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 Distributed denial of service (DDoS) attacks has emerged as a prominent 

cyber threat in contemporary times. By impeding the machine's capacity to 

give services to legitimate clients, the impacted system performance and 

buffer size are reduced. Researchers are working to build sophisticated 

algorithms that can identify and thwart DDoS violations. An effective 

approach for DDoS attacks has been proposed in this work. This research 

presents a model as a potential explanation for DDoS assaults. In order to 

successfully identify this kind of attacks, which may stop or block the urgent 

and vital transmission of data, we present a distinctive method that integrates 

a pair of fully connected layers within an amalgamated deep learning (DL) 

framework with long short-term memory (LSTM) and a max pooling layer. 

The acquired accuracy reached 99.58%.  
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1. INTRODUCTION 

The contemporary threat landscape for online services and websites is demonstrably expanding due 

to the proliferation of distributed denial of service (DDoS) attacks [1]. System uptime, a core tenet of 

information security, represents the paramount requirement for any network [2]. DDoS attack is an assault on 

a victim by means of various, dispersed resources with the intent to impede authorized users from gaining 

access to the resources of the target entity [3]‒[6]. System resources, network connectivity, and other resources 

may all be attacked (for a visual representation of this, see Figure 1). It creates a significant bottleneck in terms 

of capacity and connection, which ultimately results in the interruption of all functions provided by the network 

[7]. Cloud ecosystems incur highest damages owing to total service disruptions and performance degradation 

[8]. The primary goal of DDoS attacks is to disrupt the accessibility of services for legitimate users. The 

malicious flooding causes the network to become overloaded, going beyond the bandwidth capacity of the 

network, and causing disruption to the services [9]. Because of the striking similarities between the attack 

traffic and the legitimate traffic [10], it might be challenging to identify the attack traffic during a DDoS assault. 

They operate in a manner that is quite similar to that of regular network packets, despite the fact that they are 

sent in greater amounts and concentrations toward the victim [11]. This occurs more often in the first phases 
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of an assault, in particular during poor and low-traffic attacks [10]. Note: The severity of the assault is often 

determined by volumetric characteristics such as the frequency of packets, connections, and bits per unit of 

time [11]. Identifying and defending against an illegal assault that emanates from a restricted quantity of 

devices is comparatively easier. The DDoS attack employs a significantly large quantity of devices and the 

actions exhibited by these machines in concert almost eliminates any possibility of satisfying legitimate user 

inquiries [12]. The hacked devices send a high amount of packets over the network without pausing for any 

pauses, which tricks the victim into thinking the traffic is real and allows them to access their data. As a direct 

consequence of this, not only does the host connect with a variety of devices, but it also does so with a wide 

variety of packet types [13]. Research has demonstrated that a DDoS attack can be understood as a competition 

for resources between the protection and the hackers. Specifically, the likelihood of achieving success in such 

an attack is positively correlated with the abundance of available resources [14].  

Attacks on a DDoS may be broken down into three categories: brute force, spoofing, and flooding. 

The most prevalent and damaging of the three types of assaults is the flooding attack, which clogs up the 

available bandwidth on the network and prevents any genuine requests from being processed. The strategies 

for survival concentrate on a specific group of victims and require individuals to be aware of and respond 

appropriately to attacks on their own. On the other hand, a network-wide flood necessitates the implementation 

of mitigation strategies before it can reach the victims, giving it an ideal vector for multi-targeted assaults. The 

installation of software updates and the use of appliances are not sufficient means of blocking or preventing 

DDoS attacks entirely. Accordingly, internet service suppliers either use cleaning solutions or overprovision 

their networks in order to combat the problem. Both approaches cannot be implemented due to budgetary 

constraints [15]. The DDoS framework is comprised mostly of zombies that are modelled after their controllers 

and relayed via the internet. Generally speaking, any and all communications that take place among an 

individual responsible for controlling and directing a particular action or process, commonly referred to as the 

handler, and the act of initiating an aggressive action or assault, commonly known as the attack are encoded, 

so making the assault undetectable. Because attackers are geographically dispersed and may fake their media 

access control (MAC) and IP addresses, identification can be a time-consuming and difficult process. DDoS 

assaults have swiftly progressed and grown to be quite sophisticated throughout the course of time. Attacks 

using DDoS have a devastating influence on the computational, financial, and infrastructural resources of a 

company [16]. Even large cloud operators like Azure of Microsoft and EC2 from Amazon have been hit by the 

growing flood of DDoS assaults [10].  

 

 

 
 

Figure 1. Attack in the form of a DDoS 

 

 

2. BACKGROUND 

The goal of a DDoS is to prohibit authorized users from accessing the resources they need by 

disrupting the availability of network resources. The method of attack largely focuses on gaining dispersed 

access to devices in order to exploit previously discovered flaws [17]. Attacks are aimed against different levels 

of the infrastructure that makes up the network, such as the transport layer and the application layer [18], [19]. 

DDoS attacks are categorized into the following categories according to the architecture of the network [20].  

a) Attacks at the application layer are a kind of layer seven network layout that aims to cause a denial of 

service by overwhelming the system's resources [21]. An attacker uses a known weakness in a program 

or operating system to disrupt the network's functionality. As these attacks need very modest rates of 

traffic to carry out, they are commonly misunderstood as implementation mistakes. An HTTP flood is a 

 

Victim Infrastructure
Zombie

Zombie

Zombie

Zombie

Zombie

Control

Attacker



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 1, February 2025: 614-628 

616 

kind of assault that denies access to a service in which numerous machines make simultaneous requests 

for access to a resource, overwhelming that resource. 

b) The second kind of DDoS attack is a resource depletion pounce, which focuses on security issues in the 

transport layer and network layer. These assaults, also known as state exhaustion attacks, are designed to 

use up all of a system's available resources, including its CPU time and main and secondary storage. This 

attack constitutes a mix between targeted messages and sheer volume since it takes the use of protocol 

flaws. When an attacker uses faked source IP addresses in a transmission control protocol (TCP) 

synchronize (SYN) flood, the victim receives SYN messages but is never confirmed with a response. As 

the victim replies to each handshake but never gets confirmation from the attacker, its resources will 

eventually be depleted [19]. 

c) Volumetric attacks: The attacker sends massive volumes of data to the prey through botnets or other 

techniques of expansion, which causes the bandwidth that is available across the victim and the wider 

network or internet to be at risk of becoming depleted. The user datagram protocol (UDP) protocol is 

often used in order to take advantage of any excessive rise in the size of a packet. The amplification of 

domain name system (DNS) attacks involves the transmission of service demands with the intention of 

altering the source address space to include the address of the targeted victim. The aforementioned 

phenomenon leads to an increase in the magnitude of responses from the servers, ultimately resulting in 

the depletion of the victim's available bandwidth. The most visible sign of a DDoS attack is a website or 

service that suddenly becomes unusable or very sluggish. However, due to the fact that a variety of factors, 

such as a normal increase in traffic, are capable of causing the same performance concerns, more study is 

often necessary. Tools for traffic analytics may assist in spotting some of the following tell-tale symptoms 

of a DDoS attack [22]‒[25]. 

− Large quantities of potentially malicious communications coming from a specific IP address or group of 

IP addresses. 

− A deluge of traffic is generated by users who all share the same behavioural pattern, such as the sort of 

device they are using, or the version of their web browser. 

− An inexplicable rise in requests to a particular page or destination. 

− Strange patterns of traffic, such as peaks that occur at unusual times of the day or patterns that don't seem 

to fit in with nature (e.g. a boost every 15 minutes). There are further, more particular indicators of a 

DDoS assault, and these indicators might change based on the sort of attack that is being carried out. 

 

 

3. RELATED WORK 

In this section, many DDoS detection studies have employed machine learning (ML), mostly deep 

learning (DL). Here, most of these investigations are carefully depicted. DL systems identify and classify DDoS 

assaults using ML. Labelling attack sample data using a well-trained network. The biggest benefit of DL is 

accurate detection, which several suggested algorithms proved. Sometimes it fails to detect assaults.  

Wani et al. [3] introduced advanced ML methods for classification, such as support vector machine (SVM), 

random forest (RF), and naïve Bayes. Data was generated by an automated intrusion detection system 

employing Tor Hammer for hacker tagging. The three algorithms had 99.7%, 97.6%, and 98.0% accuracy. This 

investigation showed that SVM detects best among other algorithms. Multiple ML techniques have been 

developed for DDoS categorization utilizing various datasets and characteristics. Most research focuses on 

artificial neural network (ANN) [26]‒[31] and compares SVM, RF, decision trees (CART), K-nearest 

neighbours (KNN), and others to identify and classify attacks as innocuous or DDoS. [32]-[36]. 

Amma and Subramanian [37] trained their models on pre-processed DoS/DDoS samples on a 

simulated ANTS2019 dataset and assessed accuracy. Second, the authors' rigorously managed synthetic dataset 

seamlessly integrated with the famous CICIDS2017 dataset. Watch their creative technique blend these two 

extraordinary data sets, opening up new opportunities for groundbreaking study and analysis. The junction of 

these outstanding datasets will provide unprecedented insights. We train the suggested classifiers again and 

test their detection performance on these two datasets. These models improved in the second phase of the 

experiment, with long short-term memory (LSTM) and deep neural network (DNN) accuracy of 95.15% and 

96.17%, respectively. LSTM and DNN have 0.987 and 0.989 area under the curve (AUCs). In the same year, 

VCDeepFL was launched for DoS detection. VCDeepFL uses several of techniques, including fully connected 

neural network (FCNN) and vector connected neural network (VCNN). Unsupervised preliminary VCNN 

learning and supervised FCNN multiclass classifier training comprise the training stage [38]. DDoS assaults 

may be identified using a diode array detection - multichannel convolutional neural network (DAD-MCNN), 

or multichannel CNN. The authors divide characteristics into traffic, host, and packet components to determine 

channel count. Researchers trained the MC-CNN gradually. The datasets CICIDS2017 and KDDCUP99 were 

used to test many models. The models were tested for binary classification across both datasets and many 
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KDDCUP99 classes [39]. DL model with feature extraction and classification framework was presented in 

[40]. An input layer with 69 units, three hidden layers with 50 units each, and a two-unit output layer make up 

the DNN architecture. The authors divided CICDDoS2019 into Dataset-1 and Dataset-2. Dataset-11 includes 

regular and hostile traffic. To classify DDoS hacks, Dataset2 was created. DNN modelling has achieved 

approximately 100% accuracy for Dataset1 DDoS attack identification in the early phases of intervention, 

suitable for real-time scenarios. It also classifies DDoS assaults with 95% accuracy using Dataset2. A deep 

CNN architecture was developed for software defined networks to identify DDoS attacks. The proposed 

ensemble technique and networks were analysed using CICIDS2017. The latest technique uses DL and hybrid 

methods. CNN's crew outperformed the other three DL-approaches but testing and training take time. This 

ensemble CNN is 99.45% accurate [41]. DL, especially CNN, has expanded DDoS detection [40]. CNN is the 

most popular method, however other research has used SVM and decision trees [42]‒[44]. In Table 1, a detailed 

comparison with prior works is illustrated to highlight the advantages and improvements of this proposed 

method.  

 

 

Table 1. A detailed comparison with prior works 
Model name Year Accuracy (%) Advantages/improvements Framework/models 

used 

Methodology 

used 

Proposed model 2024 99.58 Highest accuracy among compared 
models, robust against varied DDoS 

attack patterns, integrates LSTM and 

MaxPooling 

LSTM, MaxPooling DL, LSTM 

Stacked 

autoencoder [45] 

2022 98.99 Good accuracy, utilizes unsupervised 

learning for feature extraction 

Autoencoder DL, Autoencoder 

Firefly 
classification 

algorithm [45] 

2018 91 Novel application of Firefly Algorithm 
for classification, moderate accuracy 

Firefly algorithm Machine learning 

Naive Bayes and 
RF [46] 

2019 90.90 Traditional models, lower accuracy 
compared to DL approaches 

Naive Bayes, RF Machine learning 

Ensemble  

CNN [41] 

2022 99.45 High accuracy using hybrid methods, 

time-consuming training and testing 
processes 

Convolutional 

neural network 
(CNN) 

DL, CNN 

LSTM and  

DNN [38] 

2019 96.17 Integration of unsupervised VCNN and 

supervised FCNN, moderate to high 
accuracy 

VCNN, FCNN DL, VCNN, 

FCNN 

Deep CNN [40] 2020 100 

(Dataset1), 
95 

(Dataset2) 

Early phase DDoS attack identification 

with near-perfect accuracy on initial 
dataset, effective but slightly lower 

accuracy on second dataset 

Deep CNN DL, CNN 

Cuckoo search 
algorithm-trained 

RBF [47] 

2022 96.9 Effective feature selection using Cuckoo 
Search, stable accuracy 

Radial basis 
function, cuckoo 

search 

Machine learning, 
feature selection 

 

 

a) Advantages of the proposed model: 

‒ Highest accuracy: The proposed model achieves an accuracy of 99.58%, outperforming other models 

in the comparison. 

‒ Integration of LSTM and MaxPooling: The unique combination of LSTM and MaxPooling layers 

provides robustness against varied DDoS attack patterns. 

‒ Effective handling of temporal sequences: LSTM's ability to detect both long-term correlations and 

temporal sequences enhances the detection of even minor DDoS attacks. 

‒ Feature engineering: The model effectively selects and utilizes the best 40 features out of 77 to achieve 

the highest accuracy, ensuring efficient and accurate prediction. 

‒ Adaptability: LSTM’s adaptive learning capabilities make the model suitable for dynamic 

environments, maintaining high performance under varying network conditions. 

b) Comparison highlights: 

‒ The stacked autoencoder model achieves high accuracy but lacks the robustness and adaptability of the 

proposed model. 

‒ The cuckoo search algorithm-trained RBF provides strong feature selection but falls short in overall 

accuracy compared to the proposed model. 

‒ The ensemble CNN model offers high accuracy but requires significantly more time for training and 

testing, making it less efficient for real-time applications. 

‒ Traditional models like naive Bayes and RF show lower accuracy, highlighting the superiority of DL 

approaches for DDoS detection. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 1, February 2025: 614-628 

618 

‒ The Deep CNN model achieves near-perfect accuracy on an initial dataset but shows slightly lower 

performance on a more complex second dataset. 

The proposed model's integration of LSTM and MaxPooling, combined with effective feature engineering and 

adaptability, establishes it as a superior approach for DDoS detection in dynamic and varied network 

environments.  

 

 

4. DISCUSSION 

After a research and detailed investigation of ML's potential DDoS defense applications, additional 

upgrades are needed to establish a solid ML-based mitigation system. Many research used a synthetic dataset, 

which affected accuracy since ML approaches build a pattern-detection profile from the input dataset. Many 

studies have tried to stop particular DDoS attacks, but attackers may always learn new tactics and work harder 

to succeed. Many experiments used software to simulate an attacker and user behaviour, but a real-world DDoS 

attack uses a swarm of infected PCs, or "zombies," to inflict their damage. This technique should evaluate the 

system's effectiveness and durability in real life. 

 

4.1.  Dataset 

This data is gained from the system's application layer. The labels are classified into three groups 

based on the network analysis: i) Benign: Legitimate, ii) DoS slowloris: DoS assault, and iii) DDoS by DoS 

Hulk. Comprised of harmless and the newest examples of typical DDoS assaults, which are analogous to data 

taken from the actual world. Additionally, included are the findings of the investigation of the flow on the 

network. Contains flows that have been annotated according to the time stamp, origin IP address, destination 

IP address, source port, destination port, protocols for communication, and vulnerability signatures (CSV files). 

The dataset can be found in: https://www.kaggle.com/code/hamzasamiullah/ml-analysis-application-layer-

dos-attack-dataset/data. The dataset is structured to help researchers and practitioners develop and test ML 

models for intrusion detection systems (IDS). 

 

4.2.  Feature engineering 

ML uses mathematical models to acquire insights or forecast the future. The characteristics feed these 

models. Features are numerical representations of raw data components. Features sit between data and models 

in the ML process. Features are numerical representations of raw data. Raw data may be turned into quantitative 

measurements in many ways, which is why features may resemble many things. Also important is the number 

of qualities. Insufficient features and information will prevent the model from performing its primary job. The 

model will be harder and more expensive to train if there are too many or useless attributes. Anything that goes 

wrong during model training might influence its performance. Using feature selection processes to remove 

unhelpful attributes might simplify the final model. The final model should be simple, easy to compute, and 

lose minimal forecast accuracy. Figure 2 shows the data's journey through assessment and deployment.  

 

 

 
 

Figure 2. Representation of modelling including feature engineering 
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To find a model, certain feature selection approaches train numerous candidate models [48]. Feature 

engineering involves choosing, altering, and converting raw data into characteristics for supervised learning. 

Also called feature extraction [49]. Designing and training better features may be needed to make ML 

successful for new issues. A "feature" is any measurable input for a predictive model [50]. Colour and tone are 

examples of features. In its most basic form, feature engineering refers to the process of transforming raw 

observations into the necessary features via utilizing artificial intelligence techniques. The ML mechanism 

relies heavily on feature engineering. These mechanisms exploit these synthetic qualities to boost efficiency 

and provide better outcomes. Since data is where a data scientist's focus lies, model accuracy is of paramount 

importance. Feature selection tackles any probable obstacles by automatically picking a subset of data that is 

most relevant to the issue at hand. Our model was able to select the best 40 features among 77, in order to 

acquire the highest accuracy.  

 

4.3.  Max pooling and pooling process 

Pooling uses a filter or kernel like convolution. Pooling leaves the filter/kernel blank, like a blank 

array. The approach involves applying a filter over successive patches to process kernel pixels like convolution. 

Max pooling entails filter-scanning an item. Each cycle, the filter's highest pixel value is chosen as a new pixel. 

Take the highest pixel value from each occurrence and apply it to a new pixel to create a new portrayal. The 

resulting image is called a maximum pooling representation of the original data. A max-pooling operation [51] 

downsamples convolutional result bands, reducing unpredictability. The process of reducing the sample size 

in a 1-D max pooling layer involves splitting the input into 1-D pooling areas and then determining the 

maximum value within each zone. The dimension across which the layer pools is contingent upon the input of 

the layer: 

− The layer performs pooling across the "T" (time) dimension for input data having three dimensions, 

namely "B" (batch), "C" (channel), and "T" (time), which may be either time series or vector sequences. 

− In the case of one-dimensional picture input, where the data is represented by three dimensions denoted 

as "C" (channel), "S" (spatial), and "B" (batch), the layer performs pooling operations across the "S" 

(spatial) dimension. 

− The layer conducts pooling in the dimension for a sequence of 1 image. These images are represented by 

data, with four dimensions; "B" (batch) "C" (channel) "S" (spatial) and "T" (time). 

Pooling is a process that consolidates results into a range of values. We still use strides, padding and 

convolutional semantics as before. Pooling operations are applied independently to each channel. Do not alter 

the number of channels. Max pooling is preferred over pooling because it ensures output invariance. When 

downsampling or pooling feature maps we emphasize the feature in the patch rather than averaging occurrences 

as done in average pooling. This approach performs better than pooling in applications especially in computer 

vision tasks, like image classification. 

 

4.4.  Long short-term memory 

DL heavily relies on LSTM recurrent neural networks (RNNs). It excels in detecting long term 

connections, which makes it ideal for applications involving sequence prediction. Unlike regular neural 

networks, LSTM models utilize feedback connections to analyze sequential information rather than individual 

data points. This gives them a strong capability in understanding and predicting patterns in sequential data such 

as time series, linguistic analysis, and vocal syntax. Over time, the LSTM model has evolved into a powerful 

tool for artificial intelligence and DL. Its ability to analyze complex communication patterns and identify 

anomalies has greatly benefited various businesses, particularly in DDoS detection. By extracting packet 

headers, traffic rates, protocols and transmission patterns from past data, the ML model can differentiate 

between legitimate and malicious network behaviors after being trained with both instances. From the 

experimental results, we found that LSTM effectively detects both sudden and persistent and malicious network 

behaviors after it is trained with both types of instances. These results are attributable to the LSTMs ability to 

detect both long-term data correlations and temporal sequences of anomalous network traffic data. Thus, the 

LSTMs are capable of detecting even minor DDoS attacks by monitoring the network traffic. The main 

advantage of LSTMs over the existing techniques studied in this paper is that the LSTMs are designed for 

DDoS defense because LSTMs learn and adapt to dynamic environments. In summary, LSTM can be used to 

analyze the regularities in network traffic, detect abnormalities in this traffic, provide real-time notifications, 

and improve DDoS prevention and mitigation. 

 

4.4.1. Long short-term memory construction 

In the previous section of LSTM, it is shown how it can solve the problem of vanishing gradients, 

from which RNN suffers. This section will look at how exactly this deficiency in RNN architecture is remedied 

using LSTM. In some ways, LSTMs are simply like an RNN cell. Time steps refer to chunks of time that are 
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single. These parts are called “gates.” They decide what information enters and leaves an LSTM cell. Those 

three gates have been named "output,” "forget," and “input.” The LSTM unit consists of a group of neurons in 

a normal feedforward neural network. It has three gates and an LSTM cell in this unit. Each cell has two other 

layers beneath it: a hidden layer and a state layer at the moment in this layer. The RNNs also contain one hidden 

state and one C(t) at the current layer, whereas in the case of LSTMs, they consist of Ht right now, which was 

H(t-1), reflecting its previous hidden stage from the last time step. The model of LSTM includes both states 

C(t-1) and C(t) for long-term and short-term memory, respectively, reflecting historical timestamps until now. 

Long-term memory (LTM) refers to cellular memory, while short term memory (STM) refers to hidden 

memory that involves information on where particular things happen but not when or how often they do so on 

average. Note that cellular states store timestamps along with information therein as well. The first step 

involves determining the data from the previous time step that will be removed and retained in building the 

LSTM neural network structure. The forget gate is given by the following equation.  

Forget gate: 

 

𝑓𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓)  

 

We should strive to fully understand the equation that is being discussed. 

− As of the current timestamp, the input value is denoted by the variable 𝑋𝑡. 

− 𝑈𝑓 represents the weight associated within the input. 

− Hypothetical state 𝐻𝑡−1:: The concealed state from the time period before it. 

− 𝑊𝑓: This variable denotes the weight matrix associated with the concealed state. 

It is then subjected to a sigmoid function. As a consequence, 𝑓𝑡 will be limited to the interval between 

0 and 1. The cell state of the timestamp before is then multiplied by this 𝑓𝑡. 

 

𝐶𝑡−1 ∗ 𝑓𝑡 = 0 …  𝑖𝑓 𝑓𝑡 = 0 (Disregard all)  

 

𝐶𝑡−1 ∗ 𝑓𝑡 = 𝐶𝑡−1 …  𝑖𝑓 𝑓𝑡 = 1 (Neglect none)  

 

Setting a weight for the importance of the recently learned information that the input conveys is the job of the 

input gate. The formula representing the input gate may be found as follows.  

Input gate: 

 

𝑖𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑖 + 𝐻𝑡−1 ∗ 𝑊𝑖)  

 

− Let us endeavour to comprehend the equation at hand. 

− 𝑋𝑡: Enter data starting at timestamp t. 

− 𝑈𝑖: The weight matrix associated with the input. 

− 𝐻𝑡−1: A previously concealed state at the timestamp 

− 𝑊𝑖: The weight matrix, denoted as Wi, indicates the relationship among the input and the concealed state 

of a given system. 

The sigmoid function has been employed once again. Consequently, the value of variable 𝑖 at time 𝑡 will fall 

inside the range of 0 and 1. 

New information: 

 

𝑁𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡 ∗ 𝑈𝑐 + 𝐻𝑡−1 ∗ 𝑊𝑐) (Fresh Details)  

 

The incorporation of additional information into the state of the cell depends on the concealed condition at the 

previous timestamp (𝑡 − 1) and the input (x) at the current timestamp (𝑡). The used activation function in this 

context is the hyperbolic tangent 𝑡𝑎𝑛ℎ function. The 𝑡𝑎𝑛ℎ function restricts the range of new information 

values to be within the interval of -1 to 1. In the event that the value of 𝑁𝑡 is negative, the data is deducted from 

the cell state. Conversely, if the value is positive, the data is incorporated into the cell state at the present 

timestamp. Nevertheless, the 𝑁𝑡 will not be instantly incorporated into the cell state. The revised equation is 

now shown.  

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑁𝑡) (updating cell state)  

 

In this instance, 𝐶𝑡−1 represents the current state of the cell as of the current time, while the other values are 

those that we have computed in the past. 
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Output gate: The output gate's equation, which is somewhat similar to the equations for the two earlier 

gates, is shown following.  

 

𝑜𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑜 + 𝐻𝑡−1 ∗ 𝑊𝑜)  

 

The sigmoid function ensures that the value of the variable will be bounded between the range of  

0 and 1. To compute the present concealed state, we shall use the product of 𝑜𝑡 and the hyperbolic tangent of 

the modified cell state. As shown in the following illustration. 

 

𝐻𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)  

 

The hidden state is determined by the combination of the LTM 𝐶𝑡 plus the present output. To get the present 

timestamp's output, one may simply use the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 activation function upon the hidden state 𝐻𝑡 . 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐻𝑡)  

 

The prediction is determined by identifying the element with the highest score in the output. Figure 3 presents 

a more understandable representation of the LSTM network. 

 

 

 
 

Figure 3. LSTM components 

 

 

4.5.  Fully connected dense layer (ReLU activation function)  

To explain, the previous layer's values are multiplied by their weights and summed. Results are 

processed using an activation function. This scenario uses the rectified linear unit (ReLU) activation function. 

The mathematical formula for ReLU activation function is: F(x) represents the greatest value between 0 and x, 

where x is the neuron input. If positive, the function returns the value; else, zero. This function is extensively 

used in DL because it adds non-linearity, helps the network learn complicated patterns, and mitigates the 

vanishing gradient problem. The output of each neuron is calculated by a fully connected dense layer through 

adding the activation function into inputs’ weighted sum. The next layer in the neural network takes as its input, 

the output from an earlier one. DDoS attacks can be detected and mitigated by an ML model with a fully 

connected dense layer that uses the ReLU activation function. Many sources, for example, traffic and network 

records provide input data for the fully connected layer. Full connection between all neurons in current and 

previous layers characterizes this dense completely linked layer and has direct information transmittance 

capability. These layers are usually using ReLU activation function because they are able to generate  

non-linearities and decrypt sophisticated data patterns. The full connected dense layer gets trained on incoming 

data to help it identify patterns and relationships using rule extraction. The accuracy of distinguishing between 

DDoS activities and normal network traffic is high with this model. For computer networks to hold steady and 

safe, DDoS mitigation is vital. After training, fully linked dense layers can distinguish between DDoS-related 

events happening on a network or regular internet activity. Dense-layer outputs are thresholded by fixing 

thresholds for their outputs such that only signals above these thresholds pass through them. This technique 

helps to find out abnormal traffic features which may call for investigation or arrest completely unusual 

activities on the networks being monitored by software agents or other monitoring mechanisms inside these 
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systems. The concept of full connection thick layer can be adopted in real-time. Fully linked dense layers are 

commonly part of DNNs or CNNs. In order to improve detection, these models may include multiple layers, 

including entirely connected dense layers and other layers. For accurate and consistent detection, the model's 

training data must cover a variety of regular and DDoS assault situations. 

 

4.6.  Complete layers of the proposed model architecture 

In this part, we will discuss the numerous architectural approaches that were included in our model. 

Figure 4 depicts the suggested model's network layer design. The 'architecture' of a DL model may be thought 

of as the 'layers' that make up the model. When it comes to the models, there are many different kinds of layers 

that may be employed. Each layer has unique properties that make it essential. A fully connected layer 

processes input. To build a neural network, traffic flow characteristics are recorded initially. Each fully linked 

layer in this network changes the underlying problem's feature space. Researchers found that the rectified linear 

activation ReLU outperforms the softmax unit. The vanishing gradient problem in deep networks may explain 

this empirical observation. Softmax has zero slope for most input values. Thus, deeper networks typically have 

zero gradients. Nonzero gradients propagate via the ReLU function because the slope is nonzero over a wider 

input space. Fully linked networks can remember all training data given enough time, which is astonishing. 

Therefore, "convergence" training on a fully connected network is not a legitimate statistic. Network training 

and instruction will continue as long as the user can wait.  

 

 

 
 

Figure 4. The architecture of the proposed model 

 

 

Actually, fully linked networks may find and exploit erroneous correlations in their data. Controlling 

networks and preventing them from responding inappropriately is crucial to modelling success. The extracted 

features include packet length, transport layer protocol, data delivered and received, time between packet 

arrivals, and flow duration. There are many ways to train a completely linked layer. First, we trained our models 

on a large dataset. When dealing with large datasets, which may not fit in memory, gradients cannot be 

calculated at each step. Instead, practitioners compute the gradient on a tiny piece of the data (typically 50–

500 data points). Minibatch is the conventional term for this little data set. The next layer has a more 

complicated network structure. A form of RNN called LSTM. RNNs concentrate on time series learning. This 

works well for us since our database contains many interrelated properties. RNNs, which enable data to be fed 

back into earlier layers of the network, are often used for time-series data analysis because they provide more 

precise findings. LSTM units are included in one extensively used form [52]. These networks keep track of the 

current state of their data in the cells of their nodes, and that information is updated in response to new inputs 

and past outputs. The output is determined using the present situation of the cells and the input data.  The cell 

states and gate layers that makeup LSTM networks are combined into a single entity. Each gate is representative 

of a completely linked layer and is equipped with an appropriate activation function. This function accepts as 

input a concatenation of the data from the most recent time step as well as the output from the gate that came 

before it. After that, a whole LSTM layer is constructed by performing element-wise multiplication and 

addition on those gates in order to merge them. Whereas the input and cell gates both lead to an increase in 
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value, the forget gate might actually cause a drop in the values stored in the cell. In this instance, the output 

gate decides the output and classification values. The output gate calculates output.  

Mini-batching seems to improve convergence by allowing more gradient descent steps with the same 

processing capacity. Minibatch size is sometimes chosen empirically through hyper-parameter fiddling. The 

learning rate determines how much importance each gradient descent step receives. Finding the best study pace 

might be difficult. Many inexperienced deep learners set their models' learning rates incorrectly, which causes 

them to be surprised when their models fail to learn or return a number. Adjusting the learning rate may assist 

if models aren't learning anything new. This issue is made much better by ADAM's ability to make learning 

rate selection simpler. The dense layer's input shape goes via the input layer before it, so we can't change its 

attributes after calling it.  

Softmax is a popular nonlinear activation function for neural networks. It simulates probability with 

output values between 0 and 1. This contributes to its popularity. Thus, it converts the real-valued output of a 

linear layer to a probability, which may be used as a probability output. It is an essential component of logistic 

regression, which may be used for binary classification. DDoS attack classification studies were done using 

the suggested LSTM model. The model under consideration was trained using a dataset consisting of 809,361 

samples and subsequently evaluated using a separate dataset containing 346,869 samples. Training the LSTM 

scheme for identification was trained using the Keras framework in conjunction with Python. The classification 

task employed the ADAM optimization technique with a learning rate of 0.01 and a momentum of 0.0. The 

model's batch size was set to 6. The initial model consisted of 331,525 parameters. The utilized model consisted 

of 256 LSTM units and recurrent dropout set to 0.23. 

 

 

5. RESULTS 

The data that is being entered, which is our feature vector, goes into a layer that is completely linked. 

In order to achieve a certain degree of non-linearity while maintaining training stability, rectified linear 

functions are employed as activation functions. After the activation layer comes the dropout layer, which is 

used for regularization of the network. There are many occurrences of this particular pattern, which consists of 

completely linked, activation  (Softmax), and dropout layers. Regularization using dropout removes a particular 

proportion of nodes from a completely connected layer. A deleted node has no influence on the activation 

function. Without activation, gradients at deleted nodes converge to zero. The infrastructure will be limited 

from "co-adaptation." We shall briefly explain co-adaptation in non-regularized deep networks in this study. 

Consider a single deep network neuron that has learned something. When this occurs, other neurons in the 

network will rapidly learn to trust the neuron's information. This method will make the network unstable since 

it will depend disproportionately on the neuron's features, which may be an aberration in the dataset, rather 

than learning a general rule. This will impede network accuracy growth.  

Dropout prevents co-adaptation because neuronal death during training is unpredictable, making even 

a single powerful neuron unreliable. Because of this, more neurons must "fill in the gaps" and acquire 

appropriate representations. This approach theoretically enhances learned models. Two empirical effects of 

dropout exist. Even for huge deep networks, dropout slows training loss approaching 0. This prevents the 

network from overlearning by remembering training data. Finally, dropout somewhat improves the model's 

incoming data prediction. Dropout is generally considered more than a statistical hack due to its vast 

application. Turning off dropout is recommended before making any forecasts. Predictions may be 

substantially less accurate and valuable if dropout isn't disabled. Early stopping is difficult to accomplish in 

practice. In Figure 5 shows how loss curves for deep nets may fluctuate widely during regular training.  

When given enough time, fully-connected networks will remember whatever information is presented 

to them. Therefore, in reality, it is typically helpful to monitor the network's efficiency on a separate, reserved 

"validation" set and terminate the network if its efficiency on the validation set begins to decline. The term 

"early stopping" describes this easy strategy. In actual reality, putting early halting into effect may be rather 

challenging. As is evident by looking at Figure 6. Developing a criterion to distinguish typical variations from 

a decreasing trend may take time. Many practitioners train models with changing (constant) epochs and choose 

the best model on the validation set. This is the most popular method. For the previous two figures, it’s clear 

that we have stopped at epoch number three; as we are seeking the optimal loss and accuracy. Experience the 

assurance of meticulous experimentation as our dedicated researchers delve into the realm of LSTM models. 

With unwavering commitment, we have meticulously tested an array of hyper-parameters, leaving no stone 

unturned. 

Experience the cutting-edge capabilities of our proposed model as it undergoes rigorous 

experimentation with three distinct configurations. Brace the power of LSTM and prepare to be amazed as we 

push the boundaries even further with LSTM featuring emphasis and dropout layers. As illustrated in Table 2, 

the performance of various classification algorithms was evaluated based on their achieved accuracies along 

with other metrics. Among these, the stacked autoencoder [45] demonstrated exceptional accuracy, achieving 
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an impressive 98.99%. Following closely behind our proposed model, which outperformed all other methods 

with a remarkable accuracy of 99.58%. In comparison, the firefly classification algorithm [45] secured a 

respectable accuracy of 91%, showcasing its effectiveness. Additionally, the naive Bayes and RF techniques 

[46] yielded accuracies of 90.90%, indicating their proficiency in the classification task. The cuckoo search 

algorithm-trained radial basis function [47] also demonstrated strong performance, garnering an accuracy of 

96.9%.  

 

 

 
 

Figure 5. Model loss Vs. epochs 

 

 

 
 

Figure 6. Model accuracy Vs. epochs 

 

 

Overall, these results highlight the substantial advancements in classification accuracy, with the 

proposed model emerging as the most promising approach in this evaluation. The study's results section 

includes precision, recall, and F1 score to comprehensively evaluate the proposed model's performance. The 

model achieved an accuracy of 99.58%, with precision, recall, and F1 scores all around 0.99, indicating robust 

detection capabilities with minimal false positives and negatives. It outperformed other algorithms, making it 

a reliable solution for early DDoS attack detection and prevention. The comprehensive metrics highlight the 

model's effectiveness in ensuring network security and stability. This underscores the model's potential in 

enhancing DDoS attack mitigation strategies. 
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Table 2. Experimental results of the proposed model along with other techniques 
Used Technique Accuracy (%) Precision Recall F1 score 

Stacked autoencoder [45] 98.99 0.98 0.99 0.99 
Firefly classification algorithm [45] 91 0.90 0.92 0.91 

Naive Bayes and RF techniques [46] 90.90 0.89 0.91 0.90 

Using cuckoo search algorithm-trained radial basis function [47] 96.9 0.95 0.97 0.96 
The proposed archeticure 99.58 0.99 0.99 0.99 

 

 

The proposed LSTM model for detecting DDoS attacks demonstrates several practical implications, 

including a high detection accuracy of 99.58%, real-time detection capabilities, and adaptive learning to 

dynamic environments. This flexibility makes the model applicable across various network scenarios, reducing 

the need for constant manual monitoring and intervention, thus offering significant cost savings. However, the 

research also encountered several limitations. The use of synthetic datasets may not fully capture the 

complexity of real-world DDoS attacks, impacting the model's generalizability. The performance of the model 

relies heavily on precise feature selection and engineering, and the training process is resource-intensive. While 

the model is effective in detection, it requires additional mechanisms for mitigation. Furthermore, the evolving 

nature of DDoS attack patterns necessitates continuous updates to the model to maintain its effectiveness, 

presenting logistical challenges. Lastly, the accuracy of the model depends on the quality and 

representativeness of the training data, with potential biases leading to inaccurate detection of novel attacks. 

Addressing these limitations can enhance the model's robustness and practical applicability in real-world 

scenarios. 

 

 

6. CONCLUSION 

While several tools exist to identify DDoS assaults, many of them don't start looking into the attack 

until after the fact, when the harm has already been done. A critical component of any security system is a 

method that can identify DDoS assaults early on and block access to services while they are still in their infancy. 

The use of such data may aid in the creation of a set of automatic steps to turn on system tools and detect 

abnormalities or anomalous behaviour early on.  A developer of a defensive system needs to put in place an 

automatic reduction model that can detect and prevent assaults without any intervention from the 

administration. We think there ought to be a universal criterion for gauging a system's overall capabilities in 

the context of DDoS mitigation and detection. and this metric should be applicable across all environments. 

As DDoS attackers have been more creative in their use of current technology to overcome protection, DDoS 

assaults have grown considerably more challenging to avoid in contemporary years. As a result, DDoS assaults 

continue to be a serious problem for service providers, despite the fact that researchers have presented a variety 

of solutions to this issue. In this research, we provide a ML/DL-based DDoS detection strategy that operates 

across a wide variety of today's networking scenarios, with an accuracy of over 99.5%. 
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