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 Artificial intelligence (AI) has been widely applied in the medical world. 

One such application is a hand-driven robot based on user intention 

prediction. The purpose of this research is to control the grip strength of a 
robot based on the user’s intention by predicting the grip strength of the user 

using deep learning and electromyographic signals. The grip strength of the 

target hand is obtained from a handgrip dynamometer paired with 

electromyographic signals as training data. We evaluated a convolutional 
neural network (CNN) with two different architectures. The input to CNN 

was the root mean square (RMS) and mean absolute value (MAV). The grip 

strength of the hand dynamometer was used as a reference value for a low-

level controller for the robotic hand. The experimental results show that 
CNN succeeded in predicting hand grip strength and controlling grip 

strength with a root mean square error (RMSE) of 2.35 N using the RMS 

feature. A comparison with a state-of-the-art regression method also shows 

that a CNN can better predict the grip strength. 
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1. INTRODUCTION 

The combination of artificial intelligence (AI) and biosensors within assistive systems has yielded 

promising outcomes across various research endeavors. AI-enhanced biosensors have demonstrated potential 

for rapid diagnostics, precision therapeutics, and disease management [1]. These technologies leverage 

machine learning, neural networks, and other AI techniques to improve biosensor functionality, connectivity, 

and point-of-care adoption [2]. Wearable biosensing technologies, empowered by AI, enable the monitoring 

of physiological signals and aid in disease diagnosis, supporting the trend toward personalized medicine [3]. 

The combination of AI with sensing technology has led to the development of intelligent biosensors capable 

of rapid target detection with high sensitivity, accuracy, and precision [4]. Jin et al. [5] delve into the 

challenges and prospects associated with AI-driven biosensors, highlighting the significance of material 

advancements, biorecognition components, and data processing techniques. These insights offer valuable 

guidance for the future evolution of AI-based biosensors tailored for assistive applications. 

https://creativecommons.org/licenses/by-sa/4.0/
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Electromyography (EMG) is a method for recording muscle signals. EMG has various applications, 

including controlling prosthetic robots for amputee patients to improve the robot-user interaction [6]–[11]. 

Anam and Al-Jumaily [6] focused on developing an amputation robot that moves according to the user’s 

wishes, paying attention to the user’s comfort and as if the robot were a part of his body. A prosthetic robot is 

ideally used to replace the patient's hand and move smoothly and with specific strength according to the 

user’s intention [12]. To ensure that a robot's hand can hold objects correctly and precisely according to grip 

strength, it is crucial to predict the grip strength. There have been various approaches proposed to predict grip 

strength. Lo et al. [13] investigated the use of grip strength to predict other hand exertions, finding it less 

effective for palmar pinch and thumb press. 

Lv et al. [14] proposed a method based on surface EMG signals, optimizing a support vector 

regression model through the sparrow search algorithm to accurately predict hand grip strength.  

Sayadizadeh et al. [15] utilized artificial neural networks to predict grip and pinch strength based on hand 

anthropometric parameters, identifying key predictors such as hand length, width, and shape index.  

Chihi et al. [16] used a technique based on the nonlinear Hammerstein-Wiener model. Some researchers are 

also starting to use deep learning to predict grip strength. Su et al. [17] proposed a convolutional neural 

network (CNN) to predict the strength of the EMG signal. However, this study did not specifically focus on 

hand-grip strength. Hwang et al. [18] presented deep neural networks that can predict hand grip strength, but 

the results have not yet been used to control robots directly. It is necessary to further evaluate the 

implementation of force prediction on robotic hands. Several investigations have delved into utilizing deep 

learning models to forecast grip strength through EMG signals. 

Xu et al. [19] introduced impedance signals to predict grip force, achieving high accuracy with a 

long short-term memory (LSTM) model. Jiang et al. [20] devised an adaptive neural fuzzy inference system 

employing surface EMG signals, effectively predicting grip strength and offering insights into rehabilitative 

therapy. Ma et al. [21] utilized a gene expression programming algorithm and a back propagation neural 

network to construct a prediction model for grasping force based on sEMG signals, achieving impressive 

accuracy. However, the results were not directly used to control the robot. These studies demonstrate the 

potential of deep learning models in accurately forecasting grip strength through EMG signals. However, it 

should be noted that the results were not directly applied to robot control. 

This article aims to design a grip strength control system for hand robots using deep learning, 

specifically the CNN. This research presents a novel framework for robotic hand control through grasp force 

prediction, advancing the state-of-the-art in dexterous manipulation. The framework incorporates a 

comprehensive comparative analysis of deep learning architectures, specifically evaluating various CNN 

models against traditional approaches, including LSTM networks and classical machine learning algorithms 

such as random forest (RF), k-nearest neighbors (k-NN), and decision trees (DT). The experimental results 

demonstrate the framework's effectiveness in enhancing grip precision and control efficiency, providing 

valuable insights for the development of more sophisticated robotic manipulation systems. In addition to its 

application in robotic control, CNNs have been widely utilized in other domains. Examples include early 

stroke disease prediction [22] and detecting student attention levels [23]. These examples highlight the 

versatility of CNNs in addressing diverse challenges across fields.  

The article's structure is as follows. Section 2 discusses the methods used in this study. Section 3 

presents the results and discussion. Finally, the article concludes with key findings and future directions. 

 

 

2. METHODS 

This research aims to design a robot control system based on predictions of the user's grip strength 

based on muscle signals using deep learning methods. The deep learning method used is a CNN. The general 

design of the system is shown in Figure 1. The proposed control system appears to be an open loop because 

there are no pressure sensors on the robot or the robot’s fingertips. However, the detected strength sensor 

comes directly from the user, namely from the muscle signals decoded by CNN. Details of each stage will be 

explained in the following sections. 

 

2.1.  Acquisition and pre-processing data 

The Myo armband collected muscle signals, or EMG. The Myo armband was attached to the 

participant's forearm while the hand gripped the hand dynamometer. Data were collected from five 

respondents who were instructed to move their hands through opening and grasping motions at 

predetermined intervals of 15 seconds for each strength parameter. The study participants were men aged  

20 to 25 years with good hand muscle condition based on the diameter of their arms. This research included 

respondents who had physical and mental health without a history of illness. The EMG device was installed 

on the forearm of the respondent's right hand, which held the hand dynamometer. Efforts were made to 

ensure that the respondents were as comfortable as possible so they could focus on moving their hands. The 
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conditions of the respondents during data collection are shown in Figure 2. This data collection procedure 

was approved by the Ethics Commission of the University of Jember under number 

960/UN25.8/KEPK/DL/2020. 

The steps in preprocessing EMG signal data are signal filtering and windowing, that is, taking a 

signal at a certain time. The EMG signal filtering process uses a bandpass filter by entering the upper limit 

and lower limit value parameters and a notch filter to overcome the disturbance of the mains voltage.  

A bandpass filter ensures that the signal being processed is an EMG signal, which usually ranges from  

10 to 500 Hz. The strength prediction system is an overview of the data processing system shown in Figure 3. 

The prediction system consists of three stages: data acquisition, preprocessing, and prediction. Data 

acquisition collects muscle electrical activity and handgrip strength (N). Preprocessing involves EMG signal 

filtering (bandpass and notch filters), windowing for structured sampling, and feature extraction using root 

mean square (RMS) and mean absolute value (MAV). Finally, CNN is used to predict EMG data, generating 

an accurate prediction model. 

 

 

 
 

Figure 1. The proposed control system 

 

 

  
 

Figure 2. Data collection 

 

Figure 3. Data processing 

 

 

2.2.  Feature extraction 

Feature extraction is performed before the forecasting stage using a CNN. The feature extraction 

used in this investigation is the RMS and MAV. Apart from that, raw signals will also be tested without 

going through the extraction feature. The mathematical formula for the RMS feature extraction is shown in (1). 

 

𝑅𝑀𝑆 =  √
1

𝑇
∫ 𝑥(𝑡)2𝑑𝑡

𝑡𝑜+𝑇

𝑡𝑜
 (1) 

 

The MAV extraction feature is widely used to process EMG signals digitally. MAV describes the 

signal features using the formula for average and absolute values. The mathematical formula for the MAV 

feature extraction is shown in (2). 

 

𝑀𝐴𝑉 = 1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1  (2) 
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2.3.  CNN architecture design for grip strength prediction 

The CNN architecture is comprised of two main parts: feature learning and classification. The feature 

learning process involves a series of layers, including convolutional and pooling layers. The classification 

process includes flattened and fully connected layers. This research investigates two CNN architectures, each 

with parameters such as input shape, filter, kernel size, pooling size, and fully connected layer. The study 

utilizes a one-dimensional CNN (1D CNN), and the parameter values are presented in Table 1. 

 

 

Table 1. CNN architecture configuration 
 Convolution layer Kernel size Pooling size 

Architecture Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 

CNNs 1 128 64 32 4 2 1 2 1 1 

CNNs 2 128 64 - 4 2 - 2 1 - 

 

 

In Table 1, the values of the architectural parameters remain the same, and the only difference is in 

the input shape. The input shape of the raw data is 40.8, which is obtained from the windowing results.  

On the other hand, the input shape of the RMS and MAV data is 8.1, which is obtained after reshaping the 

windowing data. This is necessary because feature extraction using RMS and MAV is not sequential.  

The original windowing data was a 3-dimensional matrix, and it became two-dimensional due to the loss of 

sequence. Therefore, reshaping is necessary to change the RMS and MAV data matrices to match the CNN. 

The CNN architecture can be described in Figures 4 and 5. Figure 4 shows 8 depth layers starting from input 

shape, convolution 1, pooling 1, convolution 2, pooling 2, convolution 3, pooling 3, flatten, and dense, and 

Figure 5 shows the architecture 2 raw data has 2 convolution layers, 2 pooling layers, flatten, and dense. 

 

 

 
 

Figure 4. CNN architecture 1 

 

 

 
 

Figure 5. CNN architecture 2 

 

 

2.4.  Predict hand grip strength with CNN 

The input for CNN is from the feature extraction process on the EMG signal using RMS and MAV. 

This research utilized a 1D CNN with several layers: the input, convolutional, sampling, and output layers.  

A schematic representation of the CNN method for predicting muscle grip strength is shown in the Figure 6 

illustrates the prediction methodology using raw EMG data and CNN. The Myo armband records muscle 
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electrical activity from eight sensor channels, which undergo bandpass and notch filtering before being 

windowed. Features are extracted using RMS and MAV, serving as CNN input. The CNN process includes 

convolution, pooling, and fully connected layers, transforming data from two to three dimensions (x, y, z) 

with filters (z-axis) and kernel size adjustments. The resulting feature map predicts handgrip strength, which 

is recorded alongside EMG signals. 

 

 

 
 

Figure 6. Schematic representation of the prediction of the grip force 

 

 

2.5.  Low-cost prosthetic hand 

A hand prosthetic robot is a robotic hand that is used for gripping. This type of prosthetic is 

designed to excel at grasping rather than manipulating tasks. It features high dexterity, sophisticated sensors, 

and advanced control strategies. Five servo motors are used on the five robot fingers with the Arduino, as 

shown in Figure 7. In this figure, the configuration of the servo motor pins on the robot's finger is as follows: 

thumb on pin 3, index finger on pin 4, middle finger on pin 5, ring finger on pin 6, and little finger on pin 7. 

The Myo Armband dongle connects to a PC via Bluetooth, which is serially linked to an Arduino Uno for 

transmitting servo motor angle control data. Five servomotors share parallel VCC and ground connections, 

powered through an LM2596 step-down module with a 3-cell 2200 mAh LiPo battery. The 11.1 V battery 

input is regulated to 5 V, matching the servo motor's operating voltage. 

 

 

   
 

Figure 7. Electronic circuit design of hand robot 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Offline testing results of CNN data RAW, RMS, and MAV architecture 

Once the parameters of the CNN and its architecture are defined, experiments are conducted on the 

RAW, RMS, and MAV data to identify the most accurate predictive results from the pre-determined 
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architecture. To achieve this, a training and testing ratio of 7:3 was utilized. The outcomes of the experiments 

conducted on the RAW, RMS, and MAV data from the two architectures, namely architecture 1 and 

architecture 2, are presented in Table 2. 

Based on the data obtained, a comparison has been made of three pre-processing methods: raw data, 

RMS, and MAV. With raw data, the CNN1 architecture achieves an average accuracy that exceeds that of the 

CNN2 architecture, recording a value of 0.9952 and a low MSE of 0.777. The second test with RMS shows 

results nearly identical to CNN1, with an accuracy of 0.8358 and CNN2 at 0.8357; however, the MSE values 

differ significantly, with CNN1 at 19.142 and CNN2 at 41.971. In the third test, using MAV, notable results 

were achieved, with CNN1 attaining an R2 score of 0.9177 and CNN2 an R2 score of 0.8418. 

Figure 8 describes the performance comparison of CNN architecture based on input features.  

Figure 8(a) depict a comparison chart of the R2 and Figure 8(b) depict a comparison chart of the RMSE of 

architectures 1 and 2, based on three input features. CNN1 architecture performs significantly better with raw 

data than RMS or MAV, suggesting that raw data contains more relevant information for precise predictions. 

However, real-time implementation on robots must consider processing power and memory constraints, 

requiring a balance between accuracy and practicality. Future research could explore alternative or combined 

input features to enhance CNN performance. Overall, architecture 1 with raw data appears to be the optimal 

choice for real-time robotic applications. 

 

 

Table 2. CNN architecture testing results 
Subject RAW RMS MAV 

R2 MSE R2 MSE R2 MSE 

CNN1 CNN2 CNN1 CNN2 CNN1 CNN2 CNN1 CNN2 CNN1 CNN2 CNN1 CNN2 

1 0.9967 0.9964 0.640 0.880 0.8376 0.8376 18.019 40.122 0.9202 0.8611 20.381 33.972 

2 0.9949 0.9899 1,100 2,131 0.8165 0.8165 23.145 45.430 0.8800 0.8565 29.642 39.805 

3 0.9933 0.9908 0.784 0.935 0.8184 0.8184 20.632 43.787 0.9338 0.8410 17.020 45.176 

4 0.9967 0.9952 0.646 1.198 0.8217 0.8217 15.925 47.623 0.9201 0.8171 20.874 48.346 

5 0.9948 0.9943 0.717 1.385 0.8846 0.8846 17.990 32.896 0.9345 0.8337 17.921 44.231 

Mean 0.9952 0.9933 0.777 1.305 0.8358 0.8357 19.142 41.971 0.9177 0.8418 21.676 42.306 

 

 

 
(a) 

 

 
(b) 

 

Figure 8. Comparison of average performance between architecture 1 and architecture 2: (a) R2 and (b) MSE 
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3.2.  Grip strength prediction testing 

After experimenting with various types of architecture, the predictive results of grip strength were 

tested. The tests were carried out on the input data from RMS and MAV using the first CNN architecture. 

Figure 9 predict the results of CNN model in Figure 9(a) using RMS and Figure 9(b) using MAV features 

can follow the target but produces oscillating predictions. For instance, at a target of 10 N, the predicted 

output fluctuates around this value rather than being exact. Smoothing techniques like moving averages can 

improve real-time performance. While it is unclear whether RMS or MAV performs better, the RMS-based 

model exhibited fewer oscillations. Raw data was excluded to minimize processing demands for real-time 

control. Overall, the CNN architecture effectively predicts grip strength, though minor deviations from target 

values remain. 
 

 

 
(a) 

 

 
(b) 

 

Figure 9. CNN prediction results with feature extraction using (a) RMS and (b) MAV 
 

 

3.3.  CNN and other methods 

Figure 10 presents the results of a comparison of the CNN method with four other methods, namely 

LSTM, RF, DT, and KNN. Figure 10(a) illustrated the comparison measures use R² and Figure 10(b) 

illustrated MSE. These figures provide a detailed comparison of the five different methods. Figure 10 show 

two interesting things to discuss: the effect of features on model performance and the model's performance. 

In terms of features, the RMS feature is better than the MAV in all models. Thus, the RMS feature is most 

recommended compared to the MAV feature. As for model performance, deep learning models are generally 

better than machine learning models, with the CNN model being the best. If we look at the performance of 

the models from the R2 side, it seems that the difference in the performance of the CNN model and the other 

models is not too significant. However, the difference is quite significant when viewed from the RMSE 

value. The CNN model with the RMS feature produces an RMSE error of about 2 Newtons, whereas the 

LSTM is around 6 Newtons. Even in the DT, it can be up to 10 Newtons. Meanwhile, the highest force value 

measured by the sensor is 50 Newton. Therefore, the RMSE error value of 10 Newtons is very large. With an 

RMSE error value of around 2 Newtons, the performance of the CNN mode will look very good. 
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(a) 

 

 
(b) 

 

Figure 10. Comparison between five methods based on: (a) R2 and (b) MSE 

 

 

3.4.  Online experiments 

The process of testing predictions directly before they are applied to the hand robot is called online 

testing. This test makes use of EMG data, with RMS and MAV extraction features, using the CNN method 

that was previously trained in the offline experiment. Figure 11 present the results for the online test of the 

CNN method using RMS are presented in Figure 11(a) and MAV extraction features as shown in  

Figure 11(b) are very similar. However, upon closer comparison, the online test with RMS feature extraction 

has a predicted value that is almost identical to the actual value. 

 

 

  
(a) (b) 

 

Figure 11. Online test results with (a) RMS and (b) MAV feature extraction 
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3.5.  Robot implementation 

3.5.1. Actuator testing 

Servomotor actuator testing is performed to calibrate the angle of rotation of the servomotor. A 

parallel arc is placed at an angle of 0 to obtain an angle that corresponds to the angular parameters for each 

strength. The angle measurement data from the servo motor is then averaged, and the percent error value is 

calculated. The resulting measurement of the angle of the servo motor in the hand robot is presented in Table 3. 

 

 

Table 3. Actuator testing 
Force 

(N) 

Angles 

(o) 

Servo angle measurement (o) Average 

angle (o) 

Average 

error (%) Thumb Index finger Middle finger Ring fingers Little finger 

0 50 48 50 48 49 49 48.8 2.45 

10 70 65 68 65 67 67 66.4 5.42 

20 90 85 85 80 80 85 84 7.14 

30 110 100 105 100 100 105 103 6.79 

40 130 120 120 120 120 120 120 8.3 

50 150 140 140 140 140 140 140 7.14 

 

 

In this evaluation, we determined the accuracy parameter of the servo rotation with a maximum 

error value of 10%. The test results revealed that the highest percentage error observed was 8.3%. Our 

measurements of the angles on the robot's finger produced slightly different average values for each angle 

measurement compared to the actual angle. This is supported by the percentage of error values that fall below 

10%. As such, we can confidently affirm that all the servo rotations of each finger work with utmost accuracy. 

 

 

3.5.2. Hand grip strength testing in robots 

The CNN prediction results are sent to Arduino to drive the strength of the robot grip. The results of 

the grip test on the robot are shown in Figure 12. For the predicted strength of 0 and 10 N, the operator 

should hold the cup because it is not strong enough for the robot to grip the plastic cup. The robot can grip 

plastic cups well for grip strength greater than 20 N. 

 

 

 
 

Figure 12. Robot hand's grip strength measured in experiment 

 

 

3.6.  Discussion and limitation 

The investigation of grip strength prediction through advanced CNN architectures represents a 

significant advancement in robotic hand control and biomechanical signal processing. Our proposed 

methodology demonstrates remarkable predictive performance, achieving an R² score of 0.99, which 

substantially outperforms previous methodological approaches in the field of grip strength estimation. A 

critical examination of existing research reveals a progressive improvement in predictive accuracy across 

various machine-learning techniques. As illustrated in the comparative performance Table 4, the performance 

of grip strength prediction methods has evolved from linear regression (R²=0.82) to increasingly 

sophisticated neural network approaches. Our CNN-based method represents the current pinnacle of 

performance, significantly advancing the state-of-the-art in grip strength prediction. 

 

 

Table 4. Comparative performance of grip strength prediction methods 
Research methods R2 score 

Regression [24] 0.82 
MLP [18] 0.88 

LSTM [25] 0.90 

NN [26] 0.98 

CNN (proposed method) 0.99 
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Despite the promising results, several critical limitations must be addressed in future research. The 

current system's prediction results, while generally accurate, exhibit occasional fluctuations that could pose 

risks when handling delicate objects. This variability necessitates further refinement to ensure consistent and 

precise grip strength prediction. Moreover, the study's current scope is limited to testing on healthy subjects, 

creating a significant research gap in understanding the system's effectiveness for amputee populations. 

Future studies should prioritize extending the research to diverse subject groups, particularly individuals with 

limb differences, to validate and optimize the proposed methodology. The study's findings extend beyond mere 

technical achievement, offering profound insights into the potential of deep learning methods for grip strength 

prediction. The proposed CNN architecture not only demonstrates superior predictive capabilities but also opens 

new avenues for advanced prosthetic control, rehabilitation technologies, and human-robot interaction 

interfaces. By bridging the gap between biomechanical signal processing and machine learning, this research 

contributes to the broader scientific understanding of precise force control in robotic and assistive technologies. 

Future research should focus on refining the predictive model, exploring transfer learning capabilities, and 

conducting extensive real-world validation trials to unlock the full potential of this innovative approach. 
 

 

4. CONCLUSION 

The aim of the study was to assess the effectiveness of CNN in controlling the grip strength of a 

robotic hand by predicting user grip strength through EMG signals. EMG signals are generated when muscles 

contract, and they can provide an accurate measurement of grip strength. The study evaluated two different 

CNN architectures, CNN1 and CNN2, to determine the best approach. CNN1 was designed with eight depth 

layers, while CNN2 had six depth layers and utilized raw and RMS input data. After analyzing the results, 

CNN1 proved to be the superior architecture. The predicted grip strength was successfully transmitted to the 

robotic hand, but the system did not maintain a consistent level of strength. Therefore, future research will 

focus on addressing this issue to improve the system's performance. The study highlights the potential of 

deep learning techniques, such as CNN, in controlling robotic hand grip strength. With further advancements 

in this area, this technology can have a significant impact on improving the quality of life for individuals with 

limited hand functionality. 
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