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 The industrial sector is undergoing a substantial transformation by 

embracing predictive maintenance approaches, aiming to minimize 

downtime and reduce operational expenses. This transformative shift 

involves the incorporation of machine learning techniques to refine the 

accuracy of predicting machinery failures. In this article, we delve into an in-

depth exploration of machine failure prediction, employing a hybrid model 

amalgamating long short-term memory (LSTM) and support vector machine 

(SVM). Our comprehensive study meticulously assesses the hybrid model’s 

performance, comparing it with standalone LSTM and SVM models across 

three distinct datasets. The results showcase that the hybrid model 

outperformed, providing the modest dependable, and highest F1-score values 

in our evaluation. 
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1. INTRODUCTION  

In the rapidly evolving industrial landspace, optimizing maintenance strategies is crucial to 

minimizing disruptions and ensuring seamless operations in the internet of things (IoT) applications. The 

potential for diverse applications extends into virtually all aspects of daily life for individuals, institutions, 

and broader societal contexts [1]. The application of IoT spans a wide range of areas including smart cities, 

healthcare, smart agriculture and water management, retail and logistics, smart living, and smart environment 

[2], [3]. Predictive maintenance is a transformative maintenance strategy that utilizes data analysis, sensor 

inputs, and machine learning to proactively anticipate equipment failures, deviating from traditional reactive 

or scheduled methods [4], [5]. By scrutinizing patterns, trends, and anomalies in data, predictive maintenance 

strives to forecast issues before they arise, representing a departure from conventional practices [6], [7]. The 

convergence of machine learning and predictive maintenance has paved the way for a paradigm shift in how 

organizations tackle equipment failures. Industries are progressively adopting predictive maintenance 

strategies, leveraging advanced technologies like machine learning to optimize maintenance schedules, 

enhance equipment reliability, and reduce operational expenses [8]. This shift underscores the transformative 

potential of data-driven strategies in redefining industrial maintenance practices. In this context, machine 

learning techniques such as K-means, random forests (RF), artificial neural networks (ANN), and support 

vector machines (SVM), play pivotal roles in performing predictive maintenance [9], [7]. Combining long 
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short-term memory (LSTM) and SVM in a hybrid model enhances predictive accuracy, capitalizing on 

LSTM's sequential analysis and SVM's classification prowess. This fusion offers a comprehensive approach 

to anticipate and mitigate machine failures in industrial settings, with profound implications for transforming 

industrial maintenance practices. 

This paper provides a comprehensive analysis of three distinct models, showcasing notable 

improvements in prediction accuracy compared to conventional single models. The paper is organized as 

follows: section 2 introduces the models used in our study. Section 3 summarizes related works on failure 

prediction using machine learning and deep learning techniques with different datasets. Section 4 presents 

comprehensive experimental results, including an explanation of the public datasets, intricate insights into the 

proposed LSTM-SVM architecture, and evaluation of performance metrics. Section 5, we delve into a 

detailed examination of the results and conduct a comparative analysis. Finally, the conclusion and future 

perspectives of the paper with a comprehensive summary are presented in section 6. 

 

 

2. BACKGROUND 

2.1. Long short-term memory neural network 

The LSTM model belongs to the category of recurrent neural networks (RNNs) and is designed to 

address the issue of long-term dependencies in sequential data. Unlike standard RNNs, which can only 

capture information from nearby time steps, LSTM can effectively retain and utilize historical information 

over extended periods. The LSTM model functions through several key components: the block input, input 

gate, forget gate, output gate, and block output. LSTM proves to be particularly well-suited for tasks 

involving time series predictions and a wide array of other problems that require the retention of temporal 

memory. These applications span diverse fields such as natural language processing (including sentiment 

analysis), image and video captioning, and computer vision (including text recognition). Furthermore, 

combining LSTM with other models in hybrid architectures can often yield optimal performance in various 

tasks [10], [11]. Figure 1 represents the architecture of the LSTM model. 

 

 

 
 

Figure 1. The architecture of the LSTM model 

 

 

2.2. Support vector machine 

The SVM is a prominent supervised machine learning algorithm firmly grounded in the principles of 

statistical learning theory, honed and refined over several decades. Its preeminence as a classification 

technique consistently positions it as a top performer, surpassing alternative methods with demonstrable 

superiority [12]. SVMs distinguish themselves in their capacity to oversee complex, high-dimensional 

datasets adeptly. This prowess stems from their intrinsic ability to discern the optimal hyperplane, which 

decisively demarcates data points among different classes while maximizing the margin, or separation 

distance, between them [13]. The versatility of SVMs extends to the realm of classification, where they 

exhibit competence in addressing both linear and non-linear challenges through the strategic application of 

diverse kernel functions. Consequently, SVMs find their application across an expansive spectrum of 

machine learning endeavors, encompassing tasks such as pattern recognition, object classification, and the 
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nuanced domain of time series prediction and regression analysis. The unwavering robustness and 

adaptability inherent to SVMs solidify their status as an indispensable tool for practitioners in machine 

learning, ensuring their enduring relevance in navigating and mitigating the complexities inherent in  

real-world applications. Figure 2 illustrates the schematic architecture of the SVM classifier. 

 

 

 
 

Figure 2. Schematic diagram of SVM architecture 

 

 

3. RELATED WORK 

The classification of failures in smart manufacturing has witnessed a surge in diverse 

methodologies, as extensively documented in the literature [8], [14]. The use of machine learning algorithms 

to identify irregular patterns in data, which are then used to enhance the accuracy and reliability of failure 

prediction models in various fields such as predictive maintenance and fault detection [15]. This survey 

provides an overview of machine learning and deep learning-based strategies for failure prediction. 

Time series forecasting has seen the successful application of a variety of models, yet the task of 

choosing the suitable one remains a challenge. Recent years have seen a rise in interest in hybrid models, that 

combine various machine learning and deep learning techniques to address the complexities of failure 

prediction and time series forecasting [16]. These hybrid models leverage the strengths of different 

algorithms, enhancing their predictive power and robustness. This section explores the evaluation of hybrid 

models, their applications in real-world scenarios, and the potential benefits they offer in improving the 

reliability and efficiency of predictive maintenance and forecasting processes. 

Wahid et al. [17] proposed a hybrid model for predictive maintenance based on a combination of 

convolutional neural networks (CNN) and LSTM. This model referred to as CNN-LSTM, utilized CNN for 

feature extraction from time series data and LSTM for prediction. The combined model outperformed 

individual ones, with CNN-LSTM exhibiting the highest prediction accuracy. This approach proved to be 

more reliable and suitable for predictive maintenance forecasting. 

Borré et al. [18] proposed a CNN-LSTM hybrid model. The use of LSTM enabled the modeling of 

time series patterns, while CNN efficiently extracted vital features like trend changes and other commonly 

observed patterns in variable time series data. These findings offer substantial benefits to companies, 

enabling them to optimize maintenance schedules and enhance the overall performance of their electric 

machines. 

Yeh et al. [19] suggested a hybrid network tailored to predict the extended maintenance duration of 

wind turbines, aiding efficient management in power companies. This model incorporated a combination of 

CNN and SVM. CNNs, adept at learning invariant features, were complemented by SVM, which excelled in 

producing precise decision surfaces when applied to well-structured feature vectors. The features extracted 

were then utilized as input to train a radial basis function support vector machine (RBF-SVM). The 

integration of these models resulted in remarkably high accuracy levels, showcasing the potential of 

combined approaches in predictive maintenance applications. 

Vos et al. [20] address the challenge of fault detection in machine condition monitoring when 

there’s limited faulty data for training. By using vibration signals from healthy systems and a combination of 

LSTM and SVM, the research successfully identifies abnormal mechanical behavior. The method works well 

for various scenarios, including gearbox tests and helicopter data, showcasing its effectiveness in machine 

condition monitoring, even when comprehensive faulty data is scarce. 
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In summary, this study highlights the growing importance of hybrid models in predicting failures in 

smart manufacturing. By combining machine learning and deep learning techniques, these hybrid models 

enhance prediction accuracy and reliability across domains like predictive maintenance and fault detection. 

These hybrid approaches hold significant promise in proving the efficiency and reliability of predictive 

maintenance. 

 

 

4. PROPOSED METHOD 

The objective of this work is to determine the most effective model to predict machine failure. We 

applied SVM, LSTM, and the hybrid model LSTM-SVM using three public datasets. To ensure a thorough 

assessment, we carefully isolate a subset from each dataset to construct an independent test set, separate from 

the training data. Additionally, a validation set is introduced to enhance the evaluation of the model's 

performance. This meticulous dataset division strategy aims to offer a robust assessment of the LSTM-SVM 

model's predictive capabilities. 

 

4.1.  Dataset description 

4.1.1. Dataset 

The dataset for this study pertains to predictive maintenance in industrial applications detailed in 

Table 1. The three datasets outlined in the table include context information, features extracted, and samples. 

These datasets are crucial for exploring and developing predictive maintenance models. They offer rich 

opportunities for analyzing anomalies and forecasting failures, key aspects of predictive maintenance. 

 

 

Table 1. Datasets description 
Data id Datasets Features extracted Samples 

Data 1 Distributed transformer 

monitoring 

Oil temperature indicator, winding temperature indicator, ambient 

temperature indicator, oil level indicator, oil temperature indicator alarm, 

oil temperature indicator trip, magnetic oil gauge indicator 

20465 

Data 2 AnoML Light, humidity, loudness, temperature 6558 
Data 3 Predicting machine 

failure 

Temperature, humidity, hours since previous failure, date.day-of-month, 

date.day-of-week, date-month, date-hour 

8784 

 

 

Firstly, data 1, known as the distributes transformer monitoring dataset, was meticulously collected 

through IoT devices over the period spanning from June 25th, 2019 to April 14th, 2020. This dataset stands 

out with a high-frequency update rate, providing new data points every 15 minutes and a total of 20,465 

samples. It focuses on transformers, which hold a pivotal role in power systems, known for their reliability. 

However, they are susceptible to failure attributed to a multitude of internal and external factors. Among the 

various initiators of transformer failures, particularly mechanical and dielectric failures. Secondly, data 2 

named the IoT anomaly detaction dataset, comprises 6,558 samples. This dataset is specifically curated for 

anomaly detection in IoT systems. This dataset encompasses a diverse array of components critical to IoT 

systems such as grove sensors, microcontrollers, shields, single-board computers, and an assortment of 

software tools. Lastly, data 3 serves as a foundational dataset for predicting failures in server machines 

operating within data center environments. This server machine failure prediction dataset comprises 8,784 

samples, each contributing valuable data points to enhance predictive insights regarding server machine 

failures. 

 

4.1.2. Data analysis 

The data analysis section within our study is a critical component of the comprehensive data science 

lifecycle, encompassing a systematic series of interconnected steps aimed at distilling meaningful insights 

from raw datasets, as shown in Figure 3. Beginning with data preprocessing, we systematically addressed 

prevalent issues, including the treatment of missing values and outliers, employing robust techniques, 

including the Z-score and interquartile range (IQR) methods, which were utilized to detect and manage 

outliers through transformation or removal. Furthermore, to enhance computational efficiency, we applied 

dimensionality reduction techniques. The data required normalization due to variations in scale and units, 

achieved through min-max scaling to ensure uniform contributions of each feature. 

Following the preparation phase, exploratory data analysis (EDA) facilitated a nuanced 

understanding of three distinct datasets, revealing distribution patterns and elucidating relationships among 

key parameters. EDA emerged as an invaluable guide for subsequent learning endeavors. EDA is 

indispensable for guiding data selection and ensuring the seamless execution of machine learning tasks [21]. 

In this research a variety of visualizations were employed to conduct EDA, enabling a comprehensive 
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understanding of the three distinct datasets. These comprehensive preprocessing measures aimed to enhance 

the dataset's readiness for accurate and meaningful analysis and modeling. 

The subsequent phase, feature engineering, concentrated on augmenting datasets to bolster pattern 

recognition within predictive models. Thoughtful generation of new features enriched the datasets, while 

strategic feature selection streamlined data, optimizing model performance [22]. Feature engineering assumes 

a central role in enhancing the datasets to empower the predictive models with improved pattern recognition 

capabilities [23]. As explained in our study, generating new features is a part of feature engineering that 

includes creating new variables, guided by either domain knowledge or mathematical transformations [24]. 

These new features enrich the dataset, potentially capturing previously hidden relationships and patterns. To 

streamline the dataset and enhance model efficiency, feature selection strategies come into play [25]. Various 

techniques were employed such as recursive feature elimination (RFE), information gain, correlation 

analysis, Chi-Square tests, and fisher score. These methods facilitated the identification and preservation of 

the most informative and influential features, contributing to dimensionality reduction and enhanced model 

performance. Finally, feature extraction aims to recognize the necessity to address high-dimensional data, we 

leverage principal component analysis (PCA) to restructure the dataset from a complex, multi-dimensional 

space into a more manageable, lower-dimensional representation. This process enhances computational 

efficiency while preserving essential data characteristics. 

 
 

 
 

Figure 3. Data analysis and modeling workflow 

 

 

4.2.  Proposed architecture 

Following our comprehensive evaluation of trained models, we proceeded to develop our innovative 

hybrid LSTM-SVM model. Figure 4 provides a visual representation of the architecture of this hybrid 

classifier, which consists of four pivotal layers: the input layer, hidden layer, fully connected (FC) layer, and 

softmax layer. Initially, 60% of the feature-extracted data from the count vectorizer is allocated for training, 

while 20% is designated for validation and another 20% for testing. We begin by feeding the training data into 

the LSTM input layer, initiating the flow of information. This input data proceeds into the hidden layer, a 

pivotal component within the LSTM model. The LSTM's hidden layer encompasses a complex mechanism 

with four interconnected layers that collaboratively produce the cell's output and state. Following this, both the 

output and state are passed on to the subsequent hidden layer. Distinguishing itself from conventional RNNs, 

LSTM introduces a more intricate structure. It incorporates not only a single tanh layer but also three logistic 

sigmoid gates. These gates determine which information to retain and which to discard as data traverses the 

network. Upon completion of the journey through the hidden layers, the output is directed to the FC layer. 

Situated higher in the network hierarchy, the FC layer plays a critical role in revealing the precise structures of 

features detected by the lower network layers. Here, the input is condensed into a dense feature representation, 

with each node within the FC layer independently learning its set of weights relative to all other nodes in the 

layer. Subsequently, the output from the FC layer is forwarded to the SoftMax layer, typically the final layer in 

LSTM networks. The softmax layer employs a SoftMax function, similar to the sigmoid function used in 

logistic regression, making it suitable for multi-class classification tasks. This is particularly valuable when 

classes are mutually exclusive. In our proposed model, we enhance the LSTM network's SoftMax layer by 

introducing SVM classifier. The SVM classifier is integral to both the training and classification phases. 

 

EDA 

• Data visualization 

• Correlation analysis 

• Time series analysis 

Data preprocessing 

• Handling missing values 

• Handling outliers 

• Data normalization 

• Data sampling 

Feature engineering 

• Creating new features 

• Features selection 

• Features extraction 

Data analysis 
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During the training phase, a document is provided as input to the LSTM network, allowing the construction of 

a statistical model for the LSTM neural network. Subsequently, a feature vector is computed for each item in 

the training dataset, utilizing the weights obtained from the penultimate network layer. This training process is 

facilitated by the SVM classifier. In the classification phase, the same stages are replicated for each vector 

requiring classification. An embedding vector is derived using the previously trained LSTM network. Once the 

training process is completed, the trained model undergoes testing using the designated 20% of the  

feature-extracted data, while the remaining 20% serves as the validation set. Finally, the SVM classifier 

combines the embedding vector with other classification features to make precise class predictions. 

 

 

 
 

Figure 4. Hybrid model classifier LSTM-SVM architecture 

 

 

4.3.  Performance evaluation metrics 

Various evaluation metrics are employed to assess the predictive performance of an experimental 

model’s outputs. The evaluation criteria collectively provide a comprehensive understanding of the model’s 

strengths. These metrics offer valuable insights into the model’s effectiveness in classification tasks. In our 

study, we employ accuracy, precision, recall, and F1-score, a set of well-established metrics to rigorously 

evaluate the performance of our model. The essence of evaluation methods revolves around the identification 

of true negatives (TN), true positives (TP), false negatives (FN), and false positives (FP) in binary outcomes 

[26]. These evaluation metrics are shown in (1) to (4). 

In this context, TN indicates the instances where the model correctly predicts non-failure (negative 

class), and indeed, there is no failure. On the other hand, TP represents the instances where the model 

correctly identifies failures, aligning with the actual occurrences of failure. However, FN represents the 

instance where the model incorrectly predicts non-failure when failure occurs, including instances where the 

model misses these failures. Conversely, FP represents the instances where the model incorrectly predicts 

failure, indicating cases where the model suggests failure, but no actual failure occurs [27]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 

5. RESULTS AND DISCUSSION 

In this section, we investigate the influence of different network architectures on model 

performance. We developed three distinct models for experimental comparison: SVM, LSTM, and a hybrid 

LSTM-SVM model. Our evaluation of classification results primarily centers around key metrics, with a 

primary emphasis on the F1-score, as detailed in this section. A comprehensive summary of all evaluation 

metrics is shown in Table 2. 
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Table 2. Experimental results on different models 
Data id Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Data 1 SVM 95.85 79.21 80.99 80.09 

LSTM 97.50 82.35 96.45 88.84 

LSTM-SVM 97.72 97.70 97.72 97.71 

Data 2 SVM 86.54 100 64.25 78.23 

LSTM 94.58 94.79 94.58 94.63 
LSTM-SVM 97.17 96.32 97.47 96.86 

Data 3 SVM 92.50 96.40 80.70 87.90 

LSTM 97.50 96.94 95.60 96.30 

LSTM-SVM 98.14 97.42 98.50 97.90 

 
 

The three models produced different results. To better compare the prediction results, we show 

accuracy, precision, recall, and F1-score values in Figures 5(a) to 5(c) for these models across three datasets. 

These experiments were conducted based on the datasets introduced in section 4, providing a robust 

foundation for our analysis. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Overview of datasets evaluation metrics: (a) data 1, (b) data 2, and (c) data 3 
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When collecting data from IoT devices in natural environment scenarios, it is expected that the 

resulting datasets will exhibit class imbalances, as observed in the datasets we utilized. In such scenarios, if 

the classifier simply predicts each instance as belonging to the majority class and relies on overall 

classification accuracy for performance evaluation, it may yield artificially high accuracy scores. 

Consequently, using overall classification accuracy as the primary performance metric is inappropriate. The 

F-measure (F1-score) is a more suitable choice, as it considers both FP and FN, combining two measures 

known as 'precision' and 'recall' from the information retrieval community. 

For instance, having 100% precision in data 2 for the SVM results means that the model rarely 

makes FP predictions, but this comes at the expense of recall, which is 64.25%. This indicates that the model 

correctly identifies a significant portion of actual positive cases (TP) but misses a substantial number of them 

(FN). While an accuracy of 86.54% may appear favorable, it can be significantly influenced by the class 

distribution. In cases where the cost of FN (missed failures) is considerable weight, accuracy alone is an 

insufficient metric. A model with a high F1-score is more suitable because it finds a good balance between 

precision and recall, recognizing both FP and FN. A higher F1-score indicates a better overall model 

performance, making it a more useful metric for imbalanced datasets or situations where there's a trade-off 

between FP and FN. The performance of the three models on three datasets based on the F1-score metric 

shown in Figure 6. 

 

 

 
 

Figure 6. Performance of the three models on the three datasets 

 

 
For dataset 1, our hybrid model achieved an impressive accuracy rate of 97.72%. Breaking down the 

individual models, the SVM model produced an F1-score of 80.09%, while the LSTM model yielded an  

F1-score of 88.84%. Notably, the hybrid LSTM-SVM model stood out with an outstanding F1-score of 

97.71%. This is a significant improvement, showcasing an increase of about 8.87% over the LSTM model's 

performance. Turning our attention to dataset 2, the hybrid model attained an accuracy rate of 97.17%. In 

terms of F1-scores, the SVM model recorded 78.23%, while the LSTM model excelled with a score of 

94.63%. Remarkably, the combination of models within the hybrid LSTM-SVM model delivered an F1-score 

of 96.86%. Here, the hybrid model showcased a substantial improvement of approximately 2.23% over the 

LSTM model's performance. Lastly, for dataset 3, the SVM model achieved an F1-score of 87.90%, while 

the LSTM model displayed its effectiveness with an F1-score of 96.30%. Surpassing both, the hybrid  

LSTM-SVM model demonstrated an impressive F1-score of 97.90%. In this instance, the hybrid model 

exhibited a notable increase of about 1.6% over the LSTM model's performance. These results consistently 

highlight the superiority of the hybrid LSTM-SVM model over individual SVM and LSTM models across 

different datasets. The hybrid approach proves to be a promising strategy for enhancing classification 

performance, particularly in the context of failure prediction tasks. 

 

 

6. CONCLUSION AND FUTURE DIRECTIONS 

Our innovative approach capitalizes on the strengths of both LSTM neural networks and SVM, 

yielding remarkable results in the domain of failure prediction. The LSTM component excels in capturing 

temporal patterns and dependencies within our industrial data, providing valuable insights into the evolving 

behavior of systems leading up to failures. Conversely, the SVM component efficiently classifies these 
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patterns, prioritizing robust predictions, particularly in terms of the F1-score. Our study emphasizes the 

critical importance of predictive maintenance in industrial settings. By accurately identifying impending 

failures well in advance, we empower ourselves to proactively schedule maintenance interventions, 

effectively mitigating costly downtime and production disruptions. This, in turn, not only enhances 

operational efficiency but also translates into significant cost savings. In a world where data-driven  

decision-making reigns supreme, predictive maintenance, driven by advanced machine learning models, 

stands as a transformative force. It not only guarantees the reliability and sustainability of industrial 

operations but also lays the foundation for a more efficient and cost-effective future. Looking ahead, our 

future work envisions the continued refinement and enhancement of the hybrid model. We aim to leverage a 

variety of real-time datasets to optimize its performance further. Additionally, we plan to compare the 

LSTM-SVM hybrid model with other innovative hybrid models and explore its applicability in various fields, 

including emerging topics like green IoT. Through these endeavors, we aspire to advance the frontiers of 

machine learning applications and continue contributing to the advancement of predictive maintenance and 

industrial efficiency. 
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