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 This study presents a novel and innovative approach using deep learning (DL) 

ensemble technique to improve the security of internet of things (IoT) by 

identifying intricate cyber-attacks. By utilising advanced DL models like deep 

neural network (DNN) and long short-term memory (LSTM), our approach 

significantly enhances the accuracy of categorization compared to basic 

models. The initial binary classifier achieved an accuracy of 85.2%, while the 

multi-class classifier achieved an accuracy of 79.7%. Both classifiers 

continually enhanced, achieving accuracies of 99.34% and 98.26%, 

respectively, after 100 epochs. Real-time scenario evaluations showed that the 

average execution time per sample record was 0.9439 ms, confirming its 

efficiency. The DL ensemble exhibited improved performance in comparison 

to traditional models, indicating its potential for wider implementation in IoT 

security. The study not only emphasises significant improvements in 

accuracy, but also emphasises the method’s ability to perform well across 

many evaluation measures. This study presents a thorough and pragmatic 

method for identifying cyber-attacks in IoT settings. The stacked ensemble 

technique outperforms earlier models and fulfils real-time processing 

requirements, offering substantial advancements in IoT security. These 

findings enhance both the theoretical comprehension and practical 

application, establishing a novel benchmark for protecting intelligent IoT 

systems. 
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1. INTRODUCTION 

The advent of the internet of things (IoTs) in the modern digital age has brought about unparalleled 

progress in connectivity and automation, which has revolutionised traditional spaces into intelligent and 

adaptable environments. Smart environments facilitated by the IoT integrate sensors, actuators, and devices in 

a seamless fashion to form a networked ecosystem capable of accumulating, processing, and exchanging vast 

quantities of data. Nevertheless, this profound potential is not devoid of obstacles, given that the heightened 

interconnectivity also creates pathways for cyber threats and assaults. With the increasing dependence on 

interconnected devices, it becomes crucial to prioritise the protection of the IoT frontier to guarantee the 

availability, confidentiality, and integrity of sensitive data. In the face of unforeseen threats or external assaults, 

it is imperative that critical infrastructure components, including “internet industrial control systems and 

sensitive industrial plants and sites (SIPS)”, retain their functionality and reliable operation [1]. Engineers have 

https://creativecommons.org/licenses/by-sa/4.0/
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purposefully engineered a multitude of systems to mitigate the potential repercussions that could result from 

the failure or intentional destruction of critical infrastructure. However, these specialised systems remain 

vulnerable to cyber threats and assaults. SIPS protection is required in both the physical and virtual domains, 

comprising the management, control, and communication layers, due to its expansive attack surface. With the 

intention of unlawfully obtaining or modifying sensitive data, attackers endeavour to penetrate these layers 

using physical, remote, or a combination of attack vectors. Regarding transmission, SIPS is susceptible to 

cyberattacks. Cyberattacks have the capacity to compromise remotely operated devices, which may cause 

substantial damage to tangible assets and generate extensive financial losses. Servers containing sensitive data 

are likely to be of interest to hackers. Moreover, hackers may attempt to alter vital metrics supplied to 

administrators, thereby affecting the monitoring and control of infrastructure components. 

Safeguarding against various layers of potential attacks is a crucial aspect of cybersecurity, 

encompassing defence mechanisms against malware [2]. Malicious code embedded within software often lies 

dormant during system inspections, evading detection. These infected systems can establish connections with 

other compromised systems, forming a botnet that enables cybercriminals to conduct various illicit activities 

such as distributed denial of service (DdoS) attacks, spam dissemination, ransomware deployment, and 

surreptitious data exfiltration. The evolution of intrusion detection methods has shifted from reliance on port 

scanning to the adoption of advanced machine learning (ML) techniques [3]. Modern approaches have 

surpassed traditional port-based methods, adapting to dynamic port allocation rather than fixed port numbers. 

With the prevalence of encrypted traffic, traditional payload-based strategies have become less effective. 

Consequently, there is a growing inclination among cybersecurity experts to employ ML techniques and 

analyse network flow patterns to enhance detection capabilities. 

The advent of the IoT has introduced an unparalleled level of connectivity and efficiency, as it has 

become an integral part of our everyday existence. Nevertheless, this intricate network of devices also presents 

an array of security concerns, which necessitates a thorough analysis of the susceptibilities intrinsic to 

intelligent environments. The exponential expansion of various IoT devices, spanning from personal 

electronics to industrial sensors, gives rise to an intricate ecosystem in which conventional security protocols 

are inadequate [4]–[6]. Significant vulnerabilities in the form of sophisticated ransomware attacks and 

unauthorised access present formidable challenges to the confidentiality and integrity of IoT systems. 

Consequently, the imperative for resilient cybersecurity solutions that are precisely customised to the  

ever-changing characteristics of IoT environments arises. Conventional security methodologies, which were 

originally developed to operate in computing environments that are more conventional in nature, encounter 

difficulties in effectively tackling the distinct challenges presented by IoT ecosystems. The vast variety of 

devices and the scarcity of resources necessitate the development of novel approaches [7]. As a subset of ML, 

deep learning (DL) arises as a potentially effective method for enhancing IoT security. DL is highly suitable 

for anomaly detection and cyber threat identification in the dynamic and complex environment of smart 

systems due to its ability to recognise intricate patterns and adapt to evolving threats [8], [9]. This article 

examines the historical context of security challenges on the IoT, highlights the shortcomings of current 

security measures, and justifies the implementation of a DL Ensemble strategy to fortify the IoT frontier against 

cyber-attacks. 

The importance of security in the IoT extends beyond technological progress and influences every 

aspect of contemporary society. As the IoT integrates more deeply into our everyday existence, the risks and 

complexities surrounding its security escalate at an exponential rate. The fundamental nature of the IoT is the 

smooth interconnection and discourse among an extensive assortment of devices, encompassing intelligent 

household appliances as well as vital industrial sensors. While these interrelated systems optimise operations, 

streamline procedures, and offer unparalleled convenience, they also establish a complex network of 

susceptible points of failure that are prone to exploitation. The critical importance of IoT security becomes 

apparent when one contemplates the possible ramifications of breaches occurring within these interdependent 

ecosystems. Unauthorized access to personal data or control over household devices can result in privacy 

infringements, identity theft, and even physical security risks in the context of smart homes. The compromise 

of critical infrastructure via IoT devices in industrial settings can result in severe repercussions, threatening 

national security, public safety, and economic stability. 

Furthermore, due to the interconnectivity of IoT systems, a security vulnerability in a single device 

can potentially compromise the integrity of the entire network via a cascading effect. Interdependence 

emphasises the critical nature of establishing strong security protocols to protect against cyber threats. 

Considering society’s ongoing adoption of the IoT, it is crucial to acknowledge and confront the importance 

of IoT security. This is not solely a technological necessity but rather a fundamental prerequisite for 

safeguarding the confidence, dependability, and long-term viability of our progressively interconnected global 

community. The ramifications of security lapses in the IoT on society emphasise the necessity for  

all-encompassing, proactive, and flexible security approaches to reduce vulnerabilities and protect the integrity 

of our interdependent future. 
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This research endeavours to tackle the difficulty associated with devising a proficient anomaly-based 

approach for network intrusion detection. A comprehensive investigation of current benchmark datasets, 

specifically IoT-23, LITNET-2020, and NetML-2020, is undertaken with the objective of attaining optimal 

precision while minimising computational intricacy. The primary aim of this study is to develop an effective 

anomaly detection system that satisfies the predetermined standards: i) to perform an exhaustive analysis of 

the existing security flaws in smart environments enabled by the IoT; ii) emphasize the need for more adaptable 

and resilient solutions while identifying limitations and gaps in the current methodologies; iii) to develop and 

use a dimensionality reduction algorithm, like deep sparse auto encoder (DSAE), with the goal of reducing the 

dimensions of the classifier's input feature vector. This is done to reduce computational complexity; iv) to 

evaluate the efficacy of the proposed DL ensemble model through extensive experiments and assessments. 

The manuscript extensively examines the designated contribution. In section 2, a thorough analysis 

of existing literature related to the subject is conducted. Section 3 introduces an intrusion detection platform 

based on anomalies, detailing its data preprocessing methods, techniques for feature engineering, and 

proposing a stacked ensemble ML approach. Section 4 presents findings from experimental investigations. 

Lastly, section 5 presents conclusions drawn from the study and explores potential avenues for future research. 

 

 

2. BACKGROUND 

This literature analysis began with a thorough examination of the present status of IoT security, a dive 

into existing cybersecurity solutions, and the emergence of threats in smart environments. In addition, 

investigated the use of DL in cybersecurity, focusing on its potential to improve anomaly detection and threat 

identification. Many scholarly contributions have been evaluated to get inspiration and address the challenges 

related to access control, authentication, application security, encryption, and network security in IoT contexts. 

A comprehensive assessment reported in [10] thoroughly investigates security risks linked to IoT connectivity, 

providing insights into widespread difficulties, and proposing alternative remedies. IoT systems are frequently 

found to be unprepared, providing a chance for hostile actors. In such cases, fraudsters use wireless networks to 

connect to IoT devices, giving them physical access to critical data [11]. IoT systems are vulnerable because of 

their sophisticated structure and integrative setups, emphasising the necessity for effective security measures to 

protect against unauthorised access and potential data breaches. Furthermore, because of the extensive 

interactions and interdependencies inherent in these systems, the IoT architecture presents new attack surfaces 

[12]. These traits help to shape the formation of various sorts of assaults. As a result, the security difficulties 

confronting IoT systems outnumber those confronting traditional computing devices, raising the amount of risk 

associated with defending these networked ecosystems. Because of the vulnerabilities inherent in IoT systems, 

complex and possibly destructive assaults, such as the Mirai disaster, are expected to arise. Given the wide range 

of IoT situations and applications, choosing the most effective IoT security solutions is a significant difficulty. 

As a result, the major focus of our research is on developing appropriate ways for improving IoT security while 

addressing the intricacies and dynamic nature of the threat landscape in these networked systems [13]. 

Various solutions for navigating the junction of security and privacy challenges within the areas of 

DL and ML have been developed. The most often used methods for safeguarding privacy in the context of DL 

and ML include homomorphic encryption, differential privacy, trusted execution, and secure multiparty 

computing environments [14]. Abdallah et al. [15] provided a concise overview of the implementation of ML 

methods in the context of the IoT, with a particular emphasis on data security and privacy protection. These 

authors’ survey identified three key challenges related to the implementation of ML in IoT environments: 

concerns about communication and computation overhead, the limitation of partial state consideration, and the 

requirement for robust backup security justifications. 

 

2.1.  Smart environments driven by the internet of things 

A smart environment refers to a setting where sensors and computational devices seamlessly interact 

with everyday objects, communicating via a network. This integration aims to enhance human life by 

improving comfort and efficiency. According to Latif et al. [16], smart environments leverage information and 

communication technologies to enhance awareness, interactivity, and efficiency across various sectors, 

including city administration, education, healthcare, public safety, real estate, transportation, and utilities. The 

IoT plays a crucial role in enabling intelligent ecosystems like smart cities, advanced healthcare systems, and 

efficient building management. The objective of smart environments is to deliver services by leveraging data 

from IoT-enabled sensors and employing intelligent techniques, impacting various aspects of our lives, 

including social, commercial, and economic components [17]. Figure 1 illustrates the growth of networked IoT 

devices and the global IoT market [18], providing insights into economic implications and anticipated industry 

effects, including the projected market share of major IoT applications by 2025. 
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Figure 1. Connected IoT devices vs global market value 

 

 

2.2.  Safety and security threats 

The IoT connects physical items and their environs via internet connections. These gadgets often 

function in an uninvited and sometimes dangerous internet environment. As a result, there is a danger of hostile 

actors infiltrating and exploiting susceptible IoT devices. Through eavesdropping, this attack might result in 

the unauthorised disclosure of sensitive information and credentials from sensors [19]. Figure 2 depicts possible 

security risks that have the potential to influence several securities criteria, such as authorization, 

authentication, confidentiality, availability, integrity, and non-repudiation. 

 

 

 
 

Figure 2. Types of IoT security threats [18] 

 

 

Furthermore, numerous studies raise serious concerns about the distribution of updates across the 

large network of billions of smart devices. The inherent computing limits of IoT devices severely limit their 

ability to effectively mitigate and respond to sophisticated cyber threats. This highlights the significant hurdles 

connected with ensuring these devices have the necessary capability to smoothly accept and deploy application 
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upgrades in an efficient manner. In essence, one can divide the vulnerabilities in IoT systems into two 

categories: those inherent to the devices themselves, and those resulting from the pervasive challenges 

surrounding their ability to adequately accommodate and execute updates required for security and 

functionality. 

 

2.3.  Deep learning, ensemble learning 

DL and deep neural networks (DNN) play a pivotal role in ML, fueled by the emergence of potent 

graphics processing units (GPUs) boasting remarkable processing power. This technological evolution has 

significantly impacted artificial intelligence (AI), engineering, and computer science, with a burgeoning 

influence anticipated in cybersecurity. Although the integration of DNNs into intrusion detection systems (IDS) 

is still nascent, a mounting body of evidence underscores their potential in fortifying cybersecurity defenses. 

Laghrissi et al. [20] employed long short-term memory (LSTM) networks and evaluated them on the  

KDD-Cup '99 dataset. The LSTM-recurrent neural network’s (RNN) layer model demonstrated strong 

performance, achieving an accuracy of 96.93% and a recall rate of 98.88%. Similarly, Brunner et al. [21] 

explored the efficacy of deep autoencoders in intrusion detection within big data contexts. Utilizing the  

NSL-KDD test set, the study aimed to capture essential characteristics via dimensionality reduction, yielding 

promising accuracy results suitable for real-world intrusion detection applications. Furthermore, Brunner et al. 

[22] conducted comprehensive evaluations on the utility of deep belief networks (DBN) for intrusion detection. 

Training the DBN using NSL-KDD data enabled the detection of previously unknown threats, showcasing the 

efficacy of this approach. The proliferation of advanced hardware resources and enhanced computational 

capabilities of GPU cards have bolstered the adoption of DNN methods as a compelling alternative to 

conventional intrusion detection approaches. 

Researchers used feedforward neural networks (FNN) to develop a new solution for intrusion 

detection and traffic monitoring within a network in [23]. The Bot-IoT dataset was used in the study for a 

comparison with the support vector classifier (SVC). Experiment results showed that the FNN model 

outperformed, attaining a remarkable accuracy of 99.414% in multi-class categorization of DDoS/DoS assaults. 

Furthermore, the FNN model outperformed all other assessment measures, including accuracy, precision, 

recall, and F1 score, with an overall effectiveness of 0.99%. According to Ge et al. [24], traditional IoT security 

strategies primarily focus on identifying threats that originate from either the device or the cloud. However, 

this technique limits the capacity to identify a variety of malicious activities, such as botnet infiltrations, 

phishing attempts, and DDoS assaults among IoT devices. On the other hand, it presented a revolutionary 

cloud-based detection solution based on DL methodologies. They suggest the use of distributed convolutional 

neural networks (DCNN) for IoT devices and LSTM for cloud backend hosts, therefore solving the weaknesses 

of existing security paradigms. 

Stacking, or stacking generalisation, is a method that can significantly improve the performance of 

ML models. This strategy produces an overall gain in performance by utilising a meta-classifier to combine 

the predictions made by various models [25]. Papamartzivanos et al. [26] combined hidden Markov and naive 

Bayesian models to improve the flexibility of IDs. The study’s findings demonstrated that employing this 

stratified generalisation strategy produced positive benefits. Balancing accuracy with low false alarms in IoT 

traffic security, particularly in the realm of DL, is difficult. This problem is especially acute at CNNs. 

Furthermore, using FNN for multi-class classification limits the efficiency of IoT network security against 

information theft and key logging, with optimal effectiveness confined to binary classification techniques. In 

the suggested paradigm, a third constraint emerges, appearing as a performance reduction in IDS during periods 

of high network traffic. These constraints highlight the need for sophisticated ways to handle the complexities 

of IoT security enhancement. 

 

 

3. PROPOSED METHOD 

The major goal of this research is to generate reliable outlier classifications using a sophisticated 

stacked ensemble technique. The following section will provide readers with an extensive description of the 

framework used in this study. Following the framework overview, an in-depth examination of the complexities 

of data pre-processing, feature engineering, and the subsequent stages involving classifier modelling will be 

meticulously explored.  

 

3.1.  Dataset of cyber-attacks 

Data collection requires obtaining information about certain variables within a dataset in a methodical 

manner. This methodical methodology makes it easier to investigate defined research topics, scrutinise stated 

hypotheses, and assess outcome consequences. The focus of data collection in this study is on factors linked to 

intrusions and assaults on data records in IoT computing systems. Several flow-based benchmark datasets, such 
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as IoT-23, LITNET-2020, and NetML-2020, have been made public. Despite their recent release, these datasets 

have received little attention from the cybersecurity community. This research utilized these datasets to perform 

effective anomaly-based network intrusion detection. This enables us to analyse and find abnormalities in 

realistic and current network traffic data, offering useful insights on the effectiveness of our IDs on current 

datasets. The IoT-23 dataset, which can be found at “https://www.stratosphereips.org/datasets-iot23”, has 20 

malware subsets and three benign subsets inside network traffic. This dataset was initially provided in January 

2020 by the “Stratosphere Laboratory in Czechia”. Its major goal is to provide a large collection of labelled 

data, which includes both malware and benign network traffic collected from legitimate captures. The goal is 

to make it easier to design intrusion detection technologies, particularly those that use ML methods. The dataset 

contains 21 feature traits, including nominal and quantitative properties, as well as timestamps. These 

properties define each data instance, including a class name that specifies the type of connection. Table 1 offers 

an in-depth analysis of the dataset, highlighting the many properties connected to each data point. The study 

then goes on to explain the attack class labels, providing a full overview of the many sorts of security risks 

contained in the dataset. Because of the large size of the IoT-23 dataset, this study focused on a small collection 

of five scenarios for evaluation. 

 

 

Table 1. IoT-23 datasets used 
Sl. No. Malware detail Capture detail 

1 Hide&Seek Malware-1-1 

2 Bening Honeypot-4-1 

3 Bening Honeypot-7-1 

4 Mirai Malware-34-1 

5 Mirai Malware-43-1 

 

 

LITNET-2020, the NetFlow dataset utilised in this investigation, is available at https://dataset.litnet.lt. 

It comprises senders and receivers. The senders, which are comprised of Cisco routers and FortiGate firewalls, 

are strategically positioned to monitor the passage of NetFlow data through the assigned collectors. Software 

specifically developed for the reception, storage, and filtration of data is installed on these collectors. The 

dataset comprises a grand total of 45,492,310 fluxes, the quantities of which are detailed in Table 2 for each 

class. The classifications in question incorporate both benign and malevolent data, with the former comprising 

45,330,333 flows and the latter 5,328,934 flows. The latter is additionally categorised into nine classifications, 

which correspond to distinct varieties of network intrusions. 

 

 

Table 2. LITNET-2020 datasets used 
Flows Attacks (%) Attack types 

3,994,426 1.48 Smurf 

3,863,655 0.3 ICMP-flood 

606,814 9.8 UDP-flood 
14,608,678 25.5 TCP SYN-flood 

3,963,168 0.58 HTTP-flood 

3,569,838 1.47 LANDattack 

2,858,573 0.85 Blaster worm 

5,082,952 24.7 Code red worm 
1,153,020 0.065 Spam bot’s detection 

4,377,656 0.027 Reaper worm 

6687 93.2 Scanning/spread 

1,244,866 0.038 Packet fragmentation attack 

 

 

3.2.  Overview of proposed architecture 

In this section, a complete, deep-stacked ensemble approach for detecting anomalies in network traffic 

data is discussed. Figure 3 shows a graphic representation of the complicated construction. The framework is 

divided into five stages: i) meticulous dataset selection; ii) data preprocessing; iii) data output; iv) data splitting; 

and v) classification into “normal/anomaly” categories. This categorization is carried out with the help of a 

unified stacked ensemble strategy that smoothly integrates deep models and a meta learner. NetFlow files 

frequently include a variety of feature properties classified as flow, basic, content, time, extra created, and 

labelled. Nonetheless, packet captures produce a plethora of data, including useless or repetitive information. 

Extraneous information must be removed to improve the accuracy and impartiality of detection processes. The 

network traffic datasets have varying magnitudes in their continuous values, which presents difficulties for 

various classifiers. To address this issue, a scaling procedure is used to normalise the characteristics, 
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compressing the values between 0 and 1. As a result, the features are scaled according to the concepts indicated 

in (1). When dealing with variables of varied magnitudes, this normalisation strategy is critical for guaranteeing 

consistency in the dataset and optimising classifier performance. In the context of our methodology, 

𝑥̅𝑚,𝑛 denotes the normalized feature, where 𝑚𝑎𝑥
𝑛

 (𝑥𝑚,𝑛) stands for the highest value observed in the data for 

the m-th feature. The variable 𝒊 signifies the count of samples present in both the training and testing datasets, 

while f represents the number of features determined through the feature selection procedure. 

 

𝑥̅𝑚,𝑛 =
𝑥𝑚,𝑛

𝑚𝑎𝑥
𝑛

 (𝑥𝑚,𝑛)
, ∀𝑚=1,…,𝑓 , ∀𝑛=1,…,𝑖 (1) 

 

 

 
 

Figure 3. Proposed model architecture 

 

 

3.3.  Data balancing 

ML algorithms may meet difficulties when confronted with uneven class distributions within a 

learning dataset. In the context of unbalanced data learning, addressing this issue frequently entails applying 

proven procedures, such as under-sampling the majority class. Another approach uses a mix of oversampling 

and under sampling approaches to generate a more balanced representation of classes within datasets. Adaptive 

synthetic sampling (ADASYN), a variant of the synthetic minority over-sampling technique (SMOTE), was 

utilised. The density distribution of distinct locations in the feature space is used by ADASYN to dynamically 

alter the synthetic sample production. The weight assigned to each instance (𝑤𝑖) is determined by the density 

ratio (𝑟𝑖) and a user-defined parameter 𝛽. The purpose of the weight is to emphasize instances in regions with 

lower density ratios, indicating areas where the class imbalance is more pronounced. The weight is calculated 

using the formula in (2). The density ratio for an instance x_i in the minority class is calculated by considering 

the ratio of the number of minority instances among the 𝑘 nearest neighbors of 𝑥𝑖 to the total number of 

instances among those k-nearest neighbors. ADASYN tries to equalise the distribution of synthetic samples by 

introducing weights into the synthetic sample generation process, with a stronger emphasis on parts of the 

feature space where the minority class is underrepresented. 

 

𝑤𝑖 =
1

1+𝛽⋅(1−𝑟𝑖)
 (2) 

 

3.4.  Dimensionality reduction 

The DSAE learning technique is used in the dimensionality reduction process, which employs an 

autoencoder to extract latent representations of features inside a smaller space. When used unsupervised, the 
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autoencoder learns to contain the main properties of the input vector. The DSAE distinguishes itself by 

incorporating a sparse penalty term, a unique addition to the autoencoder idea. This inclusion impedes simple 

feature learning, forcing the model to achieve a more concise representation of the input vector. The use of 

DSAE is justified by the aim of creating a rebuilt depiction of the input vector. The DSAE cost function 

incorporates sparsity to restrict the average activation value across neural nodes in the computational layers. 

This technique ensures that the encoded representation remains sparse, which helps the model capture 

important features and accurately reconstruct the input vector. 

 

 

4. RESULTS AND ANALYSIS 

Verification and validation are critical procedures and quality assurance techniques that are carried 

out independently to check a system’s conformity to defined criteria and standards, ensuring that it achieves 

its intended goals. Verification entails a series of operations aimed at determining the suitability of a system or 

component, basically checking whether the product is being built appropriately. Validation, on the other hand, 

includes actions aimed at scrutinising the alignment of the system or its parts with their intended purpose and 

functions and validating whether the correct product is being generated. Although system validation and 

verification are independent, their operations are linked and should be carried out together. In this part, a 

thorough verification and validation process is executed to ensure that the system is aligned with its intended 

aims and objectives. 

 

4.1.  Evaluation and verification metrics 

A complete assessment was carried out to examine the effectiveness and alignment of the proposed 

system with its intended capabilities and aims. The performance of the system was evaluated using the specified 

testing dataset, with an emphasis on important parameters such as classification accuracy and classification 

time. This review sought to validate the system’s efficacy in accomplishing it is objectives. 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑋100 (3) 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑚𝑠) =  ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑥 
1000

𝑛𝑜.𝑜𝑓 𝑟𝑢𝑛𝑠

𝑛𝑜.𝑜𝑓 𝑟𝑢𝑛𝑠
𝑖=1  (4) 

 

The initial classification accuracy proportions were noticeably low at the start of the testing procedure 

and after completing one full run (epoch), standing at 85.2% for the two-class classifier and 79.7% for the  

five-class classifier, as shown in Figure 4. Following that, both classifiers showed an increasing trend in 

classification accuracy, with a consistent tendency throughout subsequent testing epochs. Particularly, the  

two-class classifier increased more quickly and significantly, hitting higher ceiling values for classification 

accuracy. The system demonstrated tremendous progress after 100 epochs of training, reaching an astonishing 

99.34% accuracy for the two-class classifier and 98.26% accuracy for the five-class classifier in successfully 

categorising the given test dataset samples. 

 

 

 
 

Figure 4. Classification accuracy vs epochs 
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Furthermore, our research included an in-depth analysis of the time required to execute attack 

detection or classification on individual IoT traffic samples. The validation test executed 500 times in total to 

ensure precision and accuracy. Following that, calculated the time statistics for detection and classification. 

The time range per sample record was 0.5662 to 2.099 ms, with an average time of 0.9439 ms during the 500 

simulation iterations, shown in Figure 5. This average time is extremely useful for the system’s smooth 

functioning in dynamic contexts, notably in the context of real-time IDS applications. 

 

 

 
 

Figure 5. Classification time curve 

 

 
The g-mean approach, as described in [27], is used in this work to evaluate the performance of 

classifiers on datasets with an unbalanced class distribution. In such cases, the geometric mean (g-mean) serves 

as a measure for evaluating classifier outcomes. This technique for assessment is especially useful in the case 

of unbalanced datasets, ensuring a meaningful and thorough examination of classifier efficacy.  

Table 3 compares the overall accuracy and achieved g-mean score of the state-of-the-art classifiers to the 

stacked ensemble classifier. 

 

𝑔 − 𝑚𝑒𝑎𝑛 =  √∏ 𝐴𝐶𝐶𝑚
𝑀
𝑚=1

𝑀
 (5) 

 
 

Table 3. Comparison of accuracy and g-mean of different methods on IoT-23 and LITNET-2020 datasets 
Reference Method IoT-23 LITNET-2020 

Accuracy g-mean Accuracy g-mean 

[28] Random forest 89.3 - 91.1 - 

[29] Multi-layer perceptron 98.8 - 98.1 - 
[30] Support vector machine 83.7 (NSL-KDD Dataset) - - - 

Ours DL ensemble 98.3 98 99.3 99 

 

 
As a baseline models, selected two fundamental classification models: DNN and LSTM. DNN, which 

is extensively used across several domains, and LSTM, which is known for its profound DL capabilities, were 

chosen for their demonstrated success in making considerable gains in accuracy. This selection stems from an 

appreciation for these models’ adaptability and demonstrated performance in a variety of applications, 

establishing a strong foundation for the comparative study within the scope of current research. The observed 

improvements reflect a significant increase in the efficacy of the suggested stacked ensemble approach over 

the baseline. This method could improve classification accuracy as well as provide favourable results across a 

variety of assessment parameters. 
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5. CONCLUSION 

An analysis of a suggested DL ensemble method demonstrates substantial improvements in the 

accuracy of categorising IoT traffic samples. Although they had originally suboptimal proportions, both the 

two-class and five-class classifiers shown constant and considerable improvement over the course of testing 

epochs. Ultimately, they achieved remarkable accuracy rates of 99.34% and 98.26% respectively, after 100 

training epochs. The rapid and substantial enhancement, particularly in the two-class classifier, showcases the 

efficacy of the suggested technique in classifying diverse IoT data. In addition, this study examined the 

practicality of the system, including real-time IDS applications. After doing more than 500 simulation 

iterations, the time analysis revealed that the average execution time per sample record was 0.9439 

milliseconds. The efficiency of this technology is crucial for its seamless integration in dynamic conditions, 

enhancing its practicality in real-world scenarios. This study establishes a strong basis for the efficacy of the 

proposed strategy by conducting a comparative analysis between the DL ensemble method and baseline 

models, specifically DNN and LSTM, which are well acknowledged for their versatility and DL capabilities. 

The observed improvements confirm the significant benefits of the proposed technique compared to existing 

models, showcasing it is capacity to enhance classification accuracy and yield favourable outcomes across 

several evaluation metrics. 
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