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 Automatic classification and disease detection in medical images, aided by 

machine learning, provide crucial support to prevent overlooked instances 

and ensure prompt treatment of diseases. Despite impressive achievements 

in the field of polyp detection from endoscopic images, classification of 

other diseases, such as reflux esophagitis, esophageal cancer, gastritis, 

gastric cancer, and duodenal ulcer, is still subject to significant limitations 

and remains a challenging area of study because of their different and more 

challenging characteristics. This paper proposes a method to roughly classify 

the diseases from the whole images by deep learning. In particular, we focus 

on identifying hard samples from the training dataset and enriching them 

with some fundamental augmentation techniques. We then employ a cutting-

edge model, specifically ResNet, for the final classification stage. 

Additionally, we enhance the original ResNet’s loss function by 

incorporating another loss function called focal loss. These modifications 

play a crucial role in boosting the accuracy of the ResNet model. Our 

proposed method outputs the disease category and corresponding heat map 

showing the area of interest. It achieved very promising accuracy (99.55%) 

for the classification of five lesions on our self-collected dataset. It serves a 

dual purpose. Firstly, it aids in the training of novice endoscopists, enabling 

them to gain valuable experience. Secondly, it offers a rapid solution for 

annotating extensive volumes of endoscopic image data at the label level. 
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1. INTRODUCTION 

Gastrointestinal endoscopic screening serves as the most important diagnostic tool for various 

gastrointestinal diseases. However, diagnostic outcomes from imaging heavily rely on the experience of 

physicians. Due to overwhelming caseloads, the application of machine learning for automated lesion 

diagnosis is becoming a common trend in medical image analysis [1]–[6]. Regarding the analysis of 

endoscopic images captured from the human digestive system, key tasks include: classifying anatomical 

landmarks [7], [8]; classifying diseases [9], [10]; and detecting and segmenting lesion regions [11]. This 

paper focuses on the task which identifies the endoscopic images of the upper gastrointestinal tract as normal 

or having upper gastrointestinal diseases. 

https://creativecommons.org/licenses/by-sa/4.0/
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Most existing methods for classifying anatomical landmarks and diseases utilize state-of-the-art 

deep models such as ResNet and VGG [12]–[17]. Particularly, in our previous work, we presented our study 

about the classification of upper gastrointestinal tract diseases from endoscopic images where all images in 

training and testing contain at least one disease (positive samples) [10]. However, in a practical application, 

there exist many images taken during the endoscopy process which do not contain a disease (negative 

samples). This can lead to a data imbalance problem. Besides, we observe that there are some 

diseases/landmarks which are very similar in appearance. Naturally, we consider them as hard samples to 

learn. Accurately classifying and segmenting certain lesions in endoscopic images is known to be challenging 

due to several factors. Firstly, different types of tissues, such as early gastritis cancer, and normal mucosa, 

often exhibit similar colors, textures, and shapes in these images. Secondly, lesions can vary widely in size 

and shape. Additionally, the boundaries between lesion tissues and normal mucosa are often indistinct. These 

challenges hinder the improvement of convolutional neural network (CNN)-based methods in this domain. 

This paper extends our previous work [10] by incorporating anatomical landmarks as an additional 

category. In addition, we introduce the concept of hardness for each sample in the endoscopic image dataset, 

allowing us to enrich only the challenging samples in the training dataset selectively. This approach reduces 

the number of images to be trained, accelerates the convergence of our network, and enhances the 

classification performance at the same time. In summary, this paper makes three main contributions. First, we 

identify hard samples in the lesion classification problem from the endoscopic image of the upper 

gastrointestinal tract, then augment hard samples by brightness and contrast transformation to enrich the 

training dataset. Secondly, we present a framework for disease classification that incorporates offline hard 

sample augmentation and focal loss (FL), allowing us to maintain a focus on challenging samples during 

training. Thirdly, we collected a big dataset of six categories (normal mucosa and five diseases of 

gastrointestinal tract endoscopy images) and conducted extensive experiments, showing very promising 

classification accuracy. 

 

 

2. RELATED WORKS 

In this section, we review some existing works on gastrointestinal diseases classification from 

endoscopic images using deep learning models. We then investigate relevant works on identifying and 

analysis the impact of hard samples on performance of deep learning models. 

 

2.1.  Classification models 

Zhu et al. [12] designed a CNN that extracted features from endoscopy image patches. Yang et al. [13] 

proposed a modified version of Inception for the classification of five lesions (normal, bleeding, ileal erosion, 

colitis, and gastritis) from wireless capsule endoscopy images. Yogapriya et al. [18] utilized pre-trained 

models VGG16, ResNet-18, and GoogLeNet to classify gastrointestinal tract diseases from images obtained 

using wireless endoscopy (with a dataset comprising 6702 images of 8 classes). Cho et al. [19] employed 

three combined CNN models to classify gastric lesions on grayscale images, distinguishing between 

advanced gastric cancer, early gastric cancer, high-grade dysplasia, low-grade dysplasia, and non-neoplastic 

conditions. Wang et al. [20] used the VGG classification model to classify endoscopic gastroesophageal 

reflux disease using a dataset augmented with rotation operations to address imbalance. The dataset 

comprised classes such as normal, grade AB, and grade CD. Cogan et al. [14] proposed a method that  

pre-processed the images (e.g. edge removal, contrast enhancement, filtering, color mapping and scaling, and 

gamma correction) and applied deep learning to classify an image into anatomical landmarks (such as 

pylorus, z-line, and cecum), a diseased state (including esophagitis, ulcerative colitis, and polyps), or a 

medical procedure (such as dyed lifted polyps such as dyed resection margins).  

Liu et al. [15] proposed a method for the classification of esophageal lesions in three categories 

(normal cases, premalignant lesions, and cancerous lesions) using a self-designed CNN of two streams 

(original images and enhanced images) built upon from Inception-ResNet. In [21], [22], the authors proposed 

CNN combined with residual long short-term memory (LSTM) model to detect polyps in the early stages. 

Sharif et al. [23] proposed a method that combines deep CNN with geometric features to detect and classify 

tract diseases using wireless capsule endoscopy images. Thambawita et al. [16] studied the impact of 

resolution on the performance of lesion classification models. They experimented with ResNet and DenseNet 

with different resolutions. Muruganantham and Balakrishnan [17] combined a CNN model (ResNet) with a 

self-attention mechanism to improve the performance of wireless capsule endoscopy lesion classification. 

Wang et al. [24] introduced a two-stage convolutional-capsule network for gastrointestinal endoscopy image 

classification. In conclusion, all of the relevant methods for lesion classification of endoscopic images of the 

gastrointestinal tract applied existing deep classification models. The problem of confusion and data 

imbalance is still not carefully considered. 
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2.2.  Hard samples consideration 

Some studies have demonstrated that placing emphasis on challenging examples, which are either 

predicted incorrectly or predicted correctly with low confidence during training, can expedite convergence 

and enhance learning accuracy [25]–[27]. Intuitively, if a model has already predicted certain examples 

correctly with high confidence, those samples may not provide substantial information for further 

improvement of the model. During the training process, numerous samples become “well-learned” after only 

a few epochs, indicating that not all samples carry equal importance in guiding the training iterations.  

Wang et al. [28] proposed a method for pathological image classification based on hard example-guided 

CNN (tissue samples as normal, benign, in situ carcinoma, and invasive carcinoma). The authors 

implemented a mechanism to assign greater weight to hard examples during training. These challenging 

examples are characterized by a consistently low prediction probability for the ground truth class across 

multiple iterations. This approach helps direct the model's attention toward samples that are not yet 

adequately learned. Zhu et al. [29] built an easy/hard/noisy (EHN) detection model by using the sample 

training history for histopathology image classification. In this way, they are able to not only identify hard 

samples but also correct noisy label samples for better classification. Vandenhende et al. [30] introduced a 

three-player generative adversarial network (GAN) designed to generate challenging samples that enhance 

the performance of classification networks. In this approach, the generator learns to create augmented data 

from the training set that is difficult for the classification network to label. These augmentations involve 

rotations, scaling transformations, and occlusions. In summary, the majority of existing methods for 

endoscopic image classification are based on the most advanced CNN models. Although several 

augmentation techniques have been used and proven to enhance model performance, these methods mainly 

focus on a limited number of diseases. In addition, these methods did not effectively identify or address the 

challenges posed by hard patterns in the classification task. 
 

 

3. PROPOSED METHOD 

3.1.  General framework 

In this section, we present our general framework for upper gastrointestinal disease classification 

from endoscopic images as illustrated in Figure 1. It composes of two stages of training and one stage of 

testing. 

‒ First training: It takes images from the training set 𝐷𝑇𝑟 and trains the deep model with conventional 

cross-entropy loss. The training is done after k epochs. Then the hardness of each sample is computed. 

The ten most percentages of hardest samples are augmented to prepare a new training set called 𝐷𝑎
𝑇𝑟. 

‒ Second training: It takes images from the training set 𝐷𝑎
𝑇𝑟and trains the deep model with FL. 

‒ Testing: It takes images from the testing dataset 𝐷𝑇𝑒 and compute the evaluation metrics (accuracy) using 

the trained model from the second training step. 

In the following, we describe in detail each component in our proposed framework. 
 
 

 
 

Figure 1. Our proposed framework for disease classification from endoscopic images of the upper 

gastrointestinal tract 
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3.2.  Residual network for classification 

Among many deep models for image classification, we deploy ResNet-50 due to its efficiency on 

various datasets. The ResNet network is a CNN designed to work with hundreds of layers. A problem that 

occurs when building a CNN network with many convolutional layers is the vanishing gradient (the 

phenomenon that makes the model unable to converge) leading to a bad learning process. ResNet overcomes 

this situation by using a uniform shortcut connection to pass through one or more layers. Each such block is 

called a residual block. ResNet has various versions, such as ResNet-18, ResNet-34, ResNet-50, ResNet-101, 

and ResNet-152. In this paper, ResNet-50 is selected because it best trades off the accuracy and the 

computational time [31]. 

 

3.3.  Focal loss imbalance data 

Cross entropy loss is commonly used in classification tasks. It quantifies the model’s degree of 

uncertainty in predicting the value of the variable. The sum of the entropy of all probability estimates is 

cross-entropy as in (1). 

 

ℒ𝐶𝐸 = −∑  𝑁
𝑖=1 𝑡𝑖log⁡(𝑝𝑖) (1) 

 

where 𝑡𝑖  is the groundtruth and 𝑝𝑖  is the prediction probability, N is total number of training samples. The FL 

is specifically designed to tackle scenarios where there exists a significant imbalance between foreground and 

background classes during the training process. It provides a solution to mitigate the challenges posed by 

highly imbalanced datasets. Easily classified negatives comprise the majority of the loss and dominate the 

gradient. The FL primarily focuses on patterns that lead the model to fail more frequently compared to the 

easier patterns that the model can confidently predict. By emphasizing these challenging patterns, the FL 

helps the model improve its performance in handling difficult cases. FL reshapes the loss function to  

down-weight easy examples and thus focus training on hard negatives. This technique can be implemented 

by adding a variable adjustment factor to the cross-entropy loss formula as as in (2): 
 

ℒfocal = −∑  𝑁
𝑖=1 𝛼(1 − 𝑝𝑖)

𝜆log⁡(𝑝𝑖) (2) 
 

We note two properties of FL: i) when an example is misclassified and the prediction probability 𝑝𝑖 
is low, the modulating factor remains close to 1, leaving the loss largely unchanged. As 𝑝𝑖  → 1, the 

modulating factor decreases to 0, thereby reducing the loss for well-classified examples; ii) the focusing 

parameter 𝜆 smoothly adjusts the rate at which easy examples are down-weighted. When 𝜆=0, the FL 

function ℒfocal  is equivalent to ℒ𝐶𝐸. As 𝜆 is increased, the impact of the modulating factor becomes more 

pronounced. In our experiment, we choose 𝛼=0.25 and 𝜆=2. 
 

3.4.  Hardness and hard sample augmentation 

According to Kishida and Nakayama [26], deep neural networks (DNNs) are capable of good 

generalization despite their large size and ability to memorize all data patterns. The researchers propose that 

DNNs initially learn from consistently classified simple data samples. However, misclassified samples at this 

stage can be considered difficult samples. The characteristics of easy and difficult data samples remain 

underexplored. The study indicates that visually, easy data samples are very similar to each other, while 

difficult samples are highly diverse in their visual attributes. Although difficult data samples contribute more 

to the model’s generalization ability, removing a large number of easy data samples may impair it. Therefore, 

easy and difficult data samples are interconnected and constrained in the model training process. 

Let us suppose we employ a deep model for our classification problem with the loss function ℒ and 

the 𝑓 produces the prediction probability. The “hardness” of sample 𝑥𝑖 in the training dataset  

𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑁} with 𝑁 samples is defined as in (3). 
 

Hardness⁡(𝑥𝑖
𝑘) =

1

𝑀
∑  𝑀
𝑖=1 ℒ(𝑡𝑖 , 𝑓(𝑥𝑖 ,𝑊𝑖

𝑇)) (3) 

 

where M is the number of training epochs, 𝑡𝑖  is the ground truth label of the sample 𝑥𝑖, 𝑊𝑖
𝑇 is the weight of 

the deep model after the 𝑖𝑡ℎ epoch, 𝑓 is the function that produces the prediction score for the given sample 

𝑥𝑖 by the deep model. 

We define, as in (4), a sample 𝑥𝑖 as hard after training 𝑘 epochs if its Hardness (𝑥𝑖
𝑘) is larger than a 

threshold. Otherwise, it is an easy sample. 
 

Hard⁡(𝑥𝑖) = {
1     if Hardness (𝑥𝑖

𝑘) ≥  threshold 

0     otherwise 
 (4) 
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Figure 2 illustrates hard samples identified by our networks after 10 epochs of training. Figure 2(a) 

presents challenging samples that primarily contain lesions, while Figure 2(b) displays easier samples that are 

mostly disease-free. We detail our selective data augmentation (DA) strategy for these hard samples. Our 

classification model is trained for k epochs (in our case, k=10) on the training dataset. Retaining the training 

history, we compute the hardness of each sample and isolate the top 10% hardest ones. Subsequently, we 

apply a brightness and contrast transformation to the selected hard samples. 

In our previous work [7], we found that basic augmentation techniques enhance anatomical 

landmark classification in upper gastrointestinal endoscopic images. We extend this approach to enrich our 

challenging samples by employing brightness and contrast transformations, as described in (5): 
 

𝐼𝑏𝑐(𝑥, 𝑦) = 𝑐𝐼𝑜𝑟𝑔(𝑥, 𝑦) + 𝑏𝐼𝑎𝑣𝑔 (5) 
 

where 𝐼𝑜𝑟𝑔(𝑥, 𝑦) is the original image and 𝐼𝑏𝑐(𝑥, 𝑦) is the modified image by the brightness factor 𝑏 and the 

constrast factor 𝑐. In our experiments, 𝑏, 𝑐 are chosen as −0.15 and 0.15, where 𝐼𝑎𝑣𝑔 is the average value of 

the intensity of the pixel in the original image 𝐼𝑜𝑟𝑔. 

The framework, coded in Python, utilizes TensorFlow, Keras, NumPy, Matplotlib, Seaborn, and 

OpenCV libraries. Key settings include a learning rate of 0.001, batch size of 32, and 80 epochs for training. 

Pre-trained weights from ImageNet are employed for model initialization. Dropout regularization at 0.5 

prevents overfitting and enhances generalization. The Adam optimizer dynamically adjusts learning rates for 

optimal performance. 
 

 

 
(a) 

 

 
(b) 

 

Figure 2. Illustration of hard and easy samples: (a) examples of hard samples (green lines around the lesion in 

each image); and (b) examples of easy samples (easy samples are usually normal anatomical landmarks) 
 

 

4. EXPERIMENTS 

4.1.  Dataset and evaluation metrics 

We collected 5546 images with no lesions of 10 anatomical landmarks (larynx, esophagus, cardia, 

gastric body, fundus, antrum, great curvature, lesser curvature, duodenum bulb, and duodenum) in the upper 

gastrointestinal tract. The images are of resolution of 1280x960 at four various lighting modes: blue laser 

imaging (BLI) (1271 images), flexible spectral imaging color enhancement (FICE) (1352 images), linked 

color imaging (LCI) (1271 images), and white light imaging (WLI) (1652 images). Besides, we collected 

3420 images of five lesions: esophagitis (436 images), gastritis (1316 images), duodenal ulcer (596 images), 

esophageal cancer (538 images), and gastric cancer (534 images). We split the data into training, validation, 

and testing sets with a ratio of 18:1:1, respectively. 

It is noticed that the number of images in these classes is quite imbalanced. Most images had 

gastritis lesions while others only accounted for 2/3 of the number of images. The inflammation lesions in the 

images of esophagitis, gastritis, and duodenal ulcers are quite similar. They are all small and flat lesions, so it 

is challenging to distinguish the lesions from the surrounding normal mucosa. Therefore, inexperienced 

doctors often have difficulty detecting these lesions. In most cases, the color of the esophagitis lesions is only 

slightly redder than the normal parts. 
 

4.2.  Experimental results 

This study investigated the effects of augmentation of hard samples in the training stages and 

utilization of FL to deal with imbalance issues. Specifically, we evaluate five models: 
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‒ ResNet-50: Using only pure ResNet-50 architecture with original data samples. 

‒ ResNet-50+ FL: Using the ResNet-50 architecture with FL technique, we train the model on the original 

dataset. 

‒ ResNet-50+ DA (random): Performing random (non-selective) DA with 10% of training data samples, 

trained with the ResNet-50 model. 

‒ ResNet-50+ DA (hard): Performing hard data sample augmentation (selectively) with 10% of the most 

difficult data samples, trained with the ResNet-50 model. 

‒ ResNet-50+ DA (hard) + FL: Performing hard data sample augmentation (selectively) with 10% of the 

most difficult data samples, trained with the ResNet-50 model combined with the FL technique. 

Table 1 presents the results showing the ability to classify gastrointestinal lesions of the proposed 

methods with evaluation metrics including average accuracy, precision, recall, and F1-score. We found that 

overall, all the techniques used have achieved very good performance for the classification model with an 

impressive accuracy score of over 97%. The effectiveness of the classification model is improved by 

combining the ResNet-50 model with the proposed techniques. The ResNet-50+ DA (hard) + FL has the best 

classification results, with accuracy, precision, recall, and F1-score reaching 99.55%. This signifies the 

exceptional classification performance of this technique, especially in the case of inflammatory lesion 

datasets, which is considered challenging for classification models. It is observed that the classification 

model utilizing this method only wrongly predicted two data samples. Moreover, the model’s convergence 

speed, was found to be the fastest among all other methods. 

 

 

Table 1. Comparision of five models 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

ResNet-50 97.52 97.59 97.52 97.52 

ResNet-50+FL 98.20 98.23 98.20 98.19 

ResNet-50+DA (random) 98.42 98.46 98.42 98.40 

ResNet-50+DA (hard) 99.32 99.33 99.32 99.32 

ResNet-50+DA (hard)+FL (ours) 99.55 99.55 99.55 99.55 

 

 

The remaining proposed techniques also contribute to achieving good classification results for the 

model. The training method of the classification model with a selectively augmented dataset (ResNet-50+DA 

(hard)) also yielded impressive results, with the average evaluation metrics reaching 99.32%. This technique 

effectively prevented the model from making errors in predicting gastritis lesions, which are evaluated as 

difficult and prone to confusion with esophagitis lesions. However, the model exhibited misclassification 

errors in predicting esophageal cancer lesions, misclassifying one image as esophagitis. Moreover, two 

images of esophagitis were misclassified as esophageal cancer. On the other hand, when using random 

augmentation (ResNet-50+ DA (random)), the overall classification performance decreased by approximately 

1% compared to the selectively augmented approach. With this method, the classification model 

misclassified three images of esophagitis as esophageal cancer and gastric cancer. 

The technique of using only ResNet-50 with the original dataset yielded less satisfactory results 

compared to the other methods. However, the evaluation metrics for the model’s classification ability still 

reached a relatively high level, approximately 97.5%. In difficult lesion classes such as esophagitis, gastritis, 

duodenal ulcer, and gastric cancer, there were images that were misclassified. Only the class of anatomical 

location (normal class) achieved perfect classification results. When combining the ResNet-50 architecture 

with FL, the evaluation metrics for the model’s classification ability increased by an average of 0.7%. 

However, the model’s convergence speed was highly impressive. 

When utilizing DA techniques (selective or random), the convergence speed of the classification 

model improves compared to using only the ResNet-50 model with the original dataset. Additionally, 

combining FL with ResNet-50 also enhances the convergence speed, as the model approaches convergence 

within half of the training time. Consequently, when employing the ResNet-50+DA (hard)+FL technique, the 

classification model achieves the fastest convergence speed, thereby demonstrating improved generalization 

ability. 

Figure 3 shows misclassified examples using the original ResNet-50. Figure 3(a) illustrates two 

incorrect predictions, where gastric cancer lesions were misclassified as esophageal cancer lesions.  

Figure 3(b) displays two actual esophageal cancer lesions. It can be observed that visually distinguishing 

between the two types of cancer is challenging for the naked eye. However, using the ResNet-50+DA 

(hard)+FL technique, these samples are no longer misclassified. 
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(a) (b) 

 

Figure 3. Two data samples were misclassified when using original ResNet-50: (a) gastric cancer lesion 

misclassified as esophageal cancer; and (b) examples of real esophageal cancer for reference 
 

 

In addition, we employed the t-distributed stochastic neighbor embedding (t-SNE) visualization 

algorithm to visually represent the test data in a three-dimensional space as shown in Figure 4. As observed, 

before training the classification model, the data points from the six classes (duodenal ulcer, gastritis, 

esophagitis, gastric cancer, esophageal cancer, and normal anatomical landmarks) were mixed without clear 

separation into distinct clusters as shown in Figure 4(a). However, after applying the ResNet-50+DA (Hard)+FL 

technique, it can be seen that the data points representing the six classes are now separated into distinct 

clusters as shown in Figure 4(b). This indicates that our classification model achieves good classification 

effectiveness. Furthermore, we utilized our classification model to generate gradient-weighted class 

activation mapping (Grad-CAM) visualizations for the test dataset. By visualizing the Grad-CAM heatmaps, 

we can identify the regions of the images that the model focuses on the most before making predictions. 

Figure 5 presents Grad-CAM heatmaps for several examples of the five types of gastrointestinal lesions. This 

helps us gain a better understanding of the important features associated with these gastrointestinal lesions. 
 
 

  
(a) (b) 

 

Figure 4. t-SNE visualization of our test data: (a) original testing data samples; and (b) samples with features 

extracted using ResNet-50+DA (hard)+FL technique 
 

 

 
 

Figure 5. Grad-CAM visualization for some examples when using ResNet-50+DA (hard)+FL technique 
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Tran et al. [7] utilized the ResNet-18 and MobileNet-V2 models to perform anatomical localization 

classification on continuous endoscopic video streams. While ResNet-18 operated at 10 FPS and exhibited 

unstable recognition, it achieved high accuracy. In our work, we employed the best-performing model to 

analyze endoscopic videos of gastric cancer lesions, utilizing Nvidia GeForce RTX 3090 with 24 GB of 

RAM. Due to the larger size of ResNet-50, video processing speed remains relatively slow, at 25 FPS. 

In summary, this study explored a comprehensive of classification model. The DA technique for 

hard samples (selective augmentation) combined with the ResNet-50 network architecture and FL technique 

not only addressed the data imbalance issue but also improved the generalization ability of the classification 

model, with an average accuracy of 99.55%. Further and in-depth studies may be needed to confirm its 

robustness on bigger datasets. 

 

4.3.  Discussion on hard samples 

We invited two endoscopic doctors to participate in an evaluation of hard samples generated by 

artificial intelligence (AI) models. Our objective is to answer the question of whether the AI models and 

doctors have the same point of view. To this end, the doctors will carefully check by neck-eye 811 images 

generated by the 10% hardest samples by AI model. According to the doctors, out of the 811 images rated as 

difficult by the AI, 89 were also deemed difficult by the endoscopists to identify lesions or their boundaries. 

Esophageal and gastric cancer displayed the highest rates of difficulty in imaging, at 26.1% and 19.9%, 

respectively. It reflects that there is a correlation between the AI model’s conclusions with human doctors. 

 

 

5. CONCLUSION 

We presented a framework for classifying diseases of upper gastrointestinal endoscopic images. Our 

framework was built upon a backbone ResNet-50 with a FL function to deal better with data imbalance. In 

addition, we introduced a concept of hardness and generated more artificial images on the hardest samples to 

enrich our training set. Our framework converged more quickly than the original model (ResNet-50) while 

producing higher accuracy. The finding indicates that the proposed framework can distinguish the five main 

diseases very well with the normal cases captured from ten anatomical landmarks. This primitive result can 

help inexperienced doctors to classify diseases quickly. The visualization using Grad-CAM also helps them 

to focus on regions of interest with the highest heat map value. In the future, we first enrich the subset of hard 

samples assessed again by human doctors to investigate the improvement in the performance of the proposed 

framework. We then integrate the proposed model on edge devices and test it with real continuous endoscopy 

images. We think of combining a tracking algorithm to smooth the classification result. 
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