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 Pneumonia, an infection that fills the alveoli of the lung region with pus causes 

a high rate of chronic illness and fatality amongst children across the globe. 

The most utilized imaging modality for pediatric pneumonia identification is 

chest X-rays, whose features are not always readily visible to the naked eye, 

making it challenging for radiologists to make precise predictions and save 

lives. Knowing how essential it is to have an early and distinct diagnosis of 

pneumonia, speeding up or automating the detection process is highly 

sensible. This article provides a smart, automated system that operates on 

chest X-ray images and can be successfully utilized for spotting pneumonia. 

The deep feature concatenation method used by this detection system intends 

to combine the outcomes of three effective pre-trained models to confirm the 

reliability of the suggested approach. To obtain its optimal performance, the 

hyper-parameters are demonstrated using a trial-and-error approach that 

surpasses existing models with 99.68% accuracy for the early diagnosis of 

pneumonia. A real-time data sample test is conducted on the proposed 

pneumonia detection model to evaluate its robustness. 

Keywords: 

Data augmentation 

Deep learning 

Feature concatenation 

Hyper-parameter optimization 

K-fold cross-validation 

Pediatric pneumonia 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Chitra Ekambaram 

Department of Electronics and Communication Engineering, SRM Institute of Science and Technology 

Kattankulathur, India 

Email: chitrae@srmist.edu.in 

 

 

1. INTRODUCTION 

Pneumonia is a significant threat to children under 5, with an anticipated 11 million deaths by 2030 

without intervention. The condition fills alveoli with pus and fluid, making breathing difficult and reducing 

oxygen intake [1]. Untreated pneumonia can lead to complications like breathing failure and sepsis, even 

causing death [2]. An individual is bound to get pneumonia as a kid, known as pediatric pneumonia than they 

are as a grown-up [3].  

Pediatric pneumonia, more common in children than adults, exhibits symptoms influenced by the 

infection's cause, age, and overall health. Common signs include rapid breathing, low oxygen saturation, cough, 

and high body temperature [4]. Pathogens in a child's nasal passage can harm the lungs when inhaled. 

Additionally, during and right after childbirth, pneumonia can spread through blood [5]. 

Chest radiographs are widely used to detect pneumonia, revealing infiltrates as white spots on  

X-rays [6], [7]. However, examining chest X-rays is difficult and vulnerable to subjectivity [8]. Deep 

convolutional neural networks (D-CNN) are frequently employed for the analysis of images whose primary 

function is pattern recognition and as a result, utilized to identify the abnormalities in medical images [9], [10]. 

Chagas et al. [11] employed 12 ImageNet-trained CNNs, enhancing radiographs for infected lung region 

detection through adaptive histogram equalization. Testing 7 classifiers with pre-trained models, visual 

geometry group (VGG-19) combined with a support vector machine (SVM) outperformed 84 combinations. 
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In their study [12], Nalluri and Sasikala proposed a pneumonia screening methodology integrating dynamic 

histogram equalization (DHE) and median filtering for image enhancement, followed by segmentation using 

improved watershed segmentation. The researchers devised a method to extract pertinent features and select 

optimal ones for training deep learning classifiers. Through the utilization of the mean output from these 

classifiers they achieved a notable detection accuracy of 93.23%. 

Fernandes et al. [13] introduced a pediatric pneumonia CNN, optimizing hyperparameters through 

Bayesian optimization. They enhanced VGG-16 with a specialized CNN overlay, achieving optimal F1-score 

performance despite using pre-processing techniques. According to Mohammed et al. [14], the algorithm 

enhances pneumonia detection using four custom-modified advanced CNN architectures, reducing parameters 

by exclusively employing convolutional components. It utilizes a SoftMax activation with global average 

pooling to map to the output layer, generating a heat map for signal strength assessment. 

Kermany et al. [15] achieved 92.8% accuracy in diagnosing retinal diseases and pediatric pneumonia 

with Inception V3 transfer learning using 5,232 labeled chest X-ray images subjected to quality control. To 

overcome the challenge of scarce labeled pneumonia data, Athar employed adversarial training, a method that 

entails training a secondary network to produce synthetic X-rays resembling real ones but with slight variations. 

Using a mix of authentic and synthetic X-rays the AlexNet model was trained to achieve an impressive 

validation accuracy of 98.28% [16]. 

According to Kundu et al. [17], a pneumonia diagnostic system was introduced using weighted 

ensemble learning, combining three classifiers with weights determined by four assessment criteria and the 

hyperbolic tangent function. The framework achieved optimal results when all layers were trained on two  

open-access pneumonia X-ray datasets. Yi et al. [18] proposed a deep CNN model with 52 convolutional layers 

for feature extraction and two dense layers for pneumonia versus normal classification from X-ray and 

computed tomography (CT) images. The chosen image size of 200×200×3 yielded a precise validation 

accuracy of 96.09%. 

Almaslukh [19] developed a lightweight pneumonia detection model based on DenseNet-121, 

utilizing random search hyperparameter tuning. Dense connectivity in DenseNet-121 addresses the vanishing 

gradient issue and promotes feature reuse. The model's reduced parameter count makes it energy-efficient and 

suitable for rapid detection in medical systems. Alshmrani et al. [20] employed the pre-trained VGG 19 

network to extract features from chest radiographs, categorizing six distinct lung diseases. To augment the 

feature extraction capability of VGG 19, the researchers integrated three supplementary convolutional blocks 

into the network. Following training on 80,000 samples, this adapted network achieved a remarkable testing 

accuracy of 96.48% [20]. 

This research optimizes hyper-parameters for a deep feature concatenated model, merging deep 

features from three successful pre-trained models Inception V3, VGG-16 and DenseNet-201 to mitigate 

vanishing gradient and overfitting in a binary detection system. The proposed concatenated approach was 

demonstrated with manual hyper-parameter tuning to obtain an optimal model for precise estimations. Despite 

the tedious nature of manual tuning, it is valuable for young researchers to grasp hyper-parameter behavior and 

its impact on network weights.  

 

 

2. PROPOSED FINE-TUNED CONCATENATION METHOD  

Figure 1 presents the visual layout of the proposed methodology. The framework consists of six main 

stages: dataset collection and splitting, data pre-processing, transfer learning, model concatenation,  

hyper-parameter tuning and finally model training and prediction.  

 

2.1.  Dataset description 

The X-ray images used for the development of the proposed model are from a medical image directory 

created by Kermany et al. [21] which is publicly accessible from the Kaggle database. The directory consists of 

chest X-ray (CXR) images of children aged from 1 to 5 years provided by the Guangzhou Women and Children’s 

Medical Center. Out of the total 5,856 CXR images, 4,273 are associated with pneumonia, and the remaining 

1,583 are healthy. 10% of the normal class has been chosen from each class for testing to prevent class imbalance 

challenges. Furthermore, ethical approval for the execution of this study was granted by the SRM Medical 

College Hospital and Research Centre, located in Kattankulathur, India. 13 real-time chest X-ray images 

including 6 pediatric pneumonia specimens and 4 normal X-rays have been collected which provide diverse set 

of cases to assess the model's performance across different conditions and scenarios. 

 

2.2.  Dataset pre-processing 

Normalization in the pre-processing stage speeds up convergence by stabilizing the learning process. 

In this research, CXR images are scaled from 0-255 to 0-1 by dividing each pixel by 255, ensuring 

normalization within the range of 0-1 [22]. Data augmentation strategy is implemented to enhance variability 
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and address class imbalance challenges in the training dataset. Given the substantial number of pneumonia-

affected images and a limited number of normal images, potential bias towards the pneumonia class exists [23]. 

Therefore, for class 0 pneumonia images, augmentation involves clockwise/counterclockwise rotation by 15° 

and horizontal flipping. To balance data in class 1 (normal images), augmentation includes rotation, horizontal 

flipping, 20° shear, 20% zoom, 10% left/right shift, and varying brightness from 20 to 90%.  
 

 

 
 

Figure 1. The visual layout of the proposed methodology 
 

 

2.3.  Transfer learning 

Transfer learning, the application of knowledge gained from a previous task to enhance learning in a 

new related task, is employed in this research [24]. Due to limited access to the pediatric pneumonia dataset, 

seven pre-trained models namely VGG-16, VGG-19, Inception V3, Xception, MobileNet V2, DenseNet-201, 

and ResNet-50 that are often employed in medical applications and trained with the ImageNet dataset are 

utilized. The fully connected layer, which served as the final layer in these models alone is retrained without 

altering the weights of the initial layers. 

 

2.4.  Model concatenation 

The concatenated model is formed by combining features from the top-performing three out of the 

seven pre-trained models evaluated on the pediatric pneumonia dataset. The convolutional base of Inception V3, 

VGG-16, and DenseNet-201 is frozen, serving as feature extractors. Input images propagate forward through 

these networks, and optimal features are extracted from the layer prior to the fully connected layer [25]. A total 

of 2,048 features from Inception V3, 512 from VGG-16, and 1,920 from DenseNet-201 are extracted, resulting 

in a concatenated model with 4,480 features. These feature sets are then fed into a reshaped fully connected 

layer, followed by a sigmoid classifier for pneumonia and normal CXR image classification. 

 

2.5.  Hyper-parameter tuning 

Hyper-parameter tuning is an imperative perspective that outcomes in the best execution of the model 

by tracking the right combination of hyper-parameters in a sensible measure of time [26]. For a more reliable 

and optimized model, optimal hyper-parameters must be defined prior to data fitting because they vary for 

distinct datasets [27]. The hyperparameters are demonstrated using a trial-and-error approach to obtain the 

optimal performance of the proposed concatenated model, and the optimal model is utilized to detect 

pneumonia in children. 
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The preliminary step is to select the optimizer, which is an algorithm used to update the various 

attributes of the model to minimize the losses. The Adam optimizer performed well with our dataset. Upon 

selection of the optimizer, the model is validated for optimum performance using a range of learning rates and 

batch sizes. After the learning rate and batch size are set to the desired levels the model is evaluated with 

different values of momentum to achieve its optimal value. The model is assessed for various weight decay 

and epsilon values to determine its ideal value. Finally, a learning rate adjustment has been made which 

produced meaningful improvements. 

 

2.6.  Model training and prediction 

The concatenated model is trained and validated for 50 epochs using 10-fold cross-validation, 

reducing bias and improving generalization. The training involved randomly dividing the dataset into  

10 folds (9:1 split for training and validation) across ten iterations [28]. The average accuracy obtained in each 

iteration is the final accuracy of the model. 

Starting with randomly initialized weights and biases, the model's predicted outputs are compared 

with actual outputs. Weights and biases are then updated and backpropagated through initial layers based on 

the loss function, aiming to minimize loss and improve accuracy [29]. Training continued until parameter 

updates no longer enhanced validation accuracy, employing early stopping with a patience value of 5. 

Classification utilized the fully connected layer with a sigmoid activation function for binary output 

corresponding to pneumonia and normal cases. 
 

 

3. RESULTS AND DISCUSSION 

The proposed concatenated model is refined systematically to enhance its effectiveness in detecting 

pediatric pneumonia from chest radiographs. The fine-tuning process begins with pre-training on a diverse 

dataset, allowing the model to learn fundamental patterns and features relevant to medical imaging. 

Subsequently, the model undergoes iterative adjustments, including domain-specific training, hyperparameter 

optimization, and performance evaluation, to ensure it achieves high accuracy and reliability in pneumonia 

classification. 

 

3.1.  Performance metrics 

Performance metrics evaluate the performance of the deep learning model based on its ability to 

forecast unobserved data. The predicted outcomes of the models are visualized in the form of a confusion 

matrix that has 4 entries: i) true positives (TP): correctly predicted pneumonia cases, ii) true negatives (TN): 

correctly predicted normal cases, iii) false positives (FP): incorrectly predicted normal cases, and iv) false 

negatives (FN): incorrectly predicted pneumonia cases [30]. Table 1 displays the metrics used to evaluate the 

performance of the proposed model.  
 

 

Table 1. Metrics used to evaluate the performance of the model 
Metrics Formula 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-score 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

MCC 𝑇𝑁 × 𝑇𝑃 − 𝐹𝑁 × 𝐹𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

 

3.2.  Results 

The concatenation method in this detection system integrates features from three pre-trained models: 

Inception V3, VGG-16, and DenseNet-201, chosen based on their performance metrics among seven evaluated 

models widely used in medical diagnostics. Evaluation metrics in Table 2 indicate that VGG-16 and Inception 

V3 achieved the highest accuracy score of 94.94%. Considering other metrics like precision, specificity, and 

Matthew correlation coefficient (MCC), Inception V3 outperformed VGG-16 with 100% precision and 

specificity. Similarly, DenseNet-201 outperformed VGG-19 with an accuracy of 93.67%, demonstrating 100% 

precision and specificity. Figures 2(a) to 2(c) depicts the confusion matrix for the three best-performed models 

on the test data. 
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Table 2. Classification results of the seven pre-trained models 

Model TP TN FP FN 
Performance (%) 

MCC 
Accuracy Precision Sensitivity F1-score Specificity 

VGG-16 143 157 1 15 94.94 99.31 90.51 94.70 99.37 0.9023 

VGG-19 139 157 1 19 93.67 99.29 87.97 93.29 99.37 0.8791 
Inception V3 142 158 0 16 94.94 100 89.87 94.67 100 0.9034 

Xception 134 156 2 24 91.77 98.53 84.81 91.16 98.73 0.8437 

MobileNet V2 136 156 2 22 92.41 98.55 86.08 91.89 98.73 0.8549 
DenseNet-201 138 158 0 20 93.67 100 87.34 93.24 100 0.8805 

ResNet-50 123 157 1 35 88.61 99.19 77.85 87.23 99.37 0.7907 

 

 

   
(a) (b) (c) 

 

Figure 2. Confusion matrix for the three best-performed models of (a) Inception V3, (b) VGG-16, and  

(c) DenseNet-201 

 

 

The best features of the top 3 models Inception V3, VGG-16, and DenseNet-201 are combined to 

develop the concatenated model. Table 3 highlights the performance of the concatenated model. In comparison 

to the individual performances of the three models, the concatenated model performs better. The concatenated 

model achieved an accuracy of 98.73% which is almost a 4% increase when compared with the individual 

performance. The accuracy of the concatenated model increased as a result of a sharp increase in the true 

positive value. The true positive value for the concatenated model is 155, which indicates that out of the 158 

pneumonia cases 155 are correctly classified as pneumonia and 3 are misclassified as normal. The true negative 

value is 157, which indicates that out of the 158 normal cases, 157 are correctly classified as normal while 1 

instance is misclassified as pneumonia. 

 

 

Table 3. Performance metrics of the concatenated model 

Model TP TN FP FN 
Performance (%) 

MCC 
Accuracy Precision Sensitivity F1 score Specificity 

Inception V3 142 158 0 16 94.94 100 89.87 94.67 100 0.9034 

VGG-16 143 157 1 15 94.94 99.31 90.51 94.70 99.37 0.9023 
DenseNet-201 138 158 0 20 93.67 100 87.34 93.24 100 0.8805 

Concatenated model 155 157 1 3 98.73 99.36 98.10 98.73 99.37 0.9748 

 

 

3.2.1. Optimizer selection 
The concatenated model, developed by merging features from three models, is trained using the Adam 

optimizer. To identify the most effective optimization approach, the model is also assessed with alternative 

algorithms, including RMSProp, stochastic gradient descent (SGD), Adadelta, and Adagrad. Results in Table 

4 reveal that the model excels with Adam optimization compared to other algorithms. Throughout the entire 

fine-tuning process, the Adam optimization algorithm consistently maintained a high accuracy of 98.73% with 

the pediatric pneumonia dataset. 

 

3.2.2. Optimal learning rate selection 
The model is initially trained with the Adam optimizer's default learning rate of 0.001. Experimentation 

with different learning rates, including 1e-2, 1e-4, and 1e-5, is conducted. Table 4 presents the classification 

results, indicating improved accuracy at a learning rate of 1e-4. Consequently, the learning rate is fixed at 1e-4 

for further model tuning. The concatenated model achieved an accuracy of 99.05%, correctly classifying  

156 pneumonia cases and 157 normal cases, with only 2 and 1 misclassifications, respectively. 
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Table 4. Hyper-parameter optimization of the concatenated model 

Hyper-parameters TP TN FP FN 
Performance (%) 

MCC 
Accuracy Precision Sensitivity F1 score Specificity 

Optimization 
algorithm 

Adam 155 157 1 3 98.73 99.36 98.10 98.73 99.37 0.9748 
RMSProp 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 

SGD 153 157 1 5 98.10 99.35 96.84 98.08 99.37 0.9627 

Adadelta 142 158 0 16 94.94 100 89.87 94.67 100 0.9034 
Adagrad 136 156 2 22 92.41 98.55 86.08 91.89 98.73 0.8549 

Learning 

rate 

0.01 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 

0.001 155 157 1 3 98.73 99.36 98.10 98.73 99.37 0.9748 
1e-4 156 157 1 2 99.05 99.36 98.73 99.05 99.37 0.9810 

1e-5 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 

Batch size 16 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 
25 153 158 0 5 98.42 100 96.84 98.39 100 0.9688 

30 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

32 156 157 1 2 99.05 99.36 98.73 99.05 99.37 0.9810 
35 153 158 0 5 98.42 100 96.84 98.39 100 0.9688 

40 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

64 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 
Momentum β1=0.9 β2=0.999 156 157 1 2 99.05 99.36 98.73 99.05 99.37 0.9810 

β1=0.92 β2=0.999 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

β1=0.95 β2=0.999 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 
β1=0.99 β2=0.999 153 158 0 5 98.42 100 96.84 98.39 100 0.9688 

β1=0.992 β2=0.999 153 158 0 5 98.42 100 96.84 98.39 100 0.9688 
β1=0.999 β2=0.999 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

β1=0.88 β2=0.999 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

β1=0.8 β2=0.999 153 158 0 5 98.42 100 96.84 98.39 100 0.9688 
β1=0.7 β2=0.999 153 158 0 5 98.42 100 96.84 98.39 100 0.9688 

β1=0.9 β2=0.997 154 158 0 4 98.73 100 97.47 98.72 100 0.9750 

β1=0.9 β2=0.99 156 158 0 2 99.37 100 98.73 99.36 100 0.9874 
β1=0.9 β2=0.992 153 158 0 5 98.42 100 96.84 98.39 100 0.9688 

β1=0.9 β2=0.97 154 158 0 4 98.73 100 97.47 98.72 100 0.9750 

β1=0.9 β2=0.9 154 157 1 4 98.42 99.35 97.47 98.40 99.37 0.9685 
β1=0.9 β2=0.92 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 

Weight 

decay 

0 156 158 0 2 99.37 100 98.73 99.36 100 0.9874 

0.1 132 158 0 26 91.77 100 83.54 91.03 100 0.8470 
1e-2 147 158 0 11 96.52 100 93.04 96.39 100 0.9326 

1e-3 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 

1e-4 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 
1e-5 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

1e-6 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

Epsilon 1e-7 156 158 0 2 99.37 100 98.73 99.36 100 0.9874 
1e-8 152 157 1 6 97.78 99.35 96.20 97.75 99.37 0.9562 

1e-6 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

1e-3 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 
0.1 151 158 0 7 97.78 100 95.57 97.73 100 0.9566 

1 147 158 0 11 96.52 100 93.04 96.39 100 0.9326 

 

 

3.2.3. Optimal batch size selection  
The model which is already trained with batch size 32 underwent additional training with a range of 

batch sizes to obtain the optimal value. The outcomes in Table 4 demonstrate how the model performs with 

various batch sizes. It can be seen from the table that higher performance is obtained with a batch size of 32. 

The model is further adjusted for other hyper-parameters after fixing the batch size to 32. 

 

3.2.4. Optimal momentum selection 
The concatenated model, initially trained with the default momentum values of the Adam optimizer 

β1=0.9 and β2=0.999, is further evaluated with various momentum values. Table 4 displays the model's 

performance, indicating that the combination of β1=0.9 and β2=0.99 achieved the highest accuracy at 99.37%. 

With 100% precision and specificity, all normal cases are correctly classified, while 2 out of 158 pneumonia 

cases are misclassified as normal. These momentum values β1=0.9 and β2=0.99 are then frozen before 

proceeding to the next tuning stages. 

 

3.2.5. Optimal weight decay selection 
The model which is initially trained with the default weight decay of 0 is further trained with different 

values to get the optimal one. The classification results of the concatenated model with different values of 

weight decay are shown in Table 4. However, the performance of the model has shown no improvement with 

values greater than 0 and therefore we have considered using the default weight decay. 
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3.2.6. Optimal epsilon selection 
The model is trained with different values of epsilon whose performance is presented in Table 4. The 

model has shown better performance with the default epsilon value 1e-7 in comparison with other values. 

Hence the default epsilon value has been chosen for the model.  

 

3.2.7. Fine-tuning the learning rate 

After tuning all hyper-parameters, the final adjustment of the learning rate significantly improved the 

model's accuracy to 99.68%. With a learning rate of 2e-4 (0.0002), the model correctly classifies all normal 

cases and misclassifies only one pneumonia case as shown in Table 5. The optimal hyper-parameters obtained 

are: learning rate=2e-4, batch size=32, momentum: β1=0.9 and β2=0.99, weight decay=0, and epsilon=1e-7. 

The confusion matrix and receiver operating characteristic (ROC) curve of the proposed model are presented 

in Figures 3(a) and 3(b). 

 

 

Table 5. Performance of the concatenated model with fine-tuned learning rate 

Learning rate TP TN FP FN 
Performance (%) 

MCC 
Accuracy Precision Sensitivity F1 score Specificity 

1e-4 156 158 0 2 99.37 100 98.73 99.36 100 0.9874 

0.008 156 157 1 2 99.05 99.36 98.73 99.05 99.37 0.9810 

0.005 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 
2e-4 157 158 0 1 99.68 100 99.37 99.68 100 0.9937 

3e-4 152 158 0 6 98.10 100 96.20 98.06 100 0.9627 

 

 

 
(a) 

 
(b) 

 

Figure 3. Confusion matrix and ROC curve of the proposed model of (a) confusion matrix and  

(b) ROC curve 

 

 

3.3.  Real-time testing 

13 real-time samples obtained from SRM Medical College Hospital and Research Centre are used to 

assess the robustness of the model. The database includes 6 pediatric pneumonia specimens and 4 normal  

X-rays. The model accurately categorizes every sample, yielding a 100% accuracy rate. 

 

 

4. CONCLUSION 

Pneumonia causes pleural effusion that leads to a fatality rate of 15% in children below the age of 5. 

An early diagnosis of the disease and prompt medical intervention can limit the ramifications and potentially 

save the lives of thousands of children. The contribution of this research is the proposal of a diagnostic 

framework for pediatric pneumonia based on concatenation and optimization. The concatenation methodology 

employed in this detection system integrates the performance of three successful pre-trained models Inception 

V3, VGG-16 and DenseNet-201. The aim is to enhance the accuracy of the concatenated model by optimizing 

the hyper-parameters to provide more precise estimates. A step-by-step optimization is carried out with the 

Adam optimizer and the following optimal hyper-parameters are obtained: learning rate=2e-4, batch size=32, 

momentum: β1=0.9 and β2=0.99, weight decay=0 and epsilon=1e-7. The proposed fine-tuned concatenated 

model outperformed other existing models with an accuracy of 99.68%. We have reached an important 

conclusion that hyper-parameter optimization is an essential procedure to obtain the best results from the 
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model. However, the suggested model entails considerable computational expenses due to the concatenation 

and manual optimization methods employed. In the future, we would extend our research to develop an optimal 

model for multiclass lung disease classification. 
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