
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 13, No. 4, December 2024, pp. 3814~3826 

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i4.pp3814-3826      3814 

 

Journal homepage: http://ijai.iaescore.com 

Real-time anomaly detection in electric motor operation noise 
 

 

Van-Khanh Nguyen1, Bao-Toan Thai1, Vy-Khang Tran1, Hai Pham1,2, Chi-Ngon Nguyen1 
1Faculty of Automation Engineering, College of Engineering, Can Tho University, Can Tho, Vietnam 

2Aerospace Engineering and Aviation Discipline, School of Engineering, RMIT University, Melbourne, Australia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 1, 2024 

Revised Mar 4, 2024 

Accepted Mar 9, 2024 

 

 Anomaly detection plays a very important role in many fields to identify 

abnormalities occurring in the system earlier. This study proposes a new 

abnormality detection solution for 3-phase electric motors based on their 

working noise. Normal and abnormal operating noise data sets for an electric 

motor were acquired in the laboratory. These datasets are converted into the 

corresponding two-dimensional gray spectrogram image sets. The normal set 

is used to train the autoencoder (AE) model to find the abnormality 

evaluation threshold. This threshold is validated again with anomalous data 

sets. The trained AE is then quantized to be installed on a system consisting 

of two duo-core microcontroller units (MCUs) for real-time testing. Free 

real-time operating system (FreeRTOS), a real-time operating system, is 

used to schedule tasks on the system. Experimental results show that the 

designed anomaly detector can accurately detect over 99% of abnormal 

events. The system can communicate with a supervisory control and data 

acquisition (SCADA) application running on the S7-1200 programmable 

logic controller (PLC) platform using the Modbus transmission control 

protocol (TCP) protocol. The SCADA application can continuously record 

evaluated results from the system and adjust abnormal thresholds for the 

system directly on the human-machine interface (HMI) screen. 
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1. INTRODUCTION 

Anomaly detection (AD) is an important task in many fields, as it can detect potential problems so 

that they can be resolved in a timely manner. In the industrial sector, AD has been applied to electric motors 

based on analysis of working temperature [1], electric current [2], electric current and vibration [3]; heating 

plant [4]; rotating machinery [5]; industrial furnace [6]; industrial products [7]; elevator hydraulic power 

units [8]; water tank’s level [9]; wind turbine [10]; and cyber-attacks against industrial control systems (ICS) 

[11]. In addition, it is also applied to detect abnormalities on satellite telemetry data [12]; transportation 

systems [13]; human health is based on electrocardiogram (ECG) [14]‒[19]; and heart rate [20]. 

Many algorithms have been applied to detect anomalies, which can be classified into two main 

groups. One is based on statistical analysis to find the outer line of the normal signal so that abnormal events 

can be detected [2], [3]. While the other one is the application of artificial intelligence solutions such as 

autoencoder (AE) models [1], [8], [14], deep AE [9], [11], long short-term memory (LSTM)-AE [6], [8], 

[12], adversarial AE [17], convolution AE [5], [10], [21], transformer block [15], a lightweight neural 

network (ANNet) [16], inductive transformer (ITran) [7]. Furthermore, the AD model incorporates the data 

mining rule algorithm [18] or alternatively, a synthesis of principal component analysis (PCA) and machine 
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learning methodologies [19]. It can be seen that the application of AE models and their variations in AD is 

the most common. AE is trained unsupervised using the normal data set, so applying it to real-life 

applications is very feasible, especially when integrating into devices on internet of thing (IoT) systems. 

Currently, most AD algorithms only stop at evaluating feasibility and do not focus on installation, 

therefore they can run on microcontroller units (MCUs) to increase the possibility of practical deployment. 

Some studies have installed AD functions on MCUs [16], [18] and have only applied them to ECG but not 

for the AE model. Therefore, researching the practical implementation of AD with AE on MCU will 

contribute to opening up more opportunities to deploy AD in practice, especially in IoT applications. 

Although to implement AE on MCUs, it is necessary to integrate on-device training (ODT) capabilities, on 

which tiny machine learning (TinyML) has been widely used. Indeed, TinyML can be applied to implement 

the AE model and pre-train it with normal data first before integrating into the system. This solution requires 

acquiring data and retraining the AE model when the monitoring object changes. However, AE is easy to 

perform and very feasible for monitored objects with normal conditions that do not fluctuate over time. 

This study designs a system to detect working noise abnormalities in 3-phase electric motors using 

AE operating on MCUs that can be integrated into industrial applications. AD was designed and trained on a 

computer platform before being quantized to operate on an MCU under the Tensorflow lite framework. The 

training data is the noise in the normal working state of a 3-phase electric motor. The quantized AE model 

will be implemented on the proposed hardware system, including two dual-core MCUs to execute tasks such 

as acquiring and pre-processing noise; applying the AE to evaluate noise; and performing the Modbus 

transmission control protocol (TCP) protocol to send the evaluation results to the programmable logic 

controller (PLC) or supervisory control and data acquisition (SCADA) application via Modbus TCP protocol. 

As a result, the outcomes of this study can be deployed to integrate AD into industrial systems as well as the 

IoT.  

 

 

2. MATERIALS AND METHODS 

2.1.  Materials 

This study is based on the operating noise data of three-phase motors acquired by [22]. However, to 

increase the real-time running efficiency of the system, this dataset is not directly used to train and test the 

AE. They are treated as an actual noise source from a working electric motor and are played from a wireless 

speaker. The system developed in this study will acquire normal and anomaly data sets. The time-series data 

will then be converted into two-dimension (2-D) gray-scale spectrogram image right on the system to be used 

for AE training and testing. The experimental setup is presented in Figure 1. The center of the experiment is 

the AD box, which detects anomalies in the motor's working noise. The acquired temporal data and their 

spectrograms are saved on a secure digital (SD) card for AE training and testing. 

 

 

 
 

Figure 1. Data acquisition setup 

 

 

Besides the data obtained from the experimental setup, an additional anomalous data set was also 

created by adding gaussian noise to the normal data. This dataset is used to evaluate trained AE because the 

anomaly dataset is not available in practice. All data will be converted to 2-D spectrogram images based on 

fast fourier transform conversion and the Mel filter; the conversion algorithm has been presented [22].  

Figure 2 illustrates the samples in these datasets, which include normal and abnormal datasets. Figure 2(a) 

shows normal noise; for abnormal data sets such as normal noise added the Gaussian noise, phase loss, phase 

shift, and bearing beaking, corresponding to Figures 2(b) to 2(e). Each spectrogram corresponds to a one-

second data segment in the time domain. Spectrogram imaging is performed right on the MCU to ensure that 

the developed system will operate in real-time most accurately. A summary of data sets after acquisition and 

processing is presented in Table 1. 
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(a) (b) (c) (d) (e) 

 

Figure 2. Samples spectrogram of electric motor’s operating noise: (a) normal noise; anomalous noise 

including (b) normal noise added Gaussian noise, operating noise in the cases of (c) phase loss,  

(d) phase shift, and (e) bearing beaking 

 

 

Table 1. Datasets 
Data set name Number of images Split datasets 

Train (PC) Validate (PC) Test 
PC (image) MCU (Time series) 

nDataset 4,200 2,688 672 840 1,000s 

aDataset1 4,200 - - 4,200 1,000s 

aDataset2 12,600 - - 12,600 1,000s 

 

 

2.2.  System overview for real-time autoencoder-based anomaly detection 

An overview of the implementation of the real-time AD system on the MCU is illustrated in  

Figure 3. This process includes two main stages. The first stage is data acquisition and training. During this 

stage, the normal data will be acquired and stored to the SD memory card. Normally, anomalous data will not 

be acquired at this stage because it rarely exists. In this study, an anomalous dataset purposely generated in 

the laboratory [23] is used to evaluate the system. These data are then converted into 2-D gray-scale 

spectrogram image datasets. They will then be transferred to the computer to train and test the AE set to 

statistically find the abnormal assessment threshold. The trained AE model will then be quantized to match 

operation on the MCU under the Tensorflow lite platform. After quantization, the trained AE will be 

converted into a 2-D array for integration into the MCU project. The second stage is to integrate AE into the 

MCU, program some additional algorithms such as acquiring new data, creating spectral images, calculating 

mean squared error (MSE) between the input image and the reconstructed image after encoding by the AE, 

and evaluating whether the new data is normal or anomalous based on the quantized threshold. On embedded 

systems, Modbus TCP is also implemented to communicate with industrial systems to increase the practical 

applicability of the research. 

 

 

 
 

Figure 3. Process of performing AD in the MCU 

 

 

2.3.  Implementation of real-time autoencoder-based anomaly detection 

Spectrograms of noise when the engine is operating normally will be used to train an AE model. The 

MSE between the encoded image and the input image will be calculated to find the abnormality threshold. 

The spectrum image used is a 64×64 grayscale image. To reduce the AE size, a standard 64-input AE is 

trained to encode each row of the image and repeated 64 times to encode the entire image. 

The structure of AE is shown in Figure 4. Suppose the input image’s row vector is x, the hidden 

layer is h, the reconstructed vector is 𝑥̂, and the dataset has n vectors. Input vector 𝑥𝑖
𝑡 ∈ 𝑅𝑛,  

𝑥𝑖
𝑡 = [𝑥1

𝑡 , 𝑥2
𝑡 , … , 𝑥𝑛

𝑡 ] with t = 1, 2, …, n is mapped into hidden layer ℎ ∈ 𝑅𝑚, ℎ = [ℎ1, ℎ2, … , ℎ𝑚], m < n. The 

output of the pth neural of the hidden layer is calculated in (1): 
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ℎ𝑝 = 𝑎𝑓(∑ 𝑤𝑝𝑗
𝐸𝑛

𝑗=1 𝑥𝑗
𝑡 + 𝑏𝑝

𝐸) (1) 

Where af is the activation function, 𝑤𝑝𝑗
𝐸  is the weight between input jth and the pth neural of hidden layer, and 

𝑏𝑝
𝐸 is the bias of the pth neural of the hidden layer. The hidden layer vector maps into the recovery vector 

𝑥̂𝑡 ∈ 𝑅𝑛 , 𝑥̂𝑡 = [𝑥̂1
𝑡 , 𝑥̂2

𝑡 , … , 𝑥̂𝑛
𝑡 ] the same size as the input. The output of the ith neural of the output layer is 

calculated by (2): 

 

𝑥̂𝑖
𝑡 = 𝑎𝑓(∑ 𝑤𝑝𝑖

𝐷𝑛
𝑗=1 ℎ𝑝 + 𝑏𝑝

𝐷) (2) 

 

In this study, the AE will be trained using spectrogram gray spectrum images of normal noise, loss 

function using MSE, Adam optimizer, and a learning rate of 0.001. The AE is trained using spectrograms of 

the normal data set acquired and completely transformed using the MCU. Normal data sets are usually the 

easiest to acquire on most operating systems. After training, the MSE reconstruction between the input and 

output of this data set will be calculated using (3) to determine the evaluation threshold. 

 

𝑀𝑆𝐸 =
1

𝑁+𝑀
∑ ∑ (𝑥𝑒𝑗

𝑖 − 𝑥𝑑𝑗
𝑖 )2𝑀

𝑗=1
𝑁
𝑖=1  (3) 

 

where xe and xd are the input and reconstruction, respectively, and i and j are the row and column numbers of 

the spectrogram, respectively. 

The evaluation threshold is determined based on the gamma distribution function of the MSE of the 

normal dataset that was used to train the AE. The gamma distribution is the two-parameter distribution for 

which the density function is given in (4): 

 

𝑓(𝑥) = {
𝑥𝛼−1𝑒

−
𝑥
𝜃

𝛤(𝛼)𝜃𝛼 ,      𝑖𝑓 𝑥 > 0    

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (4) 

 

where α > 0 and θ > 0 are shape and scale parameters, respectively. The function Γ(α) is defined as (5): 

 

𝛤(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0
 (5) 

 

The gamma distribution was estimated using the maximum likelihood estimation (MLE) method. 

This method estimates the two parameters of the gamma distribution by approximating the solution of the 

likelihood equation. The likelihood equation for the gamma distribution as in (6):  

 

𝐿(𝛼, 𝜃) = 𝑛[(𝛼 − 1)ln𝑥̅̅ ̅̅ −
𝑥̅

𝜃
− 𝑘ln𝜃 − 𝑙𝑛Γ(𝛼)] (6) 

 

Where n is the number of data points (MSE between input and reconstruction) and x is the number of data 

points, donate 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]. The maximum value of L(α,θ) occurs at and according to [24] the value of 

α is approximately determined by (7). In this study, the gamma probability distribution is fitted using the 

gamma.fit function in the scipy library [25] using the MLE method. After determining the gamma probability 

distribution, events with a probability of occurrence less than or equal to a given threshold will be considered 

abnormal. 

 

𝛼̂ ≈
0.5

𝑙𝑜𝑔𝑥̅−𝑙𝑜𝑔𝑥̅̅ ̅̅ ̅̅ ̅
 (7) 

 

 

 
 

Figure 4. AE model structure 
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The training process and determining the MSE threshold are performed on Google Colab. To be 

able to perform AE on the MCU, the trained AE will be quantized to reduce model size, and the data will 

also be represented as a signed 8-bit integer to be suitable for MCUs with slow computing speed [26]. The 

original spectrogram image data of type uint8 is also converted to type int8 to conform to the quantized 

model. The quantized AE model is then used to further calculate the MSE between input and reconstruction 

to find a new evaluation threshold. Finally, this AE model will be converted to a 2-D constant array for 

integration into the embedded system for real-time testing with new noise data. The evaluation threshold will 

then be verified with two abnormal data sets, aDataset1 and aDataset2. However, for practical applications, 

the aDataset1 should be more suitable because it is difficult to obtain abnormal data of working systems. 

The flowchart of firmware on MCUs is illustrated in Figure 5. The system runs on a two dual-core 

ESP32 MCUs platform proposed [22] to utilize the maximum computing capacity. Two MCUs communicate 

via the universal asynchronous receiver/transmitter (UART) port to transmit the spectrogram image. The 

flowchart delineates the comprehensive algorithm employed by the AD system. However, the detail 

communication protocol utilized by the two MCUs are not included in this representation. On the system, 

MCU1 has two main roles: buffering data noise, reading data, and creating spectrogram images for MCU2 to 

evaluate. The noise is acquired by the inter-IC sound (I2S) module to reduces the load on the MCU [27]. The 

sampling rate is 16 kHz. MCU2 also plays two main roles: executing the AE to calculate the MSE between 

input and reconstruction to determine the normal or anomalous based on the evaluated threshold, and running 

the Modbus TCP engine to communicate with industrial applications. MCUs’ firmware is established based 

on the free real-time operating system (FreeRTOS) real-time operating system platform [28], [29]. 

 

 

 
 

Figure 5. Flowchart of MCUs’ program 

 

 

To reduce the size of the AE model, the study uses AE to encode and calculate the MSE of each row 

of a 2-D spectrogram image using (3). Therefore, to completely encode a spectral image, the process is 

repeated a row of times, then averaging the MSE of the row to get the MSE of whole image. Details of the 

algorithm are presented in Algorithm 1.  

 

Algorithm 1: Calculating MSE between input and reconstruction of a spectrogram image 
Let img_buffer  be the array containing input data 

Let model_input_buffer, mse  be arrays for storing intermediate calculations 

Let output  be the object holding the model output 

Let interpreter  be the TensorFlow Lite interpreter object 

mse_total  0; 

For row  0 to 63: 

    For col  0 to 63: 

        model_input_buffer[col] = int8_t(uint8_t(img_buffer[row*64+col]) - 128); 

    End for 
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    TfLiteStatus invoke_status = interpreter->Invoke(); 

    If invoke_status != kTfLiteOk: 

        error_reporter = Report("Invoke failed"); 

        return; 

    End If 

    mse[row]  0; 

    For col  0 to 63: 

        model_input_buffer[col] = int8_t(uint8_t(img_buffer[row*64+col])-128); 

        tmp_mse=pow(model_input_buffer[col]-output.data.int8[col], 2); 

        mse[row] = mse[row] + tmp_mse; 

    End for 

    mse[row] = mse[row] / 64; 

    mse_total += mse[row]; 

End for 

mse_total / = 64; 

 

2.4.  Modbus TCP protocol  

Modbus TCP is an open de facto standard byte-oriented industrial communication protocol for data 

interchange between embedded systems, devices, and industrial applications [30]. Such a lightweight 

protocol for polling industrial equipment that behaves as servers could be inexpensively implemented and 

beneficial to devices functioning as clients. The server responds to the client's inquiries with a frame of bytes 

that either contains sensor measurement data or verifies that commands were carried out. 

In this study, the server (MCU) responds to a request from the S7-1200 client in the same format as 

the read registers using the function code (FC) “internal and physical output registers” (FC=0x03), or 

executes the request write internal registers using the “write multiple registers” FC (FC=0x10). The server 

will be installed on the AD device to provide the MSE value of the current data sample to the client, a PLC 

S7-1200. With pre-determined threshold settings, the client can provide information about the current status 

of the monitored object right on the HMI interface. Updating the MSE value in the data register is also 

controlled by the client through the value of the data register. The data registers used are summarized in 

Table 2. The registers can be used to extend the functionality of the anomaly detector in the future. The 

Modbus TCP protocol on the MCU uses an open source library [31], available for free under the GNU GPL 

license. This library has been integrated into the system and tested in communication with the S7-1200 

before officially being used for research. On the S7-1200, Modbus TCP uses built-in command blocks. 

 

 

Table 2. Details of the addresses of Modbus TCP registers used 
Register Address Description 

Mb.MbData[1] 4001 MSE value bytes. 

Mb.MbData[3] 4003 Enable MSE updates 

Mb.MbData[4] 4004 Set the anomaly threshold 

 

 

2.5.  Performance evaluation 

In (8)-(11) are used to evaluate the effectiveness of the implemented AD techniques in terms of 

accuracy (ACC), recall (R), precision (P), and score (F1) metrics. Their definitions are as follows: ACC is 

defined as the proportion of true positives and true negatives to all samples; P is defined as the proportion of 

the true positives to samples that are detected to be positives; R is defined as the proportion of the true 

positives to samples that are actually positives; F1 score is defined as a combination of precision and recall. 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100 (8) 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
100 (9) 

 

𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100 (10) 

 

𝐹1 =
(2×𝑃×𝑅)

(𝑃+𝑅)
× 100 (11) 

 

Where TP is the number of cases where the spectrogram image of anomalous noise is evaluated accurately as 

anomaly; TN is the number of cases where the spectrogram image of normal noise is evaluated accurately as 

normal; FP is the number of cases where the spectrogram image of normal noise is evaluated wrongly as 
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abnormal, and FN is the number of cases where the abnormal spectrum image is judged wrongly to be 

normal. 

 

 

3. RESULTS AND DISCUSSIONS 

3.1.  Autoencoder training 

For the AD problem, the AE set will be trained with the normal dataset nDataset. In this study, 80% 

of the normal spectral image set, or 3360 images, were used for training. This set is further divided into two 

parts, with 80% for the train dataset and 20% for the validate dataset during the training process. Figure 6 

presents the results of AE training on colab. After only two epochs, the AE's MSE has converged. The 

trained AE is used to calculate the MSE between the input image and the reconstruction image of the normal 

spectral image set to determine the anomalous threshold. This threshold is determined based on the gamma 

distribution of the MSE of the normal spectral image set. 

 

 

 
 

Figure 6. The AE training process 

 

 

To evaluate the ability to detect anomalies with a defined MSE threshold, two anomaly datasets, 

nDataset1 and nDataset2 described in Table 2, have been applied. However, in reality, data set nDataset1 is 

more suitable because the objects' normal data is easier to acquire. The histogram distribution of the two 

cases is presented in Figure 7, for which Figures 7(a) and 7(b) present the MSE distribution for data sets 

nDataset1 and nDataset2, respectively. In this study, spectral images with a probability of occurrence less 

than 0.01% will be considered abnormal. From the gamma distribution, the threshold is determined to be 

0.0006. The MSE distribution results of the two abnormal sets show that the trained AE set has been trained 

very effectively, and the MSE of the abnormal data is clearly larger than that of the normal. 

 

 

 
(a) 

 
(b) 

 

Figure 7. The MSE distribution of normal (a) aDataset1 and (b) aDataset2 

 

 

To be able to use trained AE on the MCU, it has to be quantized. Quantization is the process of 

converting the model to an 8-bit representation to be suitable for MCUs with limited resources. In this study, 

anomaly evaluation is performed on both original and quantized models to evaluate and compare the 

accuracy of the quantized model with the original one. Figure 8 presents the MSE distribution for the 

quantized data sets aDataset1 and aDataset2 which are also presented in Figures 8(a) and 8(b), respectively. 

Spectral images with a probability of occurrence less than 0.025% will be considered abnormal; the threshold 

is 99 derived from the gamma distribution. 
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(a) 

 
(b) 

 

Figure 8. The MSE distribution is normal after being quantized and (a) aDataset1 and (b) aDataset2 

 

 

With the determined threshold, the confusion matrix of quantized AE is plotted in Figure 9, 

evaluated with the same testing set as the original AE, including nDataset, aDataset1, and aDataset2, 

corresponding to Figures 9(a) and 9(b). With the defined thresholds, ACC, P, R, and F1 values are also 

calculated with trained AE before and after quantization. The results are presented in Table 3. The results 

show that the AE is very effective in encoding spectrograms of normal data. The system is capable of 

identifying the anomalous spectrogram with 100% accuracy. With trained AE's post-quantization model, the 

anomaly recognition accuracy decreased by a very small amount, still above 99.6%. The unsuccessful AD 

rate is very low. 

Thus, an anomaly detector in the motor working noise based on the AE model has been successfully 

designed. With the evaluated threshold, the system can detect anomalies with over 99.6% accuracy for both 

pre- and post-quantization AE models. This quantized model will be converted to the constant array for 

further integration and real-time evaluation on the ESP32 MCU.  

 

 

  
(a) (b) 

 

Figure 9. Confusion matrix (a) aDataset and nDataset1 and (b) aDataset and nDataset2 

 

 

Table 3. ACC, P, R, and F1 values of the trained AE before and after quantizing 
Trained AE Normal dataset Anomalous dataset R P F1 ACC 

Before quantizing nDataset aDataset1 100.0 99.95 99.98 99.96 

nDataset aDataset2 100.0 99.95 99.99 99.99 
After quantizing nDataset aDataset1 99.93 99.57 99.75 99.58 

nDataset aDataset2 99.99 99.86 99.92 99.86 

 

 

3.2.  Real-time testing autoencoder-based anomaly detection on embedded system 

The experimental setup for practical evaluation of the anomaly detector is illustrated in Figure 10. In 

which Figure 10(a) shows the real-time experimental setup, Figure 10(b) shows inside the designed AD box. 

The recording microphone on the abnormal detection box is placed opposite a speaker, which simulates the 

noise source from the electric motor. A laptop is used to play the recorded noise to evaluate the system. All 

types of noise will be played to evaluate the anomaly detector. Each type of noise will be played for 1,000 

seconds, corresponding to an anomaly rating of 1,000 times. PLC S7-1200 and HMI screen are used to 

evaluate the ability to communicate with industrial systems via the Modbus TCP protocol. The hardware of 

the AD box is based on the proposed platform of the study [22]. The main components are two dual-core 

ESP32 MCUs; one plays the role of capturing the motor's working noise and converting it into a spectral 

image; while the other receives the spectral image to calculate the MSE between the input spectral image and 
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its reconstruction through an AE. The evaluation result is displayed on two LEDs for users’ observation. The 

memory card is used to store the acquired and processed normal data for training when AE needs to be 

retrained. The difference in this research is that the W5500 Ethernet module is utilized to support the local 

area network (LAN) connection. With Modbus TCP, the AD system can communicate directly with 

industrial systems easily. A SCADA application is intended to illustrate the system's ability to connect to 

industrial equipment. The AD box operates directly with the alternating current (AC) power through an 

AD/DC Hi-Link device that creates a stable 5 V voltage for the system.  

 

 

 
(a) 

 
(b) 

 

Figure 10. Real-time testing setup: (a) whole system and (b) inside the designed AD box 

 

 

The hardware system has increased processing speed by pairing two multi-core MCUs. Indeed, on 

each MCU, the freeRTOS operating system is scheduled so that two main tasks will run in parallel. On 

MCU1, core 0 is responsible for capturing the noise audio segment every second from the I2S module 

stream; core 1 will wait for the segment to be converted into a spectrogram to send to MCU2, while the other 

core is recording the next audio segment. Similarly, on MCU2, core 0 waits for the spectrum image from 

MCU1 to calculate MSE based on trained AE to evaluate the current noise, and core 1 runs the Modbus TCP 

engine to exchange information with the SCADA. Tasks exchange messages with each other through a 

simple global variable mechanism. The timing diagram of the tasks on the system is illustrated in Figure 11. 

Parallelization of tasks has enabled the system to continuously evaluate new data and print results every 

second. Table 4 depicts that the total time from the start of recording until printing the results is 1,299 

seconds. Results will be printed continuously every second. 

 

 

 
 

Figure 11. Time diagram for executing tasks on the system 

 

 

Table 4. Time to perform tasks on the system 
Task  Execute time (ms) MCU/Core 

Noise sampling 1000 1/0 

Spectrogram creation 86 1/1 

Spectrogram transmission 157 1/1 

Spectrogram receipt 155 2/1 
MSE evaluation 56 2/1 

Modbus TCP NA 2/0 
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The real-time evaluation results are presented in Figure 12. Figure 12(a) and Figure 12(b) present the 

probability distribution of the MSE of the two experiments. Compared with the experimental results with the 

post-quantization model on the computer, the MSE distribution of normal data and abnormal data has changed. 

However, with the post-quantization anomaly threshold, the system can still accurately detect abnormal 

working noise sequences. Figure 12(c) and Figure 12(d) present the confusion matrices of the two 

experiments. The results show that the autoencoder-based anomaly detection (AAD) system running on the 

ESP32 can accurately identify 100% of abnormal sound sequences, only confusing a normal sample into an 

abnormal one. Thus, when operating with real-time simulated noise, the designed AAD system can accurately 

detect over 99.9% of abnormalities occurring on electric motor based on its working noise shown in Table 5. 

 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

Figure 12. Real-time testing results: (a) normal and generated anomalous data, (b) normal and real anomalous 

data, (c) confusion matrix of generated anomalous data, and (d) confusion matrix of real anomalous data 

 

 

Table 5. ACC, P, R, and F1 values of the real-time test 
Normal noise source Anomalous noise source R P F1 ACC 

nDataset aDataset1 100.0 99.97 99.98 99.96 

nDataset aDataset2 100.0 99.90 99.95 99.95 

 

 

3.3.  Autoencoder-based anomaly detection testing with Siemens S7-1200 controller 

The real-time communication between the designed AAD system and PLC S7-1200 is presented in 

Figure 10(a). A SCADA application designed for the S7-1200 PLC mainly communicates with the AD box. 

This application can monitor the motor status (normal (blue symbol), abnormal (red symbol), and idle  

(gray symbol)), set the abnormal threshold, display the current MSE value, and show 50 most recent MSE 

historical samples. The testing scenario is a series of normal and abnormal data being emitted to test the 

ability to communicate with the industrial system, including 10 seconds of normal data segments alternated 

by 3 seconds of anomaly data segments (i.e., phase loss, phase shift, and bearing breakage data). So, the total 

duration of the testing noise is 49 seconds. 

The experimental result captured from the HMI screen is illustrated in Figure 13. According to the 

diagram in Figure 11, every second, the evaluation result will be sent by the AD system to S7-1200 to update 

information on the HMI screen. Thus, after 49 seconds, there will be 49 MSE results displayed on the trend 

chart. With the adjusted threshold set to 99, the system successfully detected all abnormal events as in the 

testing scenario. Figure 13 depicts the system status when identifying the 49th noise segment: the MSE is 

83.7, and the motor is in a normal state (blue symbol). 
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Figure 13. Real-time testing result on the HMI screen 

 

 

3.4.  Discussion 

The research has successfully applied the AE to detect abnormalities in the working noise of  

3-phase electric motors. The designed anomaly detector has been quantized and runs in real-time on a  

multi-microcontroller system. On each microcontroller, freeRTOS has also been applied to parallelize system 

tasks. The system has also integrated the ability to sample audio signals using the built-in I2S module of 

ESP32 MCU to improve the system's working efficiency. In addition, the open-source Modbus TCP engine 

has also been integrated to support connectivity with industrial systems. Experimental results show that the 

system has been designed successfully, achieving high accuracy with the evaluated threshold and 

communicating well with the SCADA application. 

This application can be applied to real electric motors, but it is necessary to deploy data acquisition 

mode to retrain the system before running actual monitoring. In addition, because it relies on sound, it is 

likely to be affected by unwanted surrounding sound events, so further evaluation is needed under real 

conditions. The method in this study can also be applied to other types of timing signals, such as voltage, 

current, vibration, point temperature, and thermal imaging. Furthermore, the monitoring object of this 

research does not only use in electric motors but can also be applied to many other objects. 

Although it promises quite good applicability, the actual implementation is still not very convenient. 

Indeed, systems based on TinyML or AI networks are trained on the personal computer before being deployed 

on embedded devices. This leads to a difficulty: when applying to a new object, you have to re-acquire data, 

retrain, and redeploy the AE on the MCU. These procedures are quite time-consuming, leading to difficulties in 

applying and upgrading the system later. An effective unsupervised training mechanism for the AE model 

should be researched and integrated in the future. This will make system deployment simpler and more flexible 

because the normal data of the potential objects is not difficult to acquire. 

Furthermore, the proposed system has a lot of application expansion in the future. Indeed, besides 

integrating into industrial systems based on the Modbus TCP protocol, the system is also capable of 

supporting internet communication via the LAN or WiFi module of the ESP32. This enables the system to be 

easily integrated into the IoT system, expanding the scope of monitoring to many objects. From there, it 

further increases the practical significance of the research. 

 

 

4. CONCLUSION 

Abnormalities occurring on 3-phase electric motors have been detected very effectively based on 

spectrogram images of the working noise. Research has suggested an interesting approach to system design: 

data is acquired and processed directly by the device instead of using specialized equipment. This approach 

has proven effectiveness when deploying real-time systems. The classic AE suite has been used to encode the 

spectral images of the noise when the motor is operating normally. After training, the spectrogram images of 

abnormal cases will create large errors between the input and output of the AE, helping the system detect the 

occurrence of abnormal events. The study successfully trained AE and demonstrated that the quantized AE 

model had very little decrease in accuracy. The anomaly threshold is effectively determined automatically 

based on the gamma distribution of the MSE. The designed system has identified abnormalities in electric 

motors with an accuracy of over 99.6% in both test cases with real-time collected and tested data. This is 

quite an impressive result, and it promises the ability to practically deploy the system. In addition, an 
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embedded Modbus TCP engine has also been successfully integrated so that the system can connect to 

industrial applications, increasing the applicability of the system. Furthermore, the computing resources of 

MCUs are still very large, so they have the ability to expand to support additional connections with IoT 

platforms. From there, the system can be fully applied to develop distributed anomaly monitoring systems. 
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