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 The deoxyribonucleic acid (DNA) microarray model holds significant 

promise for revealing expression data from thousands of genes. It serves as a 

valuable tool for investigating gene expressions in diverse biological research 
fields. This study explores advancements in gene selection for cancer 

detection through artificial intelligence, with a focus on the challenge of 

extracting pertinent information from vast databases. The application of deep 

learning architecture in detecting chronic diseases and aiding medical 
decision-making has proven effective across various domains. Therefore, this 

study designs an enhanced microarray gene expression classification by 

utilizing a dwarf mongoose optimization with deep learning (MGEXC-

DMODL) approach. The MGEXC-DMODL approach intends to classify the 
microarray gene expression (MGE). For this, the MGEXC-DMODL 

technique initially applies the wiener filtering (WF) technique to eradicate the 

noise. In addition, the MGEXC-DMODL technique employs a deep residual 

shrinkage network (DRSN) to learn feature vectors. Meanwhile, the 
convolutional autoencoder (CAE) model was executed for identifying and 

classifying the MGE data. Furthermore, the dwarf mongoose optimization 

(DMO)-based hyperparameter tuning is performed to enhance the detection 

outcomes of the CAE model. The investigational evaluation of the MGEXC-
DMODL model is validated using a benchmark database. The comprehensive 

comparison outcome highlighted the betterment of the MGEXC-DMODL 

model over recent approaches.  
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1. INTRODUCTION 

The microarray gene expression (MGE) data classification problem midpoints around the task of 

precisely classifying biological samples dependent upon their profiles of gene expression [1]. The microarray 

model permits scientists to evaluate many gene expression levels together, offering a wealth of data that can be 

vital for recognizing diseases, finding biomarkers, and increasing targeted treatments [2]. However, this wealth 

of information also delivers an important analytical and computational task. The problematic report contains 

developing strong and effectual classification methods that can distinguish among samples like healthy and 

unhealthy persons, based on their gene expression information [3]. In this situation, the main tasks contain 

feature selection; dealing with high-dimensional data, and attaining great classification accuracy while securing 

https://creativecommons.org/licenses/by-sa/4.0/
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biological interpretability. Precise gene expression data classification is very essential for furthering our 

consideration of difficult diseases, allowing initial diagnosis, and directing personalized treatment plans [4]. 

Microarray cancer data study is a vital study area across various fields like machine learning (ML), 

pattern recognition, statistics, computational biology, and other associated areas. It plays a vital part in 

recognition, analysis, and cancer treatment [5]. The studies are nowadays targeting the improvement of 

existence rates in cancer patients by developing the process and knowledge of checking and treatment [6]. The 

foremost trouble with microarray dataset identification arises from numerous issues like shortage of enough 

samples, imbalanced class, noisy data, and high trouble of feature dimensionality that managed to be difficult 

to diagnose and have outcomes of wrong classification. Several research works associated with dual-class data 

classification of microarray cancer have been conducted [7]. Classifying multiclass data of microarray is still 

an open research area due to an outcome of tasks in class imbalance. Classes with a tiny amount of models 

have been generally ignored due to the bias of many methods near classes having more amount of elements 

[8]. ML models are commonly used in resolving various difficult real issues and have been verified to be 

effective in examining gene expression data. MGE data classification with deep learning (DL) is an innovative 

technique that connects the power of neural networks to classify biological samples precisely based on their 

MGE profiles [9]. In this procedure, high-dimensional gene expression data is changed into a plan that will be 

appropriate for DL, and convolutional neural network (CNN) molecular basis of illnesses and allow 

applications in precision medicine, biomarker identification, and drug discovery [10].  

This study designs an enhanced microarray gene expression classification by utilizing a dwarf 

mongoose optimization with deep learning (MGEXC-DMODL) approach. The MGEXC-DMODL approach 

intends to classify the MGE. For this, the MGEXC-DMODL technique initially applies the Wiener filtering 

(WF) technique to eradicate the noise. In addition, the MGEXC-DMODL technique employs a deep residual 

shrinkage network (DRSN) to learn feature vectors. Meanwhile, the convolutional autoencoder (CAE) model 

was executed for identifying and classifying the MGE data. Furthermore, the dwarf mongoose optimization 

(DMO)-based hyperparameter tuning is performed to enhance the detection outcomes of the CAE model. The 

investigational evaluation of the MGEXC-DMODL model is validated using a benchmark database. 

The remaining sections of the article are arranged as: section 2 illustrates the related works. Section 3 

portrays the proposed model. Then, section 4 elaborates on the experimental validation and section 5 completes 

the work. 

 

 

2. RELATED WORKS 

Saheed [11] intended to develop an ML–based approach to categorize acute myeloid and acute 

lymphoblastic leukemia dependent upon MGE profiles. The authors utilized linear discriminant analysis 

(LDA), Ada boost, logistic regression (LR), k-neighbor method, extreme randomized trees algorithm, ridge 

classifier, gradient boosting, and random forest (RF). The principle component analysis (PCA) was employed 

for dimensionality reduction. The authors utilize 2 various cross-validation processes due to they make higher-

accurate ability evaluations than prior approaches. Vaiyapuri et al. [12] designed an innovative red fox 

optimizer with a deep learning-based microarray gene expression classification (RFODL-MGEC) technique. 

This model targets increasing classification effectiveness by choosing suitable features. The RFODL-MGEC 

method employs an innovative request for offer (RFO)-based feature selection (FS) technique for determining 

optimum feature subsets. Additionally, the RFODL-MGEC method includes a bi-directional cascaded deep 

neural network (BCDNN) for classifying data. The constraints executed in the BCDNN method could be tuned 

by employing the chaos game optimizer (CGO) technique. 

Rostami et al. [13] introduced an innovative social network investigation-based gene selection 

technique. The developed technique the relevance maximization and redundancy minimization (mRMR) 

model. Here, at every round, a supreme community was preferred continually. Ke et al. [14] considered a 

swarm-optimizer-assisted filter-wrapper gene selection comprising 2 stages: The primary stage will be the filter 

step that chooses small top-n percentages of genes and attains decreased information; later, the secondary stage 

examines for the optimum gene subsets depend upon a wrapper system in the residual genes by employing a 

swarm optimization related technique. Research by Bacha et al. [15], an innovative decreased computer-aided 

diagnosis (CAD) technique was applied with the MATLAB (version R2016a) platform for categorizing the 

four cancer subcategories. The outcomes of the experiment have been performed with 4 groups of baseline 

data under the appearance of cancerous genes. 

Pandit et al. [16] projected an effective and hybrid DL method for classifying molecular cancer with 

the help of expression data to resolve these borders. The input data was pre-processed employing a scalable 

range adaptive bilateral filter (BF). Subsequently, clustering has been accomplished by employing an enriched 

binomial clustering technique. Followed by the data must be removed through the multifractal Brownian 

motion (MBM) technique. Later, the significant features should be chosen by utilizing an improved cuckoo 



Int J Artif Intell  ISSN: 2252-8938  

 

Microarray gene expression classification: dwarf mongoose optimization … (Shyamala Gowri Balaraman) 

215 

search optimizer (ICSO) method. Lastly, the data classification was executed employing a wavelet-based deep 

convolutional neural network (DCNN). Hilal et al. [17] presented new feature subset selection (FSS) with 

optimum adaptive neuro fuzzy inference system (OANFIS) for classifying gene expression. The main goal is 

to identify as well as categorize the gene expression information. To achieve this, the approach develops an 

enhanced improved grey wolf optimizer-based feature selection (IGWO-FS) technique for achieving optimum 

feature subsets. Further, the OANFIS technique was exploited in the classification of genes and the 

hyperparameter tuning of the adaptive neuro-fuzzy inference system (ANFIS) system can be modified by 

applying a coyote optimization algorithm (COA). 

 

 

3. THE PROPOSED METHOD 

In this study, an enhanced MGEXC-DMODL approach is designed. The MGEXC-DMODL approach 

intends to classify the presence of the MGE classification. To accomplish this, the MGEXC-DMODL method 

encompasses pre-processing, feature extractor, classification, and tuning processes. Figure 1 depicts the 

structure of the MGEXC-DMODL method. 

 

 

 
 

Figure 1. Workflow of MGEXC-DMODL technique 
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3.1.  Preprocessing 

Initially, the MGEXC-DMODL technique applies the WF technique to eradicate the noise that exists 

in it. WF is an efficient way to enhance the accuracy and quality of microarray images [18]. The microarray 

technique includes the simultaneous analysis of thousands of biological samples, generating large images with 

imperfections and inherent noise. In this context, WF is used for enhancing the signal-to-noise ratio, enhancing 

the clarity and reducing artifacts of gene expressions. The WF efficiently sharpens the image by statistically 

modeling the characteristics of noise and desired signal (microarray spots representing gene expressions), 

which facilitates quantification and more accurate detection of gene expressions. This technology achieved 

remarkable success in genomics and bioinformatics research, assisting in the extraction of biological data from 

microarray images and contributing to advancement in understanding complicated cellular processes. 

 

3.2.  Feature extraction 

The MGEXC-DMODL technique employs DRSN to learn feature vectors. The concept behind the 

integration of the RSN with the deep residual network has resulted in the formulation of the DRSN model [19]. 

DRSN is a complex cascaded deep neural network (DNN) that employs a soft threshold function and attention 

mechanism to filter out noisy data. The DRSN uses self‐attention modules to systematically select valuable 

feature data while removing noise and ineffectual features, hence boosting the DNN capacity to extract valuable 

feature data from the noise.  

The fundamental unit of DRSN is the residual shrinkage building unit (RSBU). The DRSN consists 

of one identity mapping, two‐batch normalization (𝐵𝑁), one soft threshold learning subnetwork, 2 activation 

functions (Mish), and 2 convolutional layers (𝐶𝑜𝑛𝑣). There is a subnetwork in each segment and its role is to 

independently learn a group of thresholds. Therefore, the threshold is not too large and guaranteed to be 

positive. The feature map learns various thresholds; hence the above subnetwork is utilized as an attention 

module, and the soft threshold is used to convert the observed invalid feature into zero, and relevant features 

are retained. The soft thresholding removes the feature closer to 0 and retains the negative and positive features. 
 

𝑦 = {
𝑥 − 𝑡ℎ𝑟 𝑥 > 𝑡ℎ𝑟
0 − 𝑡ℎ𝑟 ≤ 𝑥 ≤ 𝑡ℎ𝑟
𝑥 + 𝑡ℎ𝑟 𝑥 < −𝑡ℎ𝑟

 (1) 

 

In (1), 𝑥 and 𝑦 are the input and output features and 𝑡ℎ𝑟 shows the thresholding function. 
 

𝜕𝑦

𝜕𝑥
= {

1 𝑥 > 𝑡ℎ𝑟
0 − 𝑡ℎ𝑟 ≤ 𝑥 ≤ 𝑡ℎ𝑟
1 𝑥 < −𝑡ℎ𝑟

 (2) 

 

In (2) is derived from (1), and after derivation, the soft thresholding becomes 0 or 1. 
 

𝑠𝑜𝑓𝑡 = (𝑥, 𝑎) = 𝑠𝑖𝑔𝑛(𝑥) ∗ max{|𝑥| − 𝑡ℎ𝑟, 0} (3) 
 

The soft thresholding is converted into (3), where 𝑠𝑖𝑔𝑛(𝑥) denotes the symbolic function. The soft 

threshold is to independently attain the threshold range. The DNN has better outcomes in self‐learning, hence 

the incorporation of soft threshold and DNN can effectively differentiate features from the irrelevant features. 

The principle of the attention module includes facilitating the NN model to learn input factors independently 

and allocate weights to them. This enables to assignment of computational resources to obtain essential 

features, which results in better performance. The attention module includes a key‐value mapping process via 

query operation of matrix-vector. This involves deriving the corresponding weight values and calculating the 

similarity between dimension vectors, which undergo normalization through the Softmax function. 

Consequently, the weight values are multiplied with a matrix dimensional vector and their summation is 

attained for formulating the last attention matrix. If 𝐾 = 𝑉 = 𝑄, then it is represented as a self‐attention module 

and is given as (4). 
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡max {
𝑄𝐾𝑇

√𝑑𝑘
} (4) 

 

Where 𝑄 = (𝑞1, 𝑞2, 𝑞𝑙) ∈ 𝑅𝑛𝑥𝑑, 𝐾 = (𝑘1, 𝑘2, 𝑘𝑙) ∈ 𝑅𝑛𝑥𝑑, 𝑉 = (𝑣1, 𝑣2, 𝑣𝑛) ∈ 𝑅𝑛𝑥𝑑, 𝑑 refers to the dimensional 

of single vector, 𝑛 indicates the amount of input vectors that are attained by linear conversion of input matrix 

𝑋. 𝑑𝑘 indicates the matrix with dimension 𝑘 to adjust the inner products. 𝐾𝑇 denotes the transposition of 𝐾, 

and the formula of the input sequence linear mapping process is given as (5): 
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{

𝑄 = 𝑊𝑞𝑋

𝐾 = 𝑊𝑘𝑋
𝑉 = 𝑊𝑣𝑋

 (5) 

 

where the linear mapping parameter matrices 𝑤𝑞 , 𝑤𝑘, and 𝑤𝑣 are self-learned in the training model. 

 

3.3.  Classification using convolutional autoencoder model 

At this phase, the CAE model can be executed for identifying and classifying the MGE data. CAE 

combines the benefits of convolution filtering in CNN with unsupervised pretraining of autoencoders [20]. 

Rather than the fully connected (FC) layer, the encoder has a convolution layer and the decoder has a 

deconvolution layer in contrast to the topology for autoencoders. The deconvolution filter is an inverse version 

of the convolution filter. Additionally, the deconvolution layer should be followed by the unpooling layer. The 

unpooling process can be done by keeping the location of maximum value during pooling, which preserves the 

value of that location while unpooling and zeroing the rest. 

Spatial locality can be retained by incorporating the convolution function at all the neurons. Thus, for 

the input matrix 𝑃, the encoder computes. 

 

𝑒𝑖 = 𝜎(𝑃 ∗ 𝐹𝑛 + 𝑏) (6) 

 

In (6), 𝜎 indicates the activation function, 𝑏 is encoder bias,∗ signifies 2𝐷 convolution, and 𝐹𝑛 represents 𝑛𝑡ℎ 

2D convolutional filter. Zero padding applies input matrix 𝑃 for retaining spatial resolution. Next, the 

reconstruction is attained by (7). 

 

𝑧𝑖 = 𝜎(𝑒𝑖 ∗ F̃n + 𝑏̃) (7) 

 

In (7), F̃n shows 𝑛𝑡ℎ 2𝐷 convolution filters in the decoder, 𝑧𝑖 designates the reconstruction of 𝑖𝑡ℎ input and 𝑏 

indicates bias of the decoder. Unsupervised pre-training is used in the network that minimizes the (8). 

 

𝐸(𝜃) = ∑ (𝑚
𝑖=1 𝑥𝑖 − 𝑧𝑖)

2 (8) 

 

The FC layer and softmax classifier are added and the decoder part is removed at the end of the network after 

unsupervised pretraining of the unpooling and deconvolution layers. 

 

3.4.  Dwarf mongoose optimization-based hyperparameter tuning 

Eventually, the DMO-based parameter tuning method is executed for enhancing the recognition 

outputs of the CAE method. Chen et al. [21] developed a DMO algorithm which is a population-based 

metaheuristic model. This method splits the mongoose populace into 3 dissimilar groups such as babysitter, 

scout, and alpha. Below the control of a female leader, the whole populace jointly feeds as an adhesive unit. If 

the group of alpha flops to find food, an interchange happens among followers of the babysitter and alpha 

groups. So, associates of the alpha group at the same time are involved in hunting actions while penetrating for 

a sleeping mound. DMO needs only physically organized limits to decrease the difficulty of the system use. 

When the associates of the alpha group have inadequate aptitudes, they will interchange followers of 

babysitters, and alpha groups offer DMO the capability to uphold populace variety. The sleep mound device 

can stop the algorithm from arriving at local goals. 

− Initialize 

Set the DMO’s mathematical method, as presented in (9). 

 

𝑋 =

[
 
 
 
𝑋1,1 𝑋1,2 … 𝑋1,𝑑−1 𝑋1,𝑑

𝑋2,1 𝑋2,1 … 𝑋2,𝑑−1 𝑋2,𝑑

⋮ ⋮ 𝑋𝑖,𝑗 ⋮ ⋮

𝑋𝑁,1 𝑋𝑁,2 … 𝑋𝑁,𝑑−1 𝑋𝑁,𝑑]
 
 
 

 (9) 

 

Whereas 𝑋𝑖,𝑗 denotes the location of the 𝑖𝑡ℎ mongoose in the 𝑗𝑡ℎ dimension; 𝑁 signifies the populace number; 

𝑋 signifies the solution of the candidate and 𝑑 is the size of the problem. The mathematical method is displayed 

in (10). 

 

𝑋𝑖,𝑗 = 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝑙𝑏, 𝑢𝑏, 𝑑) (10) 
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Here 𝑢𝑛𝑖𝑓𝑟𝑛𝑑 is employed to make evenly spread random numbers; 𝑙𝑏 and 𝑢𝑏 denote the upper and lower 

limits, correspondingly; and 𝑑 signifies the dimension.  

− Alpha group 

The foraging direction of the dwarf mongoose is defined by the female leader, who is formed in the 

group of alpha. The possibility of every female individual in the alpha group fetching a leader has been defined 

by (11). 

 

𝛼 =
𝑓𝑖𝑡(𝑖)

∑ 𝑓𝑛
𝑖−1 𝑖𝑡(𝑖)

 (11) 

 

where 𝑓𝑖𝑡(𝑖) denotes the fitness output of the 𝑖𝑡ℎ individual; 𝑛 = 𝑁 − 𝑏𝑠; 𝑛 signifies the number of individuals 

in the group of alpha; and 𝑏𝑠 represents the individuals count in the babysitter group. 

The alpha females have preferred foraging ways, and their formulation is as (12): 

 

𝑋𝑖+1 = 𝑋𝑖 + 𝑝 × 𝑝𝑒𝑒𝑝 × (𝑋𝑖 − 𝑋𝑘) (12) 

 

Whereas 𝑋𝑖 signifies the position of the 𝑖𝑡ℎ individual; 𝑋𝑖+1 denotes the novel food source place; 𝑝 signifies 

the random amount among [−1,1]; 𝑋𝑘 is an arbitrary individual in the alpha group and 𝑝𝑒𝑒𝑝 is set to 2. The 

sleeping mound (SM) is the relaxing location of dwarf mongooses. Its expression is as (13): 

 

𝑠𝑚𝑖 =
𝑓𝑖𝑡(𝑖+1)−𝑓𝑖𝑡(𝑖)

max{|𝑓𝑖𝑡(𝑖+1),𝑓𝑖𝑡(𝑖)|} 
 (13) 

 

The mathematical method of the mean SM is as (14): 

 

𝜑 =
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
 (14) 

 

− Scout group 

The separate followers of the group of scouts will not arrive at their preceding SM. This promises the 

algorithm’s exploration capability. The SM mathematical formula is as (15): 

 

𝑋𝑖+1 = {
𝑋𝑖 − 𝐶 × 𝑝 × 𝑟 × |𝑋𝑖 − 𝑀⃗⃗ | 𝑖𝑓 𝜑𝑖 + 1 > 𝜑𝑖

𝑋𝑖 + 𝐶 × 𝑝 × 𝑟 × |𝑋𝑖 − 𝑀⃗⃗ | 𝑒𝑙𝑠𝑒
 (15) 

 

Here 𝑋𝑖+1 denotes the location of the subsequent SM; 𝐶 signifies the parameter that monitors the flexibility of 

the mongoose populace. 

− Babysitter group 

The babysitter group dimension naturally consists of sub-ordinate individuals concerned for their 

offspring where it is defined as dependent upon the dimension of population. This affects the system by 

consistently declining the alpha group foraging possible over the period. Parameter 𝐿 changes the data 

regarding foraging places for other followers. The babysitter fitness weight is fixed to 0, which safeguards the 

average weight of the alpha group in the following iteration has been decreased therefore means the group 

effort is delayed.  

The DMO model grows a fitness function (FF) for attaining superior classifier results. It expresses a 

positive numeral to imply the best output for the candidate's efficiency. Here, the lessening of the classifier 

errors is measured as FF, as denoted in (18).  

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖)  

  =
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
× 100 (16) 

 

 

4. EXPERIMENTAL VALIDATION 

The outcome evaluation of the MGEXC-DMODL method can be examined utilizing three benchmark 

datasets [22], such as breast, colon, and ovarian cancer. A comprehensive comparison result of the MGEXC-

DMODL method on the breast cancer dataset can be highlighted in Figure 2 [23]–[25]. These outcomes pointed 

out that the CGRMD-MR-ANFIS, grid-based, Fuzzy c means, and CNN model has shown the least 

performance. Meanwhile, the RF model gains slightly boosted outcomes. However, the MGEXC-DMODL 
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technique demonstrates maximum performance with 𝑎𝑐𝑐𝑢𝑦 of 94.59%, 𝑝𝑟𝑒𝑐𝑛 of 94.12%, 𝑟𝑒𝑐𝑎𝑙 of 94.59%, 

and 𝐹𝑠𝑐𝑜𝑟𝑒 of 94.02%.  

 

 

 
 

Figure 2. Comparative result of the MGEXC-DMODL system under breast cancer dataset 

 

 

A wide comparative analysis of the MGEXC-DMODL method with the colon cancer dataset can be 

emphasized in Figure 3. These obtained findings indicate that the genetic algorithm (GA)-support vector 

machine (SVM), GA- K-nearest neighbors (KNN), random+SVM, PCA-voting, logistic bootstrap (LogitBoot), 

and RF methods have shown poorer performance. Meanwhile, the two-way clustering technique achieves 

moderated increased outcomes. Nevertheless, the MGEXC-DMODL model reveals supreme performance with 

an 𝑎𝑐𝑐𝑢𝑦 of 96.15%, 𝑝𝑟𝑒𝑐𝑛 of 92.86%, 𝑟𝑒𝑐𝑎𝑙 of 96.15%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 94.15%. 

 

 

 
 

Figure 3. Comparative outcome of the MGEXC-DMODL method under colon cancer dataset 

 

 

An extensive comparative result of the MGEXC-DMODL method at the ovarian cancer dataset can 

be underscored in Figure 4. These accomplished findings denote that the linear SVM, RF, ensemble SVM, 

common feature optimization (CFO)-LDA, laplace approximation (LAPO)-KNN, and gradient boosted 

classifier (GBCO)-LR techniques get poorer performance. Similarly, the adaptive ant colony optimization 

(AAO)-multi-layer perceptron (MLP) technique obtains moderated boosted outcomes. However, the MGEXC-

DMODL technique shows excellent performance with an 𝑎𝑐𝑐𝑢𝑦 of 95.31%, 𝑝𝑟𝑒𝑐𝑛 of 96.81%, 𝑟𝑒𝑐𝑎𝑙 of 

95.31%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.89%. These outcomes confirmed the boosted performance of the MGEXC-DMODL 

method under gene expression classification. 
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Figure 4. Comparative outcome of the MGEXC-DMODL model with ovarian cancer dataset 

 

 

5. CONCLUSION 

In this study, enhanced MGEXC-DMODL approach is designed. The MGEXC-DMODL technique 

intends to classify the presence of the MGE classification. To accomplish this, the MGEXC-DMODL 

technique initially applies the WF technique to eradicate the noise that exists in it. In addition, the MGEXC-

DMODL technique employs DRSN to learn feature vectors. Meanwhile, the CAE technique can be executed 

for the identification and classification of MGE data. Furthermore, the DMO-based hyperparameter tuning is 

performed to improve the recognition outcomes of the CAE algorithm. The comparative analysis of the 

MGEXC-DMODL methodology highlighted the superior outcome of 94.59%, 96.15%, and 95.31% over recent 

state of art approaches under benchmark datasets. The MGEXC-DMODL methodology encounters restrictions 

in handling large datasets and warrants exploration in real-world clinical settings, prompting future 

enhancement in disease detection via MGE classification. 
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