refer to our findings providing compelling evidence that these 

seismic events are associated with the collision of moving tectonic plates, releasing energy during a sudden 

reorganization of materials in the earth's crust. 
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