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 Recently, the use of artificial intelligence techniques has become widespread, 

having been adopted in brain-computer interfaces (BCIs) with 

electroencephalograms (EEGs). BCIs allow direct communication between a 

person's brain and a computer, and have various uses ranging from assistive 

technology to neuroscientific study. This paper provides an introductory 

overview of BCIs and EEG. We adopted the use of machine learning (ML) 

algorithms, including K-nearest neighbors (KNN), logistic regression, 

decision trees, random forests, and support vector machine (SVM). 

Additionally, we proposed a hybrid model of deep learning (DL) and ML by 

combining convolutional neural networks (CNNs) and SVMs. Our achieved 

98% accuracy. The goal is to classify EEG signals into three emotional states: 

happy, normal, and sad. The study aims to achieve a comprehensive 

understanding of the effectiveness of these algorithms in accurately 

classifying emotional states based on EEG data. By comparing the 

performance of traditional ML methods and the proposed hybrid model, we 

seek to identify the most robust and accurate approach to sentiment 

classification. 
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1. INTRODUCTION  

The principle behind the brain-computer interface (BCI) is to establish a line of communication 

between the human brain and a computer or other device. The BCI system monitors changes in brain activity 

and computer screens or other real objects, such as emotions that have been categorised or other external 

devices. For neurorehabilitation or as a support system for people with a variety of health problems or  

long-term health effects, BCI has received substantial research in recent years. BCI technology can be effective 

for idea-only communication [1], [2]. Machine learning (ML) algorithms use input data to achieve goals 

without explicit programming, replicating human learning from experience [3], [4]. Deep learning (DL) is a 

ML branch that uses artificial neural networks (ANNs) to create complex neural systems with over 10 layers. 

It is crucial in medical image processing, disease classification, segmentation, and clinical data recognition [5], 

[6]. Emotion is a multifaceted condition that reflects human consciousness, and is characterized as a response 

to stimuli in the environment. Generally, emotions arise in response to thoughts, memories, or events within 

our surroundings. They play a crucial role in decision-making and interpersonal communication among 

humans. Decision-making is influenced by emotional states, and the presence of negative emotions can 

contribute to both psychological and physical issues. Conversely, positive emotions may contribute to 

improved health, whereas negative emotions could potentially result in a reduced quality of life [7]. In this 

https://creativecommons.org/licenses/by-sa/4.0/
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paper, we discuss a group of studies presented by researchers in the field of identifying emotions using different 

algorithms and methods. 

Djamal and Lodaya [8], emotional therapy, medical rehabilitation, and applications of the BCI all 

depend on emotional identification. Electroencephalogram (EEG) signals fall into three categories: happy, 

relaxed, and sad. This research suggests utilising wavelet and learning vector quantization (LVQ) to track 

human emotion in real-time. Alpha, beta, and theta waves were created in 10 seconds by processing data from 

480 sets of data. The method used wavelet extraction and an asymmetric channel to increase accuracy by 72% 

to 87%. Without losing accuracy, LVQ reduced computation time to under a minute. For the purpose of 

tracking emotional states in real time, a wireless EEG was integrated into the system. Reolid et al. [9] describes 

an experiment to evaluate the emotional state categorization precision offered by the application programming 

interface (API) of the emotiv EPOC+ headset. The international affective picture system (IAPS) dataset is used 

in the study to examine the emotional states using photographs. To determine the classification accuracy, 

participants' responses are compared to validated values, and ANNs are put to the test. The ANN setup with 

three hidden layers and 30, 8, and 3 neurons for layers 1, 2, and 3 produces the best results. The emotional 

states delivered by the headset can be employed in real-time applications based on users' emotional states with 

high confidence thanks to this configuration's 85% classification accuracy. Additionally, the study shows that 

multilayer perceptron ANN designs are enough. 

Huang et al. [10] describes an EEG-based BCI system for emotion identification that uses  

subject-specific frequency bands to identify happy and melancholy. It was verified in two studies and reached 

an average online accuracy for two classes of 91.5%, with the gamma band being more closely associated with 

emotions of happiness and melancholy. Ramdhani et al. [11], the BCI system model presented is based on 

motor imagery and emotion. Eight classes are created from the recovered EEG signals using wavelet 

transformation: "happy forward," "happy stop," "happy right," "happy left," "neutral forward," "neutral stop," 

"neutral right," and "neutral left". With AdaMax and VGG16, the model classified the characteristics into eight 

groups with an accuracy of 90%. Users of this BCI system can control external devices without using their 

muscles or motor abilities. 

Ardito et al. [12], BCI allow for machine control using EEG signal processing. EEG signals were 

used in a study to identify emotional states like valence, arousal, and dominance. The development of a deep 

neural network to dynamically identify emotions led to the creation of a prototype for an EEG-based emotion 

recognizer. As a result, the prototype can be used for screening and epidemiological research that require  

real-time observation of emotional history. With a mean absolute error of 0.08 and an accuracy: R2 of 0.93, the 

convolutional neural network (CNN) performed well. The high metrics, however, are based on a limited 

population sample, necessitating additional validation on a larger test sample. Pandey and Sharma [13], the 

BCI is a communication device for people with impairments and mental illnesses that translates commands 

from brain EEG signals. A 96% accurate model for emotion classification developed recently in BCI 

technology has the potential to enhance device performance.  

Wu and Dai [14], the emo-net neural decoding framework, a data-driven method, aims to properly 

read emotions from neural activity segments for emotional BCI. While DL has great potential, its development 

has been hampered by the use of non-human primates and noise in training data. This method improves the 

functionality and decoding skills of basic DL models, enabling the recognition of animal model emotion. DL 

models are up to 92.02% accurate on a variety of classification and reconstruction tasks. Si et al. [15], a DL 

model for emotion recognition utilising functional near-infrared spectroscopy (fNIRS) and videos is presented 

in the study. the model achieves 90% outstanding decoding performance. The model also exhibits promise for 

tasks requiring emotion recognition, although it has drawbacks, including the inability to subdivide emotions 

and subpar decoding for negative versus neutral emotions. 

Researchers who have explored the connection between EEG, BCIs, and emotion have made 

significant contributions to the field. Their work has focused on investigating how EEG signals can be used to 

detect and interpret emotional states in individuals using BCIs. These studies have shown promising results in 

enabling communication and understanding of emotions in individuals with limited motor control. The 

researchers have employed various methods, such as ML algorithms and pattern recognition techniques, to 

analyse and classify EEG signals associated with different emotional states. In this research, we present a study 

where we used some ML algorithms and proposed a hybrid model that combines DL with ML to achieve results 

with acceptable accuracy and higher than others [8]‒[15]. We compared the results of the algorithms we 

adopted in our study with each other, as well as with the results of other researchers. 

 

 

2. PROPOSAL MODEL SCHEMA 

The proposed model for classifying emotions unfolds across five phases, offering a comprehensive 

approach to leveraging EEG data. Phase1 of EEG dataset classification: the EEG dataset incorporates three 
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distinct emotional classifications (natural, sad, and happy). This initial stage sets the foundation by defining 

the emotional categories present in the data. Phase 2 of data processing operations: the processing of EEG data 

involves a series of operations to ensure its suitability for emotion classification. These operations include data 

loading, where the dataset is imported, data cleaning to enhance its quality, handling missing values, and finally 

transforming data. The dataset is then divided into separate groups for training and testing, a critical step in 

evaluating model performance. Phase 3 of ML algorithms: in the third stage, a group of ML algorithms is 

employed for emotion classification. The chosen algorithms within this ML group include  

K-nearest neighbors (KNNs), decision trees (DTs), random forests (RFs), and logistic regression (LR). Each 

algorithm contributes unique capabilities to discern patterns within the EEG data and classify emotions 

effectively. Phase 4 of the hybrid DL with ML algorithm: the model introduces a hybrid approach by 

incorporating a choice between a DL algorithm, CNN, and a traditional ML algorithm, support vector machine 

(SVM). This hybridization aims to capitalise on the strengths of both paradigms, where CNN excels in feature 

extraction, and SVM contributes robust classification. The flexibility to choose between DL and ML enhances 

the model's adaptability to the complexity of EEG data. The final phase involves classification and evaluation, 

where the model's performance is assessed. This includes employing metrics such as accuracy, precision, recall, 

and F1-score to gauge the effectiveness of the classification algorithms. Iterative refinement and optimization 

are conducted based on the evaluation results, ensuring the model's ability to accurately classify emotions from 

EEG recordings. The proposed model encompasses a holistic approach, integrating diverse algorithms, both 

traditional ML and advanced DL, to effectively classify emotions from EEG data. The inclusion of a hybrid 

algorithm enhances the model's adaptability and performance, providing a robust framework for understanding 

and categorizing emotions in neural signals. As shown in Figure 1. 

 

 

 
 

Figure 1. The proposal model schema 

 

 

2.1.  Electroencephalogram 

EEG datasets are crucial for exploring and categorizing emotions, providing recordings of brain 

activity to unveil neural patterns linked to diverse emotional states. The process of emotion classification with 
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EEG entails extracting significant features from these recordings, which then serve as inputs for ML models. 

These datasets play a pivotal role in the creation and assessment of a wide range of algorithms, spanning from 

classical approaches like LR and DT to sophisticated methods such as CNN and hybrid models. This 

contributes to a deeper comprehension of emotions through neural signals [16]. 

 

2.2.  Pre-processing 

In the preparation phase for emotion classification using EEG datasets, crucial measures are taken to 

enhance data quality before utilizing ML algorithms. This encompasses addressing missing values, converting 

labels into numeric form, and choosing pertinent features. Ensuring uniform scaling through standardization 

or naturalization is key, and the division of data into training and test sets is fundamental. Supplementary 

techniques, such as feature scaling and transformation, are employed to optimize the performance of ensuing 

emotion classification algorithms, thereby improving accuracy and dependability in identifying emotional 

states [17]. Algorithm 1 representation of the steps performed in the code: 

 

Algorithm 1. The phases of pre-processing and dividing the dataset 

Input: Dataset 

Output: Number of Missing Values, Transformed Data (X and Y), Scaled Data, Train-Test Split, 

Standardized Features 

Step 1: Start 

Step 2: Import necessary libraries: (numpy, pandas, confusion_matrix, matplotlib. pyplot, seaborn, 

accuracy_score, recall_score, roc_auc_score, classification_report, precision_score, f1_score, 

mean_squared_error). 

Step 3: Finding Number of Missing Values: a) Apply a function to check for missing values in each column 

of the dataset. b) Display the shape of the dataset (data), indicating the number of rows and 

columns. 

Step 4: Transform Data: a) Define a function named 'Transform_data' taking 'data' as input. b) Replace 

labels ('POSITIVE', 'NEUTRAL', 'NEGATIVE') in the 'label' column with numerical values (2, 0, 

1). c) Separate the predictor variables (X) and the target variable (Y). d) Return X and Y. 

Step 5: Call Transformation Function and Split Data: a) Call 'Transform_data(data)' to obtain X and Y. b) 

Use 'MinMaxScaler' from 'sklearn. preprocessing' to scale the features in the range [0, 1]. 

Step 6: Train-Test Split: a) Import 'train_test_split' from 'sklearn. model_selection'. b) Split the dataset into 

training and test sets (X_train, X_test, Y_train, Y_test) with a testing size of 20% and a training 

size of 80%. 

Step 7: Standardize Features: a) Import 'StandardScaler' from 'sklearn. preprocessing'. b) Standardize the 

features using 'fit_transform' for training data and 'transform' for test data. 

Step 8: End 

 

2.3.  Machine learning 

ML algorithms use input data to achieve goals without explicit programming, replicating human 

learning from experience. Used to analyze large datasets, perform predictive analytics faster than humans, and 

use statistical theory to build mathematical models. This branch of artificial intelligence focuses on algorithm 

development and assessment [18]. 

 

2.3.1. K-nearest neighbors 

Utilized in emotion classification within EEG datasets, the KNN classifier algorithm determines the 

emotion class of a data point by assessing the classes of its nearest neighbors. The approach relies on the 

proximity of instances in feature space, assigning the most prevalent emotion within the KNN [19].  
Well-suited for multiclass emotion classification, this method offers a straightforward yet efficient means of 

identifying emotional states in EEG data, analyzing patterns based on neighboring instances in the dataset [20], 

[21]. As shown in Figure 2. Algorithm 2 representation of the steps performed in the code: 

 

Algorithm 2. Implementing the K-nearest neighbors algorithm 

Input: Training Data (X_train, Y_train), Test Data (X_test) 

Output: Trained Model, Predictions, Performance Metrics, Confusion Matrix, Classification Report, Error 

Handling 

Step 1: Start 
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Step 2: Import necessary libraries: a) Import 'KNeighborsClassifier' from 'sklearn.neighbors'. b) Import 

'model_selection' and 'neighbors' from 'sklearn'. c) Import other required libraries such as 

(''accuracy_score, precision_score, recall_score, f1_score, mean_squared_error, 

confusion_matrix'', classification_report, numpy, matplotlib. pyplot, and seaborn). 

Step 3: Create a KNeighborsClassifier: Initialize a KNeighborsClassifier object as 'clf'. 

Step 4: Train the classifier: Fit the classifier on the train-ing data (X_train and Y_train) and store the trained 

model in 'knn_clf'. 

Step 5: Predict outcomes for the test set: Use the train-ed classifier to predict outcomes for the test set 

(`X_test`) and store the predictions in 'Y_pred_test'. 

Step 6: Predict outcomes for the training set: Use the trained classifier to predict outcomes for the training 

set ('X_train') and store the predictions in 'Y_pred_train'. 

Step 7: Calculate and print performance metrics for the training and testing set: Calculate and print the 

(''accuracy, precision, recall, F1-Score, mean squared error, and root mean squared error''). 

Step 8: Generate and display a confusion matrix for the test set: a) Use 'confusion_matrix' to calculate the 

confusion matrix for the test set. b) Create a heatmap using 'seaborn' and 'matplotlib.pyplot' to 

visualize the confusion matrix. 

Step 9: Print the classification report for the test set: Generate and print the classification report using 

'classification_report' for the test set. 

Step 10: End 

 

 

 
 

Figure 2. Basic KNN structure 
 

 

2.3.2. Logistic regression 

LR, commonly utilized in emotion classification within EEG datasets, establishes a connection 

between input features and emotions. It generates probabilities for each emotion class through a logistic 

function, facilitating the prediction of the most probable emotion. This algorithm proves effective for both 

binary and multiclass classification, offering valuable insights into discerning emotions from EEG data. Its 

efficiency and interpretability contribute to a better understanding of the intricate patterns underlying emotional 

states in EEG recordings [22], [23]. As shown in Figure 3. Algorithm 3 representation of the steps performed 

in the code: 

 

Algorithm 3. Implementing the logistic regression algorithm 

Input: Training Data (X_train, Y_train), Test Data (X_test) 

Output: Trained Model, Predictions, Performance Metrics, Confusion Matrix, Classification Report, Error 

Handling 

Step 1: Start 

Step 2: Import necessary libraries: a) Import 'LogisticRegression' from 'sklearn.  linear_model'. b) Import 

other required libraries such as (''accuracy_score, precision_score, recall_score, f1_score, 

mean_squared_error, confusion_matrix'', classification_report, numpy, matplotlib. pyplot, and 

seaborn). 

Step 3: Create a Logistic Regression model: Initialize a Logistic Regression model object as 'model'. 

Step 4: Train the model: Fit the model on the training data (X_train and Y_train). 

Step 5: Predict outcomes for the test set: Use the trained model to predict outcomes for the test set (X_test) 

and store the predictions in 'y_pred_test'. 

Step 6: Predict outcomes for the training set: Use the trained model to predict outcomes for the training set 

(X_train) and store the predictions in 'Y_pred_train'. 
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Step 7: Calculate and print performance metrics for the training and testing set: Calculate and print the 

(''accuracy, precision, recall, F1-Score, mean squared error, and root mean squared error''). 

Step 8: Generate and display a confusion-matrix for the test set: a) Use 'confusion_matrix' to calculate the 

confusion-matrix for the test set. b) Create a heatmap using 'seaborn' and 'matplotlib.  pyplot' to 

visualize the confusion matrix. 

Step 9: Print the classification report for the test set: Generate and print the classification report using 

'classification_report' for the test set.  

Step 10: Handle potential errors during the generation of the confusion-matrix for the test set: Use a 'try-

except' block to catch any 'ValueError' during the generation of the confusion matrix and print an 

error message if it occurs. 

Step 11: End 

 

 

 
 

Figure 3. Basic LR structure 

 

 

2.3.3. Decision tree 

Utilized in classifying emotions within EEG datasets, the DT classifier employs a tree-like model to 

make decisions based on input features, forming a hierarchical structure of nodes [24]. Through recursive 

partitioning, the dataset branches into nodes that culminate in leaf nodes, each representing specific emotion 

classes. Particularly effective for multiclass emotion classification in EEG data, DT offer interpretable 

outcomes by visualizing decision-making processes. They excel at identifying patterns associated with diverse 

emotional states, contributing to insightful analyses in emotion classification [25]. As shown in Figure 4. 

Algorithm 4 representation of the steps performed in the code: 

 

Algorithm 4. Implementing the decision tree algorithm 

Input: Training Data (X_train, Y_train), Test Data (X_test) 

Output: Trained Model, Predictions, Performance Metrics, Confusion Matrix, Classification Report, Error 

Handling 

Step 1: Start 

Step 2: Import necessary libraries: a) Import 'DecisionTreeClassifier' from 'sklearn. tree'. b) Import other 

required libraries such as (''accuracy_score, precision_score, recall_score, f1_score, 

mean_squared_error, confusion_matrix'', classification_report, numpy, matplotlib. pyplot, and 

seaborn). 

Step 3: Create a Decision Tree Classifier: Initialize a Decision Tree Classifier object as 'dtc_clf' with a 

specified 'random_state'. 

Step 4: Train the Decision Tree Classifier: Fit the Decision Tree Classifier on the training data (X_train 

and Y_train). 

Step 5: Predict outcomes for the test set: Use the train-ed Decision Tree Classifier to predict outcomes for 

the test set (X_test) and store the predictions in 'y_pred_test'. 

Step 6: Predict outcomes for the training set: Use the trained Decision Tree Classifier to predict outcomes 

for the training set (X_train) and store the predictions in 'y_pred_train'. 

Step 7: Calculate and print performance metrics for the training and testing set: Calculate and print the 

(''accuracy, precision, recall, F1-Score, mean squared error, and root mean squared error''). 

Step 8: Generate and display a confusion-matrix for the test set: a) Use 'confusion_matrix' to calculate the 

confusion matrix for the test set. b) Create a heatmap using 'seaborn' and 'matplotlib.  pyplot' to 

visualize the confusion matrix. 
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Step 9: Print the classification report for the test set: Generate and print the classification report using 

'classification_report' for the test set. 

Step 10: Handle potential errors during the generation of the confusion-matrix for the test set: Use a 'try-

except' block to catch any 'ValueError' during the generation of the confusion matrix and print an 

error message if it occurs. 

Step 11: End 

 

 

 
 

Figure 4. Structure of the DT algorithm 

 

 

2.3.4. Random forest 

The RF classifier plays a vital role in emotion classification within EEG datasets. This ensemble 

learning technique utilizes multiple DT to improve accuracy and resilience [26]. By consolidating predictions 

from diverse trees, the RF mitigates overfitting, yielding more dependable outcomes. Particularly adept at 

capturing intricate patterns in EEG data related to emotions, this algorithm's versatility, capacity for handling 

multiclass scenarios, and resistance to noise render it an invaluable asset for identifying emotional states in 

EEG recordings [1]. As shown in Figure 5. Algorithm 5 representation of the steps performed in the code: 

 

Algorithm 5. Implementing the random forest algorithm 

Input: Training Data (X_train, Y_train), Test Data (X_test) 

Output: Trained Model, Predictions, Performance Metrics, Confusion Matrix, Classification Report, Error 
Handling 

Step 1: Start 

Step 2: Import necessary libraries: a) Import 'RandomForestClassifier' from 'sklearn. ensemble'. b) Import 

other required libraries such as (''accuracy_score, precision_score, recall_score, f1_score, 

mean_squared_error, confusion_matrix'', classification_report, numpy, matplotlib. pyplot, and 

seaborn). 

Step 3: Create a Random Forest Classifier: a) Initialize a Random Forest Classifier object (rmf) with a 

specified 'random_state'. b) Fit the Random Forest Classifier on the training data (X_train and 

Y_train) and store the trained model in 'rmf_clf'. 

Step 4: Predict outcomes for the test set: Use the trained Random Forest Classifier to predict outcomes for 

the test set (X_test) and store the predictions in 'y_pred_test'. 

Step 5: Predict outcomes for the training set: Use the trained Random Forest Classifier to predict outcomes 

for the training set (X_train) and store the predictions in 'y_pred_train'. 

Step 6: Calculate and print performance metrics for the training and testing set: Calculate and print the 

(''accuracy, precision, recall, F1-Score, mean squared error, and root mean squared error''). 

Step 7: Generate and display a confusion matrix for the test set: a) Use 'confusion_matrix' to calculate the 

confusion matrix for the test set. b) Create a heatmap using 'seaborn' and 'matplotlib.  pyplot' to 

visualize the confusion matrix. 

Step 8: Print the classification report for the test set: Generate and print the classification report using 

'classification_report' for the test set. 

Step 9: Handle potential errors during the generation of the confusion matrix for the test set: Use a 'try-

except' block to catch any 'ValueError' during the generation of the confusion matrix and print an 

error message if it occurs. 

Step 10: End 
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Figure 5. RF algorithm with n DT 

 

 

2.4.  Hybrid deep learning with machine learning 

The integration of DL with ML is utilized for emotion classification in EEG datasets [27]. This hybrid 

model combines DL architectures, including CNNs and SVMs, with traditional ML methods to optimize 

performance. By synergistically leveraging the strengths of both paradigms, the model proficiently captures 

spatial and temporal patterns within EEG data, ensuring resilient emotion recognition. This unified approach 

significantly improves classification accuracy and adaptability, establishing it as a potent tool for deciphering 

emotions in intricate EEG recordings [18].  

 

2.4.1 Hybrid convolutional neural network with support vector machine 

The fusion of a CNN with SVM classifier is utilized to classify emotions in EEG datasets [28]. This 

hybrid method merges CNN's feature extraction capabilities with SVM's classification strength. CNN extracts 

spatial features from EEG data, and SVM categorizes these features into emotions. This combined model 

proficiently captures spatial and temporal patterns, boosting the precision of emotion classification in EEG 

recordings, particularly in scenarios involving intricate and high-dimensional data [29]. As shown in Figure 6. 

Algorithm 6 representation of the steps performed in the code: 

 

Algorithm 6. Implementing the hybrid convolutional neural network with support vector machine algorithms 

Input: Training and Testing Data (X_train, X_test, Y_train), Original Labels (Y_train), Parameters 

Output: Trained Models (CNN, SVM), Predictions (CNN (Y_pred_cnn), SVM (Y_pred_svm)), 

Performance Metrics (Accuracy, Classification Report, Additional Metrics), Visualizations 
(Training History Plot, Confusion Matrix Plot) 

Step 1: Start 

Step 2: Import necessary libraries: a) Import 'pandas' as 'pd'. b) Import 'train_test_split' from 'sklearn. 

Model  _selection'. c) Import 'StandardScaler' from 'sklearn. preprocessing'. d) Import necessary 

modules from 'keras': "Sequential, Dense, Conv1D, Flatten, and MaxPooling1D". e) Import 'SVC' 

from 'sklearn.svm'. f) Import 'accuracy_score' and 'classification_report' from 'sklearn.  Metrics  '. k) 

Import 'numpy' as 'np'. 

Step 3: Reshape data for CNN: a) Reshape the training and testing data for 1D Convolutional Neural 

Network (CNN) using 'reshape'. b) Assuming it's EEG data, reshape to (number_of_samples, 

time_steps, 1). 

Step 4: One-hot encode the labels: Use 'to_categorical' from 'tensorflow. keras.  utils  ' to convert the 

categorical labels (Y_train and Y_test) to one-hot encoded format. 

Step 5: Define the 1D CNN model: a) Initialize a sequential model (`cnn_model`). b) Add a 1D 

convolutional layer with 64 filters, kernel size 3, and ReLU activation. c) Add a 1D MaxPooling 

layer with pool size 2. d) Flatten the output. e) Add a dense layer with 50 units and ReLU activation. 

e) Add the output layer with 3 units (for 3 classes) and softmax activation. 

Step 6: Compile the model: Compile the model use-ing 'adam' optimizer and 'categorical_crossentropy' 

loss. 

Step 7: Train the model with one-hot encoded labels: a) Train the model on the reshaped training data 

(X_train_cnn) with one-hot encoded labels (Y_train_one_hot). b) Use 10 epochs and a batch size 

of 32. 

Step 8: Plot training history: a) Create a DataFrame (histdf) from the training history. b) Plot training 

accuracy and loss using 'matplotlib'. 
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Step 9: Extract features from the trained CNN: Use the trained CNN model to extract features from the 

reshaped training and test data. 

Step 10: Train an SVM on the extracted features: a) Initialize an SVM model (svm_model) with a linear 

kernel. b) Fit the SVM model on the extracted features and the original training labels. 

Step 11: Make predictions with the SVM: Use the trained SVM model to make predictions on the extracted 

features from the test set. 

Step 12: Evaluate the model: a) Calculate and print accuracy. b) Print classification report. 

Step 13: Calculate additional evaluation metrics: a) Calculate and print ''precision, recall, f1-score, mean 

squared error, and root mean squared error''. b) Generate and display a confusion matrix using 

'confusion_matrix' and 'seaborn'. 

Step 14: End 
 
 

 
 

Figure 6. The hybrid CNN with SVM 

 

 

2.5.  Classification and evaluation 

In the realm of emotion classification with EEG datasets, the classification and evaluation process 

entails utilizing diverse ML algorithms to categorize emotional states. Following model training with labeled 

data, performance assessment utilizes metrics such as accuracy, precision, recall, and F1-score. This iterative 

approach strives to enhance the model's proficiency in accurately discerning emotions. The incorporation of 

robust evaluation measures ensures the credibility of emotion classification outcomes, fostering a more 

profound comprehension of emotional states within EEG recordings [30]. 

 

 

3. RESULTS AND DISCUSSION 

The results and discussion section presents the outcomes of the study which employed a combination of 

algorithms, including ML and DL, to classify emotions using an EEG dataset. The algorithms processed the EEG 

data, extracting patterns and features relevant to emotional states. ML algorithms were likely employed for their 

ability to discern complex relationships within the data, while DL models, known for their capacity to 

automatically learn hierarchical representations, played a crucial role in capturing intricate patterns. The results 

showcase the effectiveness of the proposed approach in accurately categorizing emotions based on EEG signals. 

Furthermore, the discussion interprets these findings, highlighting the significance of the chosen algorithms, their 

performance metrics, and their potential implications for emotion recognition applications. This section 

contributes to the overall understanding of the methodology's robustness and its implications for advancing 

emotion classification in EEG-based studies. The following, we discuss several cases involving our findings. 

 

3.1.  Case studies of machine learning algorithms 

The success of each system depends on its accuracy and performance. In this case, we discuss the 

results of the ML algorithms for (KNN, LR, DT, and RF). Table 1 shows an explanation of the results we 

reached in the training and testing phases. In which we used precision, recall, F1-score, mean squared error 

(MSE), root mean squared error (RMSE), and accuracy to evaluate the models. The work of the proposed 

system was divided into two phases: the first was training, and the second was testing with a total of 2132 data 

sets. In the training phase, 80% of the total data was approved, as the algorithms achieved an accuracy of 98%, 

88%, 100%, and 100% for each of the KNN, LR, DT, and RF algorithms for a data set of 1705. As for the 

testing phase, 20% of the total data was used, as the algorithms achieved 94%, 88%, 94%, and 97% accuracy 

for each of the KNN, LR, DT, and RF algorithms for a data set of 427. 
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Table 1. The accuracy results of ML algorithms (training and testing) 
ML Precision Recall F1-Score MSE RMSE Accuracy Support 

Training KNN 0.97 0.97 0.97 0.06 0.25 0.98 1705 

LR 0.88 0.88 0.88 0.20 0.45 0.88 

DT 1.00 1.00 1.00 0.00 0.00 1.00 

RF 1.00 1.00 1.00 0.00 0.00 1.00 

Testing KNN 0.94 0.94 0.94 0.11 0.32 0.94 427 

LR 0.88 0.88 0.88 0.17 0.41 0.88 

DT 0.94 0.94 0.94 0.11 0.33 0.94 

RF 0.97 0.97 0.97 0.06 0.24 0.97 

 

 

A confusion-matrix is a table that shows how well a classificat-ion model performs on a set of test 

data, where the true labels are known. The rows represent the actual labels, and the columns represent the 

expected labels. Each cell displays the number of cases that fall into the corresponding category. For example, 

the cell in the upper left corner shows the number of cases that were correctly classified as natural, the cell in 

the middle of the diagonal shows the number of cases that were correctly classified as wild, and the cell in the 

lower right corner shows the number of cases that were correctly classified as happy. Cells outside the diagonal 

show misclassifications, or instances that were expected to belong to a different category than the actual 

category [31]. The following is a summary of the values in Figure 7. 

a) Figure 7(a) C-matrix for test of KNN algorithm: 

‒ The model naturally classified 145 cases as happy, 134 cases as sad, and 124 cases as happy. These are 

the real positives of each category. 

‒ The model incorrectly classified one instance as sad, when it was actually natural. This is a false 

negative for the natural class, and a false positive for the sad class. 

‒ The model incorrectly classified 4 cases as happy, when they were actually natural. This is a false 
negative for the natural class, and a false positive for the happy class. 

‒ The model incorrectly classified 3 states as natural , when they were actually happy. This is a false 

negative for the happy category, and a false positive for the natural category. 

‒ The model incorrectly classified 8 cases as sad, when they were actually happy. This is a false negative 

for the happy category, and a false positive for the sad category. 

‒ The model incorrectly classified 8 cases as happy, when they were actually sad. This is a false negative 

for the sad class, and a false positive for the happy class. 

b) Figure 7(b) C-matrix for test of LR algorithm: 

‒ The model naturally classified 146 cases as happy, 123 cases as sad, and 108 cases as happy. These are 

the real positives of each category. 

‒ The model incorrectly classified one instance as sad, when it was actually natural. This is a false 

negative for the natural class, and a false positive for the sad class. 

‒ The model incorrectly classified 5 cases as happy, when they were actually natural. This is a false 

negative for the natural class, and a false positive for the happy class. 

‒ The model incorrectly classified 2 cases as natural, when they were actually happy. This is a false 

negative for the happy category, and a false positive for the natural category. 

‒ The model incorrectly classified 19 cases as sad, when they were actually happy. This is a false negative 

for the happy category, and a false positive for the sad category. 

‒ The model incorrectly classified 23 cases as happy, when they were actually sad. This is a false negative 

for the sad class, and a false positive for the happy class. 

c) Figure 7(c) C-matrix for test of DT algorithm: 

‒ The model naturally classified 145 cases as happy, 130 cases as sad, and 126 cases as happy. These are 

the real positives of each category. 

‒ The model incorrectly classified 4 cases as happy, when they were actually natural. This is a false 

negative for the natural class, and a false positive for the happy class. 

‒ The model incorrectly classified 3 states as natural, when they were actually happy. This is a false 

negative for the happy category, and a false positive for the natural category. 

‒ The model incorrectly classified 13 cases as sad, when they were actually happy. This is a false negative 

for the happy category, and a false positive for the sad category. 

‒ The model incorrectly classified 6 states as happy, when they were actually sad. This is a false negative 

for the sad class, and a false positive for the happy class. 

d) Figure 7(d) C-matrix for test of RF algorithm: 

‒ The model naturally classified 145 cases as happy, 138 cases as sad, and 132 cases as happy. These are 

the real positives of each category. 
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‒ The model incorrectly classified one instance as sad, when it was actually natural. This is a false 

negative for the natural class, and a false positive for the sad class. 

‒ The model incorrectly classified one condition as happy, when it was actually natural. This is a false 

negative for the natural class, and a false positive for the happy class. 

‒ The model incorrectly classified 3 states as natural, when they were actually happy. This is a false 

negative for the happy category, and a false positive for the natural category. 

‒ The model incorrectly classified 4 situations as sad, when they were actually happy. This is a false 

negative for the happy category, and a false positive for the sad category. 

‒ The model incorrectly classified 3 states as happy, when they were actually sad. This is a false negative 

for the sad class, and a false positive for the happy class. 
 
 

  
(a) 

 
(b) 

  
(c) (d) 

 

Figure 7. C-matrix for test of ML algorithms: (a) KNN, (b) LR, (c) DT and (d) RF 
 

 

Table 2 are the classification results we obtained in the testing phase. The data was classified into 

several groups. The first group represented whether the feelings were natural (0) with a total of 148 data. The 

second group represented whether the feelings were sad (1) with a total of 143. The last group represented 

whether the feelings were happy (2) with a total of 136 for each algorithm (KNN, LR, DT, and RF). To evaluate 

each rating based on (precision, recall, and F1-score). 
 

 

Table 2. The results for classifying ML algorthims (testing) 
Class Models  Precision Recall F1-Score Support 

Natural (0) KNN 0.97 0.98 0.97 

148 
LR 0.96 0.99 0.97 

DT 0.97 0.98 0.98 

RF 0.99 0.98 0.98 
Negative (1) KNN 0.94 0.94 0.94 

143 
LR 0.84 0.86 0.85 

DT 0.96 0.91 0.93 

RF 0.98 0.97 0.97 

Positive (2) KNN 0.84 0.79 0.82 

136 
LR 0.89 0.93 0.91 

DT 0.92 0.91 0.92 

RF 0.95 0.97 0.96 
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3.2.  Case studies of hybrid deep learning with machine learning algorithms 

In this case, we discuss the results of the hybrid system our proposed. In which the CNN DL algorithm 

was adopted to train and test the system with the SVM ML algorithm to classify the results into three groups 

of emotions (natural, sad, and happy). Table 3 and Figure 8 show the training phase where we achieved 100% 

accuracy and 0% loss. As shown in Figure 8, the loss index, which represents the orange line, decreased and 

the accuracy index, which represents the blue line, increased after they reached Epoch 10/10. 

A confusion matrix serves as a tabular representation for evaluating the performance of a classification 

model on a specific set of test data with known true labels. It comprises rows representing actual labels and 

columns indicating expected labels. Each cell indicates the count of cases falling into its corresponding 

category. Correct classifications are depicted along the diagonal, with misclassifications shown in cells outside 

the diagonal [31]. The provided summary encapsulates the key values outlined in Figure 9. Figure 9 C-matrix 

for test of hybrid CNN with SVM algorithm: 

‒ The model naturally classified 141 cases as happy, 146 cases as sad, and 133 cases as happy. These are the 

real positives of each category. 

‒ The model incorrectly classified 3 cases as happy, when they were actually natural. This is a false negative 

for the natural class, and a false positive for the happy class. 

‒ The model incorrectly classified 2 states as natural, when they were actually happy. This is a false negative 

for the happy category, and a false positive for the natural category. 

‒ The model incorrectly classified 2 cases as sad, when they were actually happy. This is a false negative for 

the happy category, and a false positive for the sad category. 

 

 

Table 3. The epochs for training the hybrid model 
Epochs Loss Accuracy 

Epoch 1/10 1.0059 0.8194 

Epoch 2/10 0.1997 0.9390 

Epoch 3/10 0.1460 0.9484 

Epoch 4/10 0.0556 0.9865 
Epoch 5/10 0.0430 0.9906 

Epoch 6/10 0.0291 0.9930 

Epoch 7/10 0.0186 0.9988 

Epoch 8/10 0.0104 1.0000 

Epoch 9/10 0.0078 1.0000 
Epoch 10/10 0.0055 1.0000 

 

 

  
 

Figure 8. The epochs for training the hybrid model 

(CNN+SVM) 

 

Figure 9. C-Matrix for test of hybrid CNN with 

SVM algorithm  

 

 

Table 4 shows the classification results our obtained in the testing phase. The data was classified into 

several groups. The first group represented if the feelings were natural (0) with a total of 148, the second group 

represented if the feelings were sad (1) with a total of 143, and the last group represented if the feelings were 

happy (2) with a total of 136 for the proposed hybrid system in which our adopted the CNN with SVM 

algorithm. The rating for each classification is calculated based on (precision, recall, F1-score, and accuracy). 

In which we achieved 98% accuracy. 

 

x 

y 
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Table 4. The results for classifying hybrid CNN with SVM algorithms (testing) 
DL with ML – Models Class Precision Recall F1-Score Support 

Hybrid CNN with 

SVM Algorithm 

Natural (0) 0.98 0.99 0.98 148 

Negative (1) 1.00 0.99 0.99 143 

Positive (2) 0.97 0.98 0.97 136 

Accuracy 0.98 427 

 
 

In Table 5, when comparing the results we achieved in the first case shown in section 3.1 with the 

results our achieved in the second case in section 3.2, it turns out that the hybrid system is characterized by 

higher accuracy in achieving results, as shown in Figure 10. Therefore, it is preferable to adopt a hybrid system 

to achieve high accuracy in emotion classification. Also, in Table 6, we discuss the test results reached by a 

group of researchers and compare them with the accuracy we achieved in the proposed hybrid system.  

Table 6, shows the differences that show that the results achieved by our paper are 98% higher than the results 

achieved by the researchers mentioned in Figure 11. 
 

 

Table 5. Comparison of results ML with results DL+ML 
AI Models Accuracy 

ML 

KNN 94% 
LR 88% 

DT 94% 

RF 97% 

DL+ML CNN + SVM 98% 

 
 

 
 

Figure 10. The accuracy chart of our study results 
 

 

Table 6. Comparison of our results with other researcher's results 
Authors [8] [9] [10] [11] [12] [13] [14] [15] Our 

Years 2017 2018 2019 2020 2022 2022 2023 2023 2024 

Models Wavelet analysis 

and LVQ 

ANNs Real-time emotion 

recognition system 

CNN CNN-

1D 

LGBM, 

RFC, DTC 

Emo-

Net 

fNIRS CNN+SVM 

Accuracy 87% 85% 91.5% 90% 93% 96% 92.02% 90% 98% 

 

 

 
 

Figure 11. A chart of the accuracy of our study results with the researchers' results 
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4. CONCLUSION 

Our research employed various ML algorithms (KNNs, LR, DT, and RF) for emotion classification 

(94%, 88%, 94%, and 97%) and introduced a hybrid model combining DL (CNN) with ML (SVM). The 

proposed hybrid system demonstrated exceptional performance, achieving an impressive 98% accuracy in 

emotion classification. Comparative analysis against existing research highlighted the superior results of our 

model, showcasing its efficacy in distinguishing emotions. This underscores the significance of hybrid 

approaches in enhancing accuracy and reliability in emotion classification systems. 
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