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 Time series forecasting is vital for predicting trends based on historical data, 

enabling businesses to optimize decisions and operations. This paper 

evaluates forecasting models for predicting trends in simple network 

management protocol (SNMP)-based hypervisor data, essential for resource 

allocation in cloud data centers. Addressing non-stationary data and dynamic 

workloads, we use PyCaret to compare classical models like autoregressive 

integrated moving average (ARIMA) with advanced methods such as auto 

ARIMA. We assess 30 models on metrics including CPU utilization, 

memory usage, and disk reads, using synthetic and real-time datasets. 

Results show the naive forecaster model excels in CPU and disk read 

predictions, achieving low root mean squared errors (RMSE) of 0.71 and 

869,403.35 for monthly and daily datasets. For memory usage predictions, 

gradient boosting with conditional deseasonalisation and detrending 

outperforms others, recording the lowest RMSE of 679,917.6 and mean 

absolute scaled error (MASE) of 4.46 on weekly datasets. Gradient boosting 

consistently improves accuracy across metrics and datasets, especially for 

complex patterns with seasonality and trends. These findings suggest 

integrating gradient boosting and naive forecaster models into cloud system 

architectures can enhance service quality and operational efficiency through 

improved predictive accuracy and resource management. 
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1. INTRODUCTION 

The field of cloud computing has experienced rapid growth, with numerous virtual machines now 

operating within physical server environments [1]. As demand for virtualization technology increases, 

effective time-series forecasting methods are essential, particularly for managing simple network management 

protocol (SNMP)-based hypervisor data [2]. Such data supports tracking and managing performance across 

virtual instances deployed in the cloud. However, time-series forecasting has certain weaknesses when dealing 

with 'non-stationary' data, as it often struggles to model dynamic and volatile workloads. This challenge limits 

the adaptability of forecasting methods when faced with unpredictable, fluctuating workloads, especially in 

SNMP-based hypervisor contexts, where these limitations pose significant obstacles to system administrators 

seeking to optimise resource management in cloud data centers [3]. 

Accurate workload prediction in cloud computing is crucial for optimising resource allocation and 

operational efficiency. Forecasting methods are generally divided into two main categories: those based on 
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fundamental time-series dynamics and those using machine learning and artificial neural networks [4].  

A range of methods has been developed to address workload prediction challenges, including classical 

statistical approaches such as autoregressive (AR), moving average (MA), and the autoregressive integrated 

moving average (ARIMA) model [5], as well as more sophisticated models such as seasonal autoregressive 

integrated moving average (SARIMA) [6], [7]. Additionally, contemporary techniques like multiple linear 

regression (MLR), ridge regression (RR) [8], and adaptive neuro-fuzzy inference systems (ANFIS) [9] have 

also been applied. Recent research by Kumar and Singh [10] have indicated that auto ARIMA is a promising 

approach, offering high prediction accuracy for web server workloads and demonstrating its potential to 

proactively optimise resource allocation. However, traditional models such as auto ARIMA often struggle 

with the complexity and dynamics of cloud data centre environments, characterised by rapidly evolving data 

variability. This limitation is particularly evident over longer forecasting horizons and during periods of 

significant data fluctuation, underscoring the need for models that are more adaptive to changing conditions. 

In recent years, automated machine learning (AutoML) frameworks, such as PyCaret, have emerged 

as powerful tools to simplify model selection, evaluation, and optimisation. PyCaret is a software tool that 

integrates a range of machine learning algorithms and time-series forecasting models within a Python 

wrapper, which includes assemblies of several machine learning frameworks, such as scikit-learn, XGBoost, 

LightGBM, CatBoost, spaCy, Optuna, Hyperopt, and Ray. Studies indicate that PyCaret’s capabilities 

significantly enhance implementation, versatility, and customisation [11]. This tool has proven influential in 

time-series analysis and forecasting across multiple contexts [12]. Its applications range from forecasting 

trends in the COVID-19 pandemic [13] to data collection and formatting processes for various forecasting 

projects [14]. However, the potential for hypervisor management in the cloud computing domain with actual 

and synthetic SNMP-based hypervisor data still needs to be explored. 

This research aims to evaluate the efficacy of 30 distinct time-series forecasting models using 

PyCaret on variety of authentic and synthetic datasets derived from SNMP-based hypervisor systems. The 

objective is to leverage the PyCaret toolkit to identify optimal forecasting methodologies for predicting 

hypervisor components accurately, specifically CPU utilization, memory utilization, and the number of disk 

reads. The findings of this study will support organisations in making informed decisions regarding resource 

allocation and overall operational efficiency in cloud environments. The primary contributions of this paper 

are as follows: first, the application of time-series forecasting models to SNMP hypervisor data through 

PyCaret, followed by analysis of the time series windows and forecasting models that yielded the best results; 

second, an evaluation of resource management approaches in light of the integrated forecasting measures. 

 

 

2. METHOD 

This study employs a machine learning approach to evaluate the efficacy of a time series forecasting 

model utilizing SNMP-based hypervisor data. The research was conducted using the stages illustrated in 

Figure 1. This section will discuss the dataset, experimental design, and model evaluation employed in this 

study. Furthermore, Figure 1 illustrates the essential steps for utilizing Pycaret to evaluate the model. The 

framework outlines procedures for acquiring load data from synthetic and real-time databases, providing an 

overview of the Pycaret interface for model evaluation. This systematic approach facilitates a comprehensive 

understanding of the workflow and tasks designed to ensure practical evaluation and comparison of multiple 

forecasting models in performance. 

 

2.1.  Dataset 

This research employed a time series dataset, as detailed in Table 1 of the research paper. The 

dataset is divided into two principal categories: synthesis data, which is simulated data, and real-time data, 

which is obtained directly from the source. This information is crucial for accurately interpreting the data 

analyzed in the study and verifying the forecasting models [15]. 

‒ Synthesis: the scenario-based system generated a dataset containing CPU load, memory usage, and small 

computer system interface (SCSI) disk bytes as variables collected at different times. 

‒ Real-time: a few of the datasets available include CPU utilization, memory usage, and SCSI disk bytes 

obtained for one month, one week, and one day, respectively. 

Synthetic data is associated with a robust correlation to elevated prediction accuracy, as the 

generation of synthetic data adheres to a desired pattern. In contrast, data from real-time sources typically 

exhibit a weaker correlation with forecasting accuracy, as numerous external factors beyond an individual's 

control can influence their nature. The following characteristics are present in the dataset: The initial step is 

to evaluate CPU utilization for the monitored device by examining the CPU idle value. A low CPU idle value 

may indicate that the device operates under a high load. Secondly, to assess the memory load of the 

monitored device, a low memory-free value has the same significance, whereby a high load may be placed on 
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the device. Thirdly, through SCSI disk bytes, to assess the number of bytes written to the SCSI disk on the 

monitored device, a high byte count may suggest that the device is busy. 

 

 

 
 

Figure 1. Framework assesment 

 

 

Table 1. Time series dataset 
Dataset Metrics Workload description 

Synthetic and realtime 
(month, week, day) 

CPU utilizations Percentage of CPUs Idle 
Memory usage Percentage of memory free 

Combined SCSI disk bytes Bytes read 

 

 

2.2.  Experimental setup 

2.2.1. Hypervisor workload forecasting 

The dataset employed in this research is centred on data extracted from SNMP sources, obtained 

from network management servers and illustrative of the diverse workloads observed in cloud data centres. 

The dataset is employed to evaluate the forecasting models across a range of prediction windows, thereby 

facilitating the assessment of their accuracy. Figure 2 illustrates the general cloud system architecture 

incorporating a forecasting module. In this context, the resource manager receives input workload data from 

the hypervisor data centre and analyses historical data from real-time or synthetic workloads to forecast cloud 

resource management effectively. 

 

 

 
 

Figure 2. Load forecasting architecture hypervisor [10] 
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Equation for time-series analysis of data in SNMP is described by the variable Ý, which is a 

collection of workload values over time t, where 𝑦𝑡  is the workload at time t. Function ƒ represents the 

previous workload analysis used to estimate outcome of future events. This equation can be expressed as (1): 

 

Ý𝑡+1 =  ƒ(𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦1) (1) 

 

Where Ý𝑡+1 is represents the predicted workload at the next time step (t+1), ƒ is a function that uses the 

previous workload values to estimate the future workload1, and 𝑦𝑡, 𝑦𝑡−1,…,𝑦1 are the workload values at 

the current and previous time steps. 

This approach is pertinent in the context of SNMP, where data collection is continuous. It is 

noteworthy for its capacity to illustrate the evolution of the network system and the monitored devices with 

greater clarity. However, it is important to recognise a potential limitation, namely that the predicted values 

(Ý𝑡+1) must be validated against the actual values. This can be achieved by measuring the forecast error (𝑒𝑡+1). 

 

2.2.2. Scenario of creating synthetic dataset 

Synthetic datasets have utility in research as they are able to imitate scenarios that do not always 

occur in real practice. In the evaluation of time-series forecasting models for SNMP-based hypervisor data 

context, the synthetic dataset is employed as follows: i) model testing: the primary objective of synthetic 

datasets is to facilitate model testing under controlled and repeatable scenarios. As discussed in [15], [16], the 

use of synthetic data is a key aspect of optimising data-driven prognostic models and modelling time series 

forecasting. In this manner, researchers are able to replicate simulated workloads that are otherwise 

unfeasible in the real world for a variety of reasons; ii) performance analysis: the models are exercised on 

synthetic workloads for the purpose of evaluating the forecast model's performance against some known 

workloads. Different models are tested and best practices are recorded to ascertain which model would work 

best under a particular situation; and iii) model validation: research is also conducted to test the effectiveness 

of the synthetic techniques in forecasting models on workload that may exist in a real-world context. This 

increases the confidence level of the applicability of the models across various parameters. 

A single physical machine and four virtual ones (vm1, vm2, vm3, and vm4) were employed in the 

execution of a series of test scenarios, the objective of which was the generation of a synthetic dataset. Each 

test scenario was composed of two phases: a stress test phase and a pause phase. During the stress test, the 

load code was used on the virtual machine to imitate extensive usage. During the pause phase, the virtual 

machine was idle to recuperate. The scenario for creating a synthetic dataset is illustrated in Table 2. 

 

 

Table 2. Scenario of creating synthetic dataset 

Load VM 
Interval testing (minutes) 

0 10 20 30 40 50 60 70 80 

vm1 
   

40 10 
   

40 

vm2 10 
  

30 20 
   

30 

vm3 20 
  

20 30 
   

20 
vm4 30 

  
10 40 

   
10 

Descriptions:          

 Stress test time 

 Pause time 

 Lag time between stress tests 

 

 

2.2.3. Scenario of colecting real-time dataset 

The real-time dataset collection process is illustrated in Figure 3 for this research. Figure 3 depicts 

the system architecture and components involved in gathering real-time data for analysis. Real-time datasets 

play an important role in research to understand, analyze, and optimize system performance based on actual 

data obtained from the environment being monitored. Real-time datasets were collected using energy 

monitoring and information systems. Workload energy represents the collection of energy data through 

sensors. Workload CIT deals with monitoring components such as CPU, memory, and I/O units, with data 

sent via TCP/IP (UDP), SNMP, the MySQL database, and Python. Cacti is a monitoring system designed for 

network and system monitoring. It allows users to visualize and analyze performance metrics, track trends, 

and generate reports. Database monitoring workload focuses on database performance metrics, analyzing 

workloads, and accessing datasets for further evaluation. Both monitoring systems play crucial roles in 

managing IT infrastructure components, providing valuable insights to maintain optimal performance and 

troubleshoot issues. 
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This research utilises the same dataset employed by Kumar and Singh [10] to facilitate a comparison 

of the findings with the results of other literature. This comprises a real-world dataset of web server traces, 

namely the number of hyper text transfer protocol (HTTP) requests for the NASA server, Calgary server, and 

Saskatchewan server, which is used to predict web server workload. The experiments are performed with a 5, 

10, 20, 30, and 60-minute duration period window (PWS). 

 

 

System / Content DB 

Server

CPU,  Memory, I/O Unit, 

Througput, Delay, Number Of 

ConnectionsSensor Collector Switch Power

TCP/IP (UDP)

 
 

Figure 3. Collecting real-time dataset 

 

 

2.3.  Evaluation 

2.3.1. Time series forecasting models 

PyCaret is a machine learning framework that does not require the use of supplements and is 

straightforward to use and functional, thereby making it accessible to those new to the discipline [17].  

The framework assists users at each stage of the machine learning process, from data preparation to model 

analysis and execution. The primary objective of analysing time-series data is to identify trends, which are 

captured by pertinent statistics and characteristics of the data being handled. There are various methods of 

forecasting time series, and this research utilised 30 models from the Pycaret library, as presented in Table 3. 

Various studies have utilized PyCaret, a machine learning library, in various applications. These 

include diabetes classification and prediction [18], intrusion detection system performance analysis on the 

UNSW-NB15 dataset [19], hyperparameter tuning for image classification [20], and AutoML 

implementation on the PowerBI application [21]. PyCaret was also used in the evaluation of the predictive 

power of multiple regression models for groundwater contamination [22], intrusion detection using 

supervised and unsupervised learning methods on the Cicids 2017 dataset [23], machine learning-based 

network-based intrusion detection system (NIDS) analysis and modelling for IoT networks [24], and URL 

detection for phishing websites [25]. This research demonstrates the versatility and capabilities of PyCaret in 

various fields and contexts. 

 

2.3.2. Performance measure indicators 

It is challenging to comprehend the underlying causes of individual forecasting errors due to the 

complex and multifaceted nature of the process, which is not merely a consequence of a single numerical 

value. A number of methods have been proposed in the literature for the evaluation of prediction models and 

their relationships. Each of these methods has its own merits and demerits. For example, the root mean 

squared error (RMSE) is frequently declared to be influenced heavily by outlying values. In this instance, 

three measures were used for the evaluation of the model's predictive accuracy: the RMSE, the mean absolute 

error (MAE), and the mean absolute scaled error (MASE) [10]. The time required for processing each 

forecasting model and making predictions is TT. 
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Table 3. Time series forecasting models 
Name Reference 

Naive Forecaster sktime.forecasting.naive.NaiveForecaster 
Grand Means Forecaster sktime.forecasting.naive.NaiveForecaster 

Seasonal Naive Forecaster sktime.forecasting.naive.NaiveForecaster 

Polynomial Trend Forecaster sktime.forecasting.trend.PolynomialTrendForeca... 
ARIMA sktime.forecasting.arima.ARIMA 

Auto ARIMA sktime.forecasting.arima.AutoARIMA 

Exponential Smoothing sktime.forecasting.exp_smoothing. ExponentialSm... 
ETS sktime.forecasting.ets.Auto ETS 

Theta Forecaster sktime.forecasting.theta.ThetaForecaster 

STLF sktime.forecasting.trend.STLForecaster 
Croston sktime.forecasting.croston.Croston 

BATS sktime.forecasting.bats.BATS 

TBATS sktime.forecasting.tbats.TBATS 
Linear w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Elastic Net w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Ridge w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Lasso w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Lasso Least Angular Regressor w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Bayesian Ridge w/ Cond. Deseasonalize and Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 
Huber w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Orthogonal Matching Pursuit w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 
K Neighbors w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Decision Tree w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Random Forest w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 
Extra Trees w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Gradient Boosting w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

AdaBoost w/ Cond. Deseasonalize and Detrending pycaret.containers.models.time_series.BaseCdsD... 

Extreme Gradient Boosting w/ Cond. Deseasonali... pycaret.containers.models.time_series.BaseCdsD... 
Light Gradient Boosting w/ Cond. Deseasonalize... pycaret.containers.models.time_series.BaseCdsD... 

CatBoost Regressor w/ Cond. Deseasonalize and De... pycaret.containers.models.time_series.BaseCdsD... 

 

 

3. RESULTS AND DISCUSSION 

The PyCaret time-series forecasting module is equipped with preprocessing features and offers a 

variety of algorithms, including over 30 statistical, time-series, and machine learning models. Beyond model 

training, it provides capabilities for automated hyperparameter tuning, ensembling, model analysis, and 

deployment. The typical workflow in PyCaret involves five steps: setup, computation, analysis, prediction, 

and model saving. 

 

3.1.  Analysis workload dataset 

The results of all the workload dataset analysis were reproportioned with one of the weekly memory 

free flow dataset workloads and the results showed a changing trend. The data were visualized in a plot that 

displayed the flow size values on the y-axis and time on the x-axis, representing a type of time-series data. 

The analyzed dataset covered the period from October 25 to November 22, 2023. The term "memory free" is 

used to describe the amount of unutilised memory that is available for use within a system. In Figure 4 of the 

research article, the authors present a memory free datasets trend analysis, which illustrates trends in the 

amount of free memory over a specified time frame. The memory free flow trend analysis plot provides 

insights into the fluctuations in memory free flow over time and any changes in the regular deposit of 

memory. Memory trend analysis is a crucial aspect of system performance, resource and capacity planning in 

the field of information technology. It enables the formulation of well-informed decisions regarding memory 

management forms, performance enhancement and the deployment of resources in alignment with historical 

trends and patterns. 

This case study on hypervisor data analyzes multiple time series of diverse work metrics. A 

statistical analysis is performed, as shown in Table 4, using the following attributes: i) test: name of the 

statistical test applied; ii) test name: brief description of the statistical test; iii) data: the type of data tested in 

the research; iv) property: properties of the data being tested; v) settings: settings used during the testing 

process; and vi) value: the value of the statistical test result. 

The time series characteristics are used to determine the most appropriate estimation method for each 

time series. The prediction task focuses on several hypervisor performance metrics characteristic of a time 

series. This summary outlines the approach to evaluating and selecting the most appropriate forecasting models 

for time series analysis in various application contexts, using the following summary statistics tests [26]: 
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Figure 4. Trend analysis of memory free datasets 

 

 

Table 4. Statistical analysis of memory free datasets 
Test Test Name Data Property Setting Value 

Summary Statistics Transformed Length None 97 

Summary Statistics Transformed # Missing values None 0 
Summary Statistics Transformed Mean None 1.8765E+11 

Summary Statistics Transformed Median None 2.10314E+11 

Summary Statistics Transformed Standard deviation None 37482887512 
Summary Statistics Transformed Variance None 1.40497E+21 

Summary Statistics Transformed Kurtosis None -1.33902 

Summary Statistics Transformed Skewness None -0.774785 
Summary Statistics Transformed # Distinct values None 97 

White Noise Ljung-Box Transformed Test statictic {'alpha': 0.05, 'K': 24} 982.632081 

White Noise Ljung-Box Transformed Test statictic {'alpha': 0.05, 'K': 48} 1062.022633 
White Noise Ljung-Box Transformed p-value {'alpha': 0.05, 'K': 24} 0 

White Noise Ljung-Box Transformed p-value {'alpha': 0.05, 'K': 48} 0 

White Noise Ljung-Box Transformed White noise {'alpha': 0.05, 'K': 24} FALSE 
White Noise Ljung-Box Transformed White noise {'alpha': 0.05, 'K': 48} FALSE 

Stationarity ADF Transformed Stationarity {'alpha': 0.05} FALSE 
Stationarity ADF Transformed p-value {'alpha': 0.05} 0.873311 

Stationarity ADF Transformed Test Statistic {'alpha': 0.05} -0.589619 

Stationarity ADF Transformed Critical value 1% {'alpha': 0.05} -3.502705 
Stationarity ADF Transformed Critical value 5% {'alpha': 0.05} -2.893158 

Stationarity ADF Transformed Critical value 10% {'alpha': 0.05} -2.583637 

Stationarity KPSS Transformed Trend stationarity {'alpha': 0.05} FALSE 
Stationarity KPSS Transformed p-value {'alpha': 0.05} 0.01 

Stationarity KPSS Transformed Test statistic {'alpha': 0.05} 0.304834 

Stationarity KPSS Transformed Critical value 10% {'alpha': 0.05} 0.119 
Stationarity KPSS Transformed Critical value 5% {'alpha': 0.05} 0.146 

Stationarity KPSS Transformed Critical value 2.5% {'alpha': 0.05} 0.176 

Stationarity KPSS Transformed Critical value 1% {'alpha': 0.05} 0.216 
Normality Shapiro Transformed Normality {'alpha': 0.05} FALSE 

Normality Shapiro Transformed p-value {'alpha': 0.05} 0 

 

 

3.1.1. White noise test 

To evaluate the randomness of the time series data and to confirm the absence of significant 

autocorrelations, we performed a white noise test utilizing the Ljung-Box statistic. This test is essential for 

determining whether the data is suitable for time series modeling or if it represents purely random noise without 

any predictable patterns [27]. The following components were analyzed in this test: 

‒ Ljung-box transformed test statistics: transformed Ljung-box test statistics. 

‒ p-value: the p-value for the Ljung-box test. 

‒ White noise: whether the data follows a white noise pattern. 

 

3.1.2. Stationarity test 

Determining the stationarity of time series data is essential before applying forecasting models, as 

many time series techniques assume stationarity to produce reliable results. Non-stationary data can lead to 

misleading inferences and poor predictive performance. To assess the stationarity of our dataset, we 

conducted the augmented dickey-fuller (ADF) test, which evaluates the presence of a unit root in the data. 

The following components were examined in this test: 
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‒ Azure data factory transformed: data transformed with Azure data factory transformation. 

‒ Stationarity: conclusion whether the data is stationary. 

‒ p-value: the p-value for the ADF test. 

‒ ADF transformed test statistics: transformed ADF test statistics. 

‒ Critical value: critical value for the ADF test at a certain significance level. 

‒ Trend: whether there is a trend in the data. 

 

3.1.3. Normality test 

Evaluating the normality of the data distribution is essential in time series analysis, as many 

statistical methods assume that the underlying data is normally distributed. To determine if our dataset meets 

this assumption, we conducted the Shapiro-Wilk test, which is effective for detecting departures from 

normality in small to medium-sized samples. The following components were assessed in this test: 

‒ Shapiro transformed: data transformed with Shapiro transformation. 

‒ Normality: conclusion whether the data follows a normal distribution. 

‒ p-value: the p-value for the Shapiro test. 

The results of the statistical analysis are presented in Table 5. Reveals a consistent trend, indicating 

that the disk model frequently exhibits white noise and stationary characteristics across all periods. In 

contrast, normal distributions are infrequent, with only one instance observed for the memory model under 

synthetic dataset conditions. This suggests that temporal changes may significantly impact hypervisor 

performance metrics. The absence of normal distribution in real-time data suggests possible irregularities in 

data homogeneity and symmetry over extended durations. To address these irregularities, we performed 

further analysis and forecasting models to assess the performance of different forecasting models on the time 

series data [28]. 

 

 

Table 5. Results of statistical analysis 
Dataset Model White noise Stasioner Normal distributions 

Monthly CPU False False False 

Memory False False False 

Disk True True False 

Weekly CPU False False False 

Memory False False False 

Disk True True False 
Daily CPU False True False 

Memory False False False 

Disk True True False 
Syntetic CPU False False False 

Memory False False True 

Disk False True False 

 

 

3.2.  Analysis of forecasting performance 

The performance of 30 forecasting models, which are time series in nature and are based on 

hypervisor data, was evaluated using real and synthetic datasets. The models were monitored via SNMP, and 

participants and/or caregivers, researchers, and models were assessed on key performance indices, including 

RMSE, MAE, and MASE, across a daily, weekly, and monthly period. Furthermore, the time required to 

process each model was evaluated in order to assess the efficiency of their computation. 

 

3.2.1. Performance of idle CPU forecasting accuracy 

A summary of the accuracy of the various models in predicting the CPU idle rate is provided  

in Table 6. Additionally, Table 6 presents other evaluation metrics, including RMSE, MASE, and MAE, 

which were employed to assess the performance of each model on the monthly, weekly, daily, and  

synthetic datasets. The forecasting accuracy of the monthly dataset the 'naive forecaster' model exhibited the 

lowest RMSE of 0.71, which was lower than that recorded by models 'auto ARIMA' and box-cox, ARMA 

error, trend, and seasonality ('BATS'), where RMSE=1.19 and 1.17, respectively. However, it had lower 

ranks of 11 and 12 out of the overall dataset. The weekly dataset 'exponential smoothing' and error, trend and 

sea-sonal ('ETS') models have identical performance with an RMSE of 0.65 and rank 7, while  

'theta forecaster' has a slightly higher RMSE of 0.66 and rank 9. The daily dataset model 'grand means 

forecaster' shows the best performance with an RMSE of 0.68 and rank 4, followed by 'auto ARIMA' and 

'ARIMA' with an RMSE of 0.73 and rank 5. The synthetic dataset was used to benchmark each real-time 

dataset model 'AdaBoost w/ cond. Deseasonalize and detrending' ranked first with the best performance, 
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followed by 'linear w/ cond. Deseasonalize and detrending' and 'ridge w/ cond. Deseasonalize and detrending' 

ranked 2nd and 3rd respectively. 

From the results listed in Table 6, it can be seen that the grand means forecaster model on the daily 

dataset has the lowest RMSE and the 4th rank, indicating good prediction performance. On the monthly 

dataset, the naive forecaster model has the lowest RMSE but is ranked lower. On the synthetic dataset, the 

AdaBoost w/ cond. Deseasonalize and detrending ranked first with the best performance. This information is 

essential for selecting the best model for forecasting the availability of unused CPUs to help plan and manage 

system resources efficiently. Overall, the daily dataset and the grand means forecaster model with lower 

RMSE, MASE, and MAE and close to the synthetic ranking value show better CPU forecasting performance. 

 

 

Table 6. Performance accuracy forecasing of CPU idle 
Dataset Model RMSE MASE MAE Ranking 

Monthly Naive forecaster 0.71 2.56 0.56 10 

Auto ARIMA 1.19 5.36 1.06 11 

BATS 1.17 5.41 1.07 12 

Weekly Exponential smoothing 0.65 2.03 0.54 7 

ETS 0.65 2.03 0.54 7 
Theta forecaster 0.66 2.06 0.55 9 

Daily Grand means forecaster 0.68 1.36 0.58 4 

Auto ARIMA 0.73 1.47 0.63 5 
ARIMA 0.73 1.47 0.63 5 

Syntetic AdaBoost w/ Cond. deseasonalize and detrending 0.59 0.93 0.51 1 
Linear w/ Cond. deseasonalize and detrending 0.61 0.93 0.51 2 

Ridge w/ Cond. deseasonalize and detrending 0.61 0.93 0.52 3 

 

 

3.2.2. Performance of free memory forecasting accuracy 

The memory free forecasting accuracy performance on the monthly dataset model 'Huber w/ cond. 

The deseasonalize and detrending overall, daily dataset, and grand means forecaster model with lower 

RMSE, MASE, and MAE and close to the synthetic ranking value show better CPU forecasting performance. 

model had a very high RMSE, indicating a less-than-optimal performance. The extra trees with cond. 

deseasonalize and detrending had the highest MASE, and the model rank ranged from 10 to 12 out of the 

entire dataset. The weekly theta forecaster model has a significantly lower error value than the BATS and 

TBATS models, which have identical error values but different rankings of eight for BATS and seven 

TBATS. Daily dataset gradient boosting w/ cond. Deseasonalize and detrending shows the best performance 

in all error metrics among the daily dataset models, while 'Bayesian ridge w/ cond. Deseasonalize and 

detrending' performed below it but still ranked 6th overall. Synthetic dataset the 'exponential smoothing' 

model performed the best with the lowest error in all metrics among the synthetic dataset models, while the 

'ETS' model performed below it but still ranked 2nd overall. The results of the accuracy of the different 

models in predicting memory free as shown in Table 7. 

From the results listed in Table 7, it can be seen that the Huber w/ cond. model. Deseasonalize and 

detrending on the monthly dataset has the highest RMSE and ranks 10th, indicating less than optimal 

prediction performance. On the weekly dataset, the theta forecaster model has a low MASE and ranks 7 th, 

indicating better performance than the BATS model. The analysis from Table 7 provides insight into which 

models are most effective in predicting memory-free rates at various data frequencies. Overall, the daily 

dataset and gradient boosting are done using cond. Deseasonalizatione and detrending with lower RMSE, 

MASE, and MAE and close to the synthetic rank value show better forecasting memory performance. 

 

 

Tabel 7. Performance accuracy forecasing of memory free 
Dataset Model RMSE MASE MAE Ranking 

Monthly Huber w/ Cond. Deseasonalize and Detrending 3271875524.78 6.61 2731561697.07 10 

 Auto ARIMA 3767137446.90 7.56 3135176015.51 11 

 Extra trees w/ Cond. Deseasonalize and Detrending 4421809533.71 8.88 3697388235.58 12 
Weekly Theta forecaster 1347869846.82 0.94 1164727393.11 7 

 BATS 1710867790.86 1.14 1434401664.64 8 

 TBATS 1710867790.86 1.14 1434401664.64 8 
Daily Gradient boosting w/ Cond. Deseasonalize and Detrending 679917621.37 4.46 562941495.97 4 

 CatBoost regressor w/ Cond. Deseasonalize and Detrending 817036128.95 5.20 656224572.32 5 

 Bayesian ridge w/ Cond. Deseasonalize and Detrending 845857410.17 5.37 676449659.13 6 
Syntetic ETS 531650395.06 0.69 477258423.00 2 

 Exponential Smoothing 527319448.26 0.69 480880807.52 1 

 Bayesian Ridge w/ Cond. Deseasonalize and Detrending 565535362.33 0.70 488370640.92 3 
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3.2.3. Performance accuracy forecasing of disk read 

The forecasting accuracy performance of the disk read dataset on the monthly dataset; naive 

forecaster model has better forecasting performance with the lowest rank compared to the decision tree w/ 

cond model. Desesasonalize and detrending and BATS models. However, the monthly dataset was not 

superior to the weekly and daily datasets. The Weekly dataset in the naive forecaster model has better 

forecasting performance than the extra and decision trees with cond. Desesasonalize and detrending with. 

However, the monthly dataset wais not superior to the weekly and daily datasets. The daily dataset and the 

naive forecaster model performed best by excelling in all monthly and weekly models and datasets. The 

results of the accuracy of the different models in predicting disk read as shown in Table 8. 

 

 

Table 8. Performance accuracy forecasing of disk read 
Dataset disk read Model RMSE MASE MAE Ranking 

Monthly Decision Tree w/ Cond. Deseasonalize and Detrending 882218.20 6.23 384421.61 9 

 Naive Forecaster 869403.35 6.27 386646.91 7 

 BATS 873858.07 6.23 385887.01 8 

Weekly Naive Forecaster 36034.60 0.12 23248.43 4 

 Extra Trees w/ Cond. Deseasonalize and Detrending 36923.95 0.16 29859.68 5 

 Decision Tree w/ Cond. Deseasonalize and Detrending 36923.95 0.16 29859.68 5 

Daily Naive Forecaster 15855.61 0.52 13257.11 1 

 Croston 16753.33 0.59 15243.52 2 

 Grand Means Forecaster 20927.18 0.73 19268.03 3 

Syntetic Grand Means Forecaster 5216888.90 0.73 4039774.44 12 

 TBATS 5001328.06 0.76 4189157.24 10 

 BATS 5026264.73 0.77 4204561.59 11 

 

 

Overall, the daily dataset and naive forecaster model were the best performing datasets and models. 

This model achieved the lowest rank among all tested models, indicating a smaller prediction error rate and 

more accurate performance. The analysis of this table provides a deeper understanding of which models are 

most effective in predicting disk read rates at various data frequencies. However, the synthetic dataset had the 

highest rank because it had a large prediction residual value compared with the other datasets, as shown in 

Figure 5. 

 

 

 
 

Figure 5. Residual forecast disk read syntetic data 

 

 

3.2.4. Performance of forecasting process time efficiency 

The time efficiency of various forecasting models is shown in Table 9, presenting the processing 

times for predicting CPU, memory, and disk read performance. Table 9 includes the most accurate 

forecasting models and datasets from the performance tests. The results indicate that the best dataset for 

forecasting hypervisor resource load is the daily dataset across multiple forecasting models. The naive 

forecaster model is the most efficient for forecasting CPU performance, with a runtime of 1.71 seconds, 

aligning with Yoo and Sim [7] findings that simple models often perform well in highly volatile scenarios. 

The naive forecaster makes predictions using straightforward strategies [29]. For memory datasets, gradient 

boosting w/ conditional deseasonalization and detrending demonstrates the best performance, with a 

processing time of 0.13 seconds. 
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Our results align with existing research on the effectiveness of framework for comparing accuracy 

of time-series forecasting methods. Similar to our findings, a study by Hyndman and Athanasopoulos [30] 

also identified gradient boosting had the highest accuracy in gradient boosting, which is often used in 

machine learning competitions, although it was lower than naive, a simple prediction method. This reinforces 

the notion that gradient boosting ability to handle complex relationships within data can be advantageous for 

resource load prediction. 

The gradient boosting technique was proposed as a one-of-a-kind applied gradient boosting 

machine, particularly for regression and classification trees. The “boosting” concept is the root of gradient 

boosting, which merges the forecasting of weak learners with additive training methods to develop a strong 

learner [31]. Gradient boosting with conditional deseasonalization and detrending is a specific application of 

gradient boosting that incorporates the removal of seasonal and trend components from time-series data 

before model training [32].  

The findings of this study further indicate that PyCaret, as an AutoML framework, simplifies the 

process of selecting optimal models and tuning hyperparameters, essential for practical use in cloud data 

centres. This contrasts with the manual approach in previous studies, which required model selection and 

testing to be conducted individually. With AutoML capabilities, processing time and computational resources 

can be optimised, enabling practitioners to efficiently select the best model without repeated adjustments to 

model parameters, as discussed in the research by Westergaard et al. [12]. This information is essential for 

selecting a model that is accurate in prediction and efficient in using computing resources. 

 

 

Table 9. Performance of forecasting process time efficiency 
Dataset Model forecasting TT (Sec) 

CPU (Daily) Naive Forecaster 1.71 

Memory (Daily) Gradient Boosting w/ Cond. Deseasonalize and Detrending 0.13 
Disk read (Daily) Naive Forecaster 1.90 

 

 

3.2.5. Comparison of workload prediction models on web server trace datasets 

The results of testing the HTTP request datasets from NASA, Calgary, and Saskatchewan servers 

are presented here to evaluate the performance of the proposed gradient boosting model compared with Auto 

ARIMA. Performance evaluation uses error metrics, including RMSE, MAE, and MASE. These tests provide 

a comprehensive overview of each model's accuracy and suitability in the context of the research conducted 

by Kumar and Singh [10]. 

The NASA server dataset was tested with Auto ARIMA and gradient boosting models using 

conditional deseasonalisation and detrending across four prediction windows, presented in Table 10 for 

periods of 5, 10, 30, and 60 minutes. As the prediction window lengthens, Auto ARIMA demonstrates 

relatively consistent performance, though errors (RMSE and MAE) increase. The lowest MASE value, 4.42, 

is achieved at a 10-minutes window, highlighting its medium-term accuracy. Gradient boosting with 

deseasonalisation and detrending generally outperforms Auto ARIMA across nearly all prediction windows, 

exhibiting notably lower RMSE and MAE, especially in short- to medium-term predictions (PWS 10 and 30). 

 
 

Table 10. NASA server dataset 
Model PWS RMSE MAE MASE 

Auto Arima 5 249.99 218.28 5.16 
10 380.20 334.67 4.42 

30 1818.54 1664.29 8.36 

60 4478.16 4173.28 9.79 
Gradient Boosting w/ Cond. Deseasonalize and Detrending 5 215.27 190.71 4.51 

10 251.42 220.73 2.91 

30 855.47 758.42 3.81 
60 2854.49 2544.58 5.97 

 

 

Testing on the Calgary server dataset involved the same models and settings, as shown in Table 11. 

Auto ARIMA, RMSE, and MAE values increase with longer prediction windows, though it achieves a low 

MASE value of 1.51 at a 10 minutes window, indicating optimal medium-term fit. The gradient boosting 

model with deseasonalisation and detrending achieves lower RMSE and MAE at the shortest prediction 

window of 5, underscoring its high accuracy. However, its RMSE and MAE values slightly increase over 

longer windows, while remaining competitive. 
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Table 11. Calgary server dataset 
Model PWS RMSE MAE MASE 

Auto Arima 5 23.53 14.67 2.03 
10 27.19 18.83 1.51 

30 70.76 53.08 1.91 

60 109.16 81.24 1.74 
Gradient Boosting w/ Cond. Deseasonalize and Detrending 5 11.75 9.22 1.27 

10 30.36 27.70 2.22 

30 76.60 69.97 2.52 
60 94.45 80.88 1.73 

 

 

A comparative analysis using the Saskatchewan server dataset similarly assessed the efficacy of Auto 

ARIMA and gradient boosting across four prediction windows, as shown in Table 12. Auto ARIMA, RMSE, 

and MAE values rise with window length, though MASE remains stable around 1.9, indicating consistent 

performance. Gradient boosting with deseasonalisation and detrending outperforms Auto ARIMA across 

almost all prediction windows, achieving significant accuracy improvements in the 5 and 60 minutes windows. 

 

 

Table 12. Saskatchewan server dataset 
Model PWS RMSE MAE MASE 

Auto Arima 5 44.57 32.25 1.76 

10 84.84 61.73 2.02 

30 180.71 132.64 1.91 
60 347.07 259.83 1.92 

Gradient Boosting w/ Cond. Deseasonalize and Detrending 5 38.33 28.97 1.58 

10 71.30 57.61 1.88 
30 159.69 133.85 1.92 

60 296.16 248.67 1.84 

 

 

In terms of overall accuracy and efficiency, gradient boosting consistently outperforms Auto 

ARIMA across all datasets and prediction windows, demonstrating a superior ability to capture complex 

patterns and manage variability in web server workloads. Although Auto ARIMA performs adequately in 

medium-term predictions, its effectiveness diminishes in longer timeframes, as indicated by rising RMSE and 

MAE values, revealing limitations in adapting to dynamic changes. Gradient boosting, on the other hand, 

demonstrated greater scalability and adaptability at varying time scales, maintaining lower error metrics for 

both short- and long-term predictions. Its ability to integrate deseasonalisation and detrending enhances 

predictive accuracy, making it well-suited for datasets with inherent seasonality and trends. These findings 

suggest that future research could focus on refining gradient boosting models further, exploring hybrid 

methods, and optimising model complexity to balance accuracy with computational efficiency. 

 

 

4. CONCLUSION 

This study presents a performance assessment of time-series forecasting models for SNMP-based 

hypervisor data using Pycaret. We evaluated the performance of our method on two types of datasets:  

real-time data collected from a physical server environment running multiple virtual machines and synthetic 

data created based on a specific workload scenario. We compared 30 different time-series forecasting models 

using three evaluation metrics, namely, RMSE, MASE, and MAE, and the computation time required.  

The evaluation results obtained the best dataset using daily data with several forecasting models, according to 

the resource load on the hypervisor. The best naive forecaster model for forecasting CPU performance with a 

runtime of 1.71 seconds and disk read runtime of 1.90 seconds. Meanwhile, gradient boosting w/ cond. 

deseasonalize and detrending the best for memory dataset with process times of 0.13. Based on the test 

results with NASA, Calgary, and Saskatchewan server datasets, from the comparison between Auto ARIMA 

and gradient boosting with deseasonalize & detrending models, while both models have their merits, gradient 

boosting with deseasonalize and detrending provides a more robust solution for forecasting in cloud data 

centre environments, adapting well to the complexities and dynamics of real-world server workloads.  

In the future, researchers can concentrate on enhancing and confirming the effectiveness of our approach by 

using more extensive and varied datasets. They can also integrate it with other resource management in 

decision support systems for use in real-time live migration settings in hypervisor clusters. Our research has 

the potential to improve the quality and efficiency of resource management maintenance in data centres, 

which can ultimately enhance the quality of service (quality of service) and service level agreements (SLA). 
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