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 This research addresses the challenges faced by seaplanes and amphibious 

aircraft during takeoff and landing on water, emphasizing the limitations and 

costs associated with traditional towing tank tests and computational fluid 

dynamics (CFD) simulations. The study proposes an innovative approach that 

employs artificial neural networks (ANN) to predict water resistance and 

pitching angle during amphibious aircraft take-off, minimizing the reliance on 

expensive towing tank tests. The ANN models are developed and optimized 

using Bayesian optimization, showcasing improved accuracy in predicting 

water resistance and pitching angle. The research demonstrates the potential 

of machine learning, specifically ANNs, to significantly reduce the need for 

costly experimental tests, providing an efficient alternative for designing 

amphibious aircraft. The results indicate high accuracy in predicting water 

resistance and pitching angle, offering substantial time and resource savings 

during the experimental phase. However, the study highlights the need for 

model adaptation for different designs and test variations to enhance overall 

applicability. 
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1. INTRODUCTION 

Seaplanes and amphibious aircraft face unique challenges during takeoff and landing on water 

primarily due to water resistance, which significantly impacts their performance. Accurately assessing behavior 

during crucial phases is essential for safety and compliance with aviation regulations. Two main methods are 

used to gather data on seaplane performance in water: towing tank tests involve using a scaled model of the 

seaplane towed through a water tank to analyze hydrodynamic behavior [1], while computational fluid 

dynamics (CFD) simulations numerically model the air-water flow field around the seaplane, offering insights 

into its hydrodynamic performance [2]–[5]. However, both methods are costly, with towing tank tests limited 

by tank size and CFD simulations requiring significant computational resources. Leveraging machine learning, 

specifically artificial neural networks (ANN), for data prediction based on statistical analysis could potentially 

mitigate these challenges and reduce costs in seaplane performance assessment. 

Driven by their unique blend of intelligent control and brain-inspired functionality, ANN has shown 

promising results in diverse areas of engineering applications. The ANN algorithm has been used to conduct 

data prediction and design optimization. Several researchers explore ANN programming to train experimental 

data about Savonius rotors [6], to accurately predict turbulence in fluid flows [7], [8], and hydrodynamic 
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performance of bionic fish in self-propelled motion [9]. Gul et al. [10] used ANN and grey-Taguchi method to 

optimize the performance and emissions of a diesel engine fueled with biodiesel blends. Both the experimental 

and ANN-simulated results validate the effectiveness of achieving improvements [10]. 

In the context of naval applications, ANNs can learn intricate patterns from towing tank test data or 

CFD simulation results [11]. Their rapid predictive capabilities extend to estimating total resistance, proving 

particularly useful in the early stages of designing preliminary configurations, such as the trimaran-small 

waterplane area centre hull (Tri-SWACH) [12]. Shehata and Dashtimanesh [13] suggests that machine 

learning, particularly recurrent neural networks (RNNs) with gated recurrent unit (GRU) architecture, can be 

a valuable tool for designing high-speed crafts with improved seakeeping performance. Radojčić et al. [14] 

employed conventional regression analysis methods and ANN to develop mathematical models for the 

resistance, trim, and wetted length of the experimental model basin series 50. Najafi et al. [15] using ANN to 

evaluate initially and experimentally via model-test the hydrodynamic performance of three different 

hydrofoils for a catamaran hull. Cepowski [16] evaluated the effectiveness of an ANN model for predicting 

the added wave resistance coefficient of ships in regular head waves. Predictions showed good correlation with 

measured data, with most discrepancies falling within a range of -1.2 to 1.2 [16]. 

For seaplane design, water resistance is a crucial parameter in determining aircraft performance when 

moving on the water surface. Atmaja et al. determine the water drag of various floater lengths and the distances 

between the two floaters. The ANN model has been proven to accurately predict the water resistance of the 

floater, approaching the value obtained from calculations using the Savitsky method, where the correlation 

coefficient (R-squared) between the two is close to 1, and the error (root mean square error (RMSE)) value is 

close to 0 [17]. They successfully predicted the aerodynamic coefficients of an amphibious aircraft using grid 

search cross validation based on wind tunnel test data [18]. Du et al. [19] developed two models (ANN and 

nonlinear polynomial fitting) to predict resistance based on principal components. They use a surrogate model 

to analyze how sensitive resistance is to initial parameters such as trim angle, waterplane area, and specific 

dimensions [19].  

Building on the predictive capabilities of ANN models in predicting water resistance for seaplanes, 

this study aims to enhance their predictive capabilities by utilizing experimental data from hydrodynamic 

testing laboratories. By leveraging this dataset, the research aims not only to forecast water resistance but also 

to predict the pitching angle of twin-float amphibious aircraft during takeoff. The main objective is to 

streamline the design evaluation process by reducing reliance on costly towing tank tests through the 

development of optimized ANN models. These models are refined using Bayesian optimization techniques to 

fine-tune their hyperparameters for improved accuracy and efficiency. 

 

 

2. METHOD 

As previously described, one method utilized to assess the hydrodynamic performance of seaplanes 

involves conducting towing tank tests using scaled models. In these tests, various parameters are meticulously 

recorded to evaluate seaplane performance. These parameters encompass the test ID, which serves as a unique 

identifier for each conducted test. Additionally, the center of gravity position (CG in % of mean aerodynamic 

chord), model load (kg), acceleration (m/s2), velocity (m/s), water resistance (Fxw in N), and pitch angle 

(degree) are measured and documented during the experiments. It is worth noting that the towing tank test 

employs the same design and Froude number as depicted in Figure 1. 

 

 

 
 

Figure 1. Towing tank test of an amphibious aircraft 

 

 

The parameters targeted for prediction using ANN are water resistance and pitching angle, with input 

parameters including CG position, model load (weight), acceleration, and velocity. The dataset used to 

construct ANN models is divided into training and testing datasets, allocated based on towing test results that 

reflect diverse physical characteristics. The division of training and test data is determined by the data ID 

numbers assigned during the towing tank experiment. Specifically, the training data comprises all test data IDs 
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except for IDs 2118 and 2119, which are reserved for testing purposes. The training dataset constitutes 78% of 

the total data, while the testing dataset comprises the remaining 22%. The development flowchart of the ANNs 

model is depicted in Figure 2. 
 

 

 
 

Figure 2. Flowchart of the development of ANNs model 

 

 

To ensure uniformity in the dataset, data normalization is performed on both the training and test data. 

Data normalization is a widely employed technique in data mining and is used to standardize values within a 

dataset to a common scale. This is crucial because many machine learning algorithms are sensitive to variations 

in input feature scales, and normalizing the data can enhance algorithm performance. Furthermore, data 

normalization facilitates more effective model learning by equalizing the data's scale. In this research, the  

min-max method is employed for data normalization, with the formula for this method detailed in (1). This 

technique involves transforming each data entry (𝑥́ ) based on the original value (𝑥́), the minimum (𝑚𝑖𝑛(𝑥́)), 

and maximum (𝑚𝑎𝑥́(𝑥́)) values of the data attribute. The resulting normalized values fall within a specified 

range defined by 𝑛𝑒𝑤𝑚𝑖𝑛(𝑥́) and 𝑛𝑒𝑤𝑚𝑎𝑥(𝑥́). By equalizing the scale of the data, this normalization approach is 

instrumental in improving the performance of machine learning algorithms, particularly by mitigating 

sensitivity to variations in input feature scales. 
 

𝑋𝑛𝑜𝑟𝑚 = [
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
× (𝑛𝑒𝑤𝑚𝑎𝑥(𝑥́) − 𝑛𝑒𝑤𝑚𝑖𝑛(𝑥́))] + 𝑛𝑒𝑤𝑚𝑖𝑛(𝑥́) (1) 

 

ANNs are powerful tools for predicting complex relationships between input and output data, making 

them well-suited for tasks like predicting water resistance and pitching angle in seaplanes. However, achieving 

optimal performance with ANNs requires selecting appropriate hyperparameters, such as the learning rate, 

iteration count, and layer architecture, which significantly influence the model's behavior during training and 

testing. Inadequate hyperparameters can lead to overlooked patterns or suboptimal performance. Therefore, in 

this study, we propose using Bayesian optimization to fine-tune the hyperparameters of ANNs specifically tailored 

for predicting the behavior of twin-float amphibious aircraft in terms of water resistance and pitching angle. 

Bayesian optimization, a widely used method in machine learning, offers an efficient approach to 

obtaining optimized hyperparameter values, thereby improving model performance while saving time. Several 

studies have demonstrated the effectiveness of Bayesian optimization in various machine learning models and 

domains [20]–[24]. By leveraging automatic search algorithms, Bayesian optimization can efficiently explore 

the hyperparameter space and identify optimal combinations, enhancing efficiency and accuracy. Additionally, 

Bayesian optimization is resistant to biases present in training data and can provide more accurate estimates of 

optimal hyperparameter combinations. The hyperparameters to be optimized for our ANN models are listed in 

Table 1. There are some ANN hyperparameters that do not need to be optimized. These hyperparameters 

include an EPOCH set at 100, a batch size of 10, and the optimizer as Adam. This systematic approach aims 

to enhance the overall performance of the ANN model through meticulous hyperparameter tuning. 
 

 

Table 1. ANN hyperparameters to be optimized 
Hyper-parameter ANN Range optimization 

Learning rate 1e−3 up to 1e−2 

Number of neurons 4 up to16 
Number of hidden layers 1 up to 5 

DropOut value 0 up to 5 
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Activation function Elu, Relu, TanH, Sigmoid 

To evaluate the performance of predictive models, mean absolute error (MAE), RMSE, and  

R-squared (R²) are used. MAE is a measure of the average absolute errors between the predicted values (𝑦𝑖) 
and the actual values (𝑦𝑖̂). It is determined by computing the mean of the absolute variances between the 

predicted and actual values, as illustrated in (2). 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|
𝑛
𝑖=1  (2) 

 

RMSE stands for the square root of the mean squared differences between predicted and actual values. Unlike 

MAE, RMSE places greater emphasis on significant errors by squaring the differences before averaging and 

subsequently taking the square root, as depicted in (3).  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1  (3) 

 

R² serves as a statistical metric indicating the extent to which the independent variables in a model account for 

the variance in the dependent variable. With values ranging from 0 to 1, a score of 0 implies the model fails to 

explain any variability, while a score of 1 signifies a complete explanation of all variability. R² is more 

informative and accurate than MAE and RMSE [25]. The formula for calculating R² is presented in (4). 

 

𝑅2 = 1−
∑ (𝑦𝑖−𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦𝑖)
2

𝑛
𝑖=1

 (4) 

 

 

3. RESULTS AND DISCUSSION 

In this study, we present the optimal hyperparameters identified through Bayesian optimization for 

predicting water resistance and pitch angle in ANN models. These hyperparameters were meticulously tuned 

through a tailored optimization process, including the number of hidden layers, neurons in each layer, activation 

functions, dropout values, and learning rate. The optimal hyperparameters for predicting the output Fxw in the 

ANN model are as follows: 4 hidden layers with 14, 4, 4, and 4 neurons in each layer, utilizing the activation 

functions rectified linear unit (ReLu), exponential linear unit (Elu), Elu, and Elu, respectively. The dropout 

values for each layer are 0.085269, 0, 0, and 0, and the learning rate is set at 0.00231. These hyperparameter 

configurations have been determined through a Bayesian optimization process specifically designed to enhance 

the accuracy and effectiveness of the ANN model in predicting the output Fxw (water resistance). The 

architecture of the ANN is visually represented in Figure 3. 

 

 

 
 

Figure 3. Optimal ANN architecture for output water resistance 

 

 

The optimal hyperparameters for predicting the output pitch (deg) in the ANN model are specified as 

follows: a four-layer architecture with 10, 4, 4, and 4 neurons in each hidden layer, utilizing the activation 

functions ReLu, Elu, Elu, and Elu, respectively. Dropout values for each layer are set at 0.098582, 0, 0, and 0, 
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and the learning rate is established at 0.00615. These hyperparameter configurations have been determined 

through an optimization process, specifically designed to enhance the accuracy and effectiveness of the ANN 

model in predicting the output pitch. The architecture of the ANN is visually presented in Figure 4. 

 

 

 
 

Figure 4. Optimal ANN architecture for output pitch (deg) 

 

 

3.1.  Results of water resistance prediction 

Two distinct sets of characteristics were utilized in the testing phase to assess the performance of the 

constructed ANN models. The significance of dataset ID numbers 2118 and 2119 is underscored by their 

unique physical attributes derived from towing test results, as shown in Figure 5. Figure 5(a) illustrates the 

actual and predicted data for ID numbers 2118, while Figure 5(b) shows the same for ID numbers 2119. The 

ANN models effectively predict patterns specific to each ID, as depicted in the chart illustrating the predicted 

data alongside the actual towing tank data for water resistance. Remarkably, despite the differing physical 

characteristics of ID numbers 2118 and 2119, the ANN successfully captures and predicts similar patterns 

observed in the actual towing tank data for both IDs. 

 

 

  
(a) (b) 

 

Figure 5. Predicted and actual water resistance of dataset (a) ID 2118 and (b) ID 2119 

 

 

The evaluation of ANN models for predicting water resistance involved assessing key metrics, 

including MAE, RMSE, and R². The results, detailed in Table 2 for both training and testing data for IDs  

2118 and 2119, reveal notable scores. These results indicate high accuracy, as both MAE and RMSE scores 

are close to zero, and R² scores are close to one for both IDs. 
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Table 2. MAE, RMSE, and R² score of data training and testing of water resistance 

Dataset 
Training Testing 

MAE RMSE R2 MAE RMSE R2 

Training Data 0.01023 0.01982 0.98199 - - - 

Testing Data ID 2118 - - - 0.02661 0.07521 0.69735 

Testing Data ID 2119 - - - 0.01187 0.01489 0.87769 

 

 

3.2.  Results of pitching angle prediction 

The results of the pitching angle prediction are showcased in Figure 6, with Figure 6(a) representing 

ID number 2118 and Figure 6(b) illustrating ID number 2119. The charts vividly demonstrate that the predicted 

data aligns closely with the pattern observed in the towing tank test results for both IDs, confirming the model’s 

ability to accurately predict pitch behavior. This alignment highlights the ANN model's capability to capture 

dynamic changes in pitching angles, even with varying physical attributes between the two datasets. Notably, 

the model effectively adapts to the different conditions of ID 2118 and ID 2119, further validating its robustness 

in handling complex, real-world testing scenarios. 
 

 

  
(a) (b) 

 

Figure 6. Predicted and actual pitch angle of a dataset (a) ID2118 and (b) ID2119 
 

 

Table 3 presents the MAE, RMSE, and R² scores for pitch angle in both training and testing data for 

IDs 2118 and 2119. The MAE and RMSE values are close to zero, and the R² scores approach one, indicating 

high accuracy in the prediction of pitch angle. These results reflect the ANN model's strong ability to generalize 

across different datasets with minimal error. Moreover, the higher R² scores in testing data suggest the model 

effectively captures the variance in pitch angle across diverse towing test conditions. 
 

 

Table 3. MAE, RMSE, and R² score of data training and testing of pitch angle 

Dataset 
Training Testing 

MAE RMSE R2 MAE RMSE R2 

Training Data 0.02016 0.03177 0.98764 - - - 
Testing Data ID 2118 - - - 0.05232 0.08822 0.92494 

Testing Data ID 2119 - - - 0.03306 0.04703 0.97531 

 

 

3.3.  Discussion 

Recent studies have explored various methods for predicting water resistance and pitch angle, crucial 

parameters in seaplane design and performance analysis. One approach involves CFD, employing  

reynolds-averaged navier-stokes (RANS) equations with the volume of fluid (VOF) method. Guo et al. [3] 

utilized CFD to predict the resistance and attitude of a seaplane during takeoff, reporting errors of 6.5% for 

trim and 8.2% to 13.9% for resistance. Additionally, ANN has demonstrated promising results in predicting 

water resistance and pitch angle across various applications, as depicted in Table 4, with high accuracy reported 

in [12], [14]–[16]. 

In comparison, our ANN models demonstrate enhanced accuracy and effectiveness in predicting both 

water resistance and pitch angle, with water resistance errors (MAE) ranging from 0.01187 to 0.02661, RMSE 
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ranging from 0.01489 to 0.07521, and R² ranging from 0.69735 to 0.87769. For pitch angle errors (MAE), the 

range is from 0.03306 to 0.05232, with RMSE ranging from 0.04703 to 0.08822, and R² squared ranging from 

0.92494 to 0.97531. These results highlight the efficiency of predicting water resistance and pitching angle 

through ANN modeling and underscore the potential for significant time and resource savings in the 

experimental phase. However, it is essential to note that the current ANN models are designed for a specific 

twin-float design and Froude number, requiring the reconstruction of models for different twin-float designs 

based on specific towing tank tests. This adaptation involves expanding the dataset to include float design 

parameters as inputs. Additionally, accounting for variations in test procedures can further improve the models' 

accuracy and applicability. Looking forward, the exciting prospect of developing virtual towing tanks using 

machine learning technologies holds promise for advancing the efficiency and effectiveness of amphibious 

aircraft design processes. 

 

 

Table 4. Recent research for predicting water resistance and pitch angle 
Reference Method Application Error 

Guo et al. [3] CFD (using RANS equations 
with VOF method) 

Predict the resistance and 
attitude of a seaplane taking off 

Trim: 6.5% 
Resistance 8.2% - 13.9% 

Carter et al. [12] ANN Resistance prediction for 

preliminary tri-swach design 
MAE: 10% 

Radojčić et al. [14] Regression analysis and 

ANN 
The resistance and trim of 

series 50 experiments with V-
bottom motor boats 

R2: 0.9719 - 0.9834 

RMSD: 0.3185 - 0.4136 
RMS: 7.00% - 9.66% 

Najafi et al. [15] ANN Hydrofoil- supported 

catamarans 
Resistance: MSE: 0.000683; R2: 0.99438 

Trim: MSE: 0.00688; R2:0.92918 
Cepowski [16] ANN: multilayer 

perceptron (MLP), general 

regression neural network 
(GRNN), radial basis 

function (RBF) 

Prediction of the ship added 

resistance 

MSE: 1.1 - 1.87 

 

 

4. CONCLUSION 

In conclusion, this study demonstrates the efficacy of ANN in predicting water resistance and pitching 

angle for twin-float amphibious aircraft during takeoff. By leveraging experimental data from hydrodynamic 

testing laboratories and employing Bayesian optimization techniques for hyperparameter tuning, the ANN 

models achieve high accuracy and efficiency in predicting these crucial parameters. The results highlight the 

potential of ANN modeling to streamline the design evaluation process and reduce reliance on costly towing 

tank tests. However, further research is needed to adapt the models for different twin-float designs and towing 

tank test procedures, as well as to explore the development of virtual towing tanks using machine learning 

technologies. Overall, ANN modeling shows promise for advancing the efficiency and effectiveness of 

amphibious aircraft design processes. 
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