
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 13, No. 4, December 2024, pp. 4813~4821 

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i4.pp4813-4821      4813 

 

Journal homepage: http://ijai.iaescore.com 

CryptoGAN: a new frontier in generative adversarial network-

driven image encryption 
 

 

Ranjith Bhat1,2, Raghu Nanjundegowda3 
1Faculty of Engineering and Technology, JAIN (Deemed to be University), Bengaluru, India 

2Department of Robotics and Artificial Intelligence Engineering, NMAM Institute of Technology, NITTE (Deemed to be University), 

Nitte, India  
3Department of Electrical and Electronics Engineering, JAIN (Deemed to be University), Bengaluru, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 11, 2024 

Revised Jun 12, 2024 

Accepted Jun 14, 2024 

 

 There is a growing need for an image encryption scheme, for huge amount of 

social media data or even the medical data to secure the privacy of the patients 

or the user. This study introduces a ground-breaking deep learning architecture 

named crypto generative adversarial networks (CryptoGAN), a novel 

architecture for generating cipher images. This architecture has the ability to 

generate both encrypted and decrypted images. The CryptoGAN system 

consists of an initial encryption network, a generative network that verifies the 

output against the desired domain, and a subsequent decryption phase. The 

generative adversarial networks (GAN) are utilised as the learning network to 

generate cipher images. This is achieved by training the neural network using 

images encrypted from a conventional image encryption scheme such as 

advanced encryption standards (AES), and learning from the resulting losses. 

This enhances security measures when dealing with a large dataset of photos. 

The assessment of the performance metrics of the encrypted image, including 

entropy, histogram, correlation plot, and vulnerability to assaults, demonstrates 

that the suggested generative network may get a higher level of security.  
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1. INTRODUCTION 

As network communication and multimedia technology advance quickly, an increasingly higher 

number of digital images are being saved, duplicated, and sent via unprotected channels or third-party platforms 

[1]. As a result, image security is currently very popular [2]. There are several ways to safeguard the security 

of images, including steganography [3], [4], watermarking [5], [6], and encryption [7]–[11], the more popular 

and useful method being picture encryption. Two stages are typically involved in image encryption: the stage 

of diffusion and the step of scrambling. Scrambling modifies the relative positioning of pixels in the image, 

while diffusion modifies their precise value. Data encryption standard (DES), international data encryption 

algorithm (IDEA), and advanced encryption standard (AES) are instances of block ciphers; in comparison, 

stream ciphers are more secure, faster to encrypt and decrypt, less prone to error expansion, more synchronised, 

and affordable to implement [12], [13]. Nevertheless, creating a security stream cipher generator that makes 

the process of creating the random and unpredictable sequence easier is one issue. Linear feedback shift 

registers, nonlinear feedback shift registers, chaotic systems, finite automation, linear congruence generators, 

and linear feedback shift registers are examples of common stream cipher generators. The majority of current 

methods utilising private key generators include manually designing the generators (for instance, by applying 

https://creativecommons.org/licenses/by-sa/4.0/
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mathematical formulae) to produce the private key in order to accomplish a higher level of security. In 

numerous computer vision applications, deep learning has been effective [14]. Generative adversarial networks 

(GAN) [10] is recognised as one of the most widely adapted deep learning techniques [15], [16]. The generator 

generates samples, and the discriminator figures out how to tell them apart from real-world samples. These two 

parts combine to form a GAN. The discriminator and generator engage in a contest to produce data that is as 

realistic as possible. It appears that GAN-based methods are effective for translating images between different 

domains. Consequently, we combine the cipher generator and image-to-image translation network to create a 

novel deep learning-based cipher image generation network (CryptoGAN). In Figure 1, components of the 

GAN system are exemplified by the neural network G, referred to as the generator, and the discriminator 

network D. 
 

 

 
 

Figure 1. GAN architecture [10] 
 
 

The main objective of the discriminator network D is to improve its performance by utilizing feedback 

and backpropagation. In this case, we encrypt using this neural network architecture that has been formed using 

the weights available after training using the target domain images, which are the ground truth of the traditional 

cipher image, and the images generated by the encryption. As per the generator's output, we are able to provide 

the precise data. The discriminator is trained using the generated cases as a negative example as well. The 

discriminator can now more accurately recognize the difference between the generator's real and synthesised 

data. The discriminator punishes the generator using appropriate loss function if it produces results that are 

highly improbable. 

 

 

2. RELATED WORKS 

Chen et al. [17] suggests a GAN-based model for efficient and secure end-to-end color picture 

encryption. Singh et al. [18] shows how to encrypt digital photographs using GANs and then use  

super-resolution to restore them. This outlines a GAN-enhanced chaotic encryption technique [19] for secure 

and simple optical code-division multiplexing. According to Hallman [20], it examines GANs' utility in 

security analysis and their application to cryptanalysis. Purswani et al. [21] highlights the improvement of 

security characteristics by concentrating on the generation of chaotic sequences utilizing GANs for encryption. 

 

2.1.  Losses in generative adversarial networks 

The use of GANs allows for the replication of a probability distribution. Since the GAN's output 

distribution differs from the real data distribution, they should employ loss functions that take this disparity 

into consideration. Generator loss is the generators output being G(z) and the discriminators output being D(z) 

generator aims to maximize this D(G(z)) function i.e. to improve the correct discrimination of the generated 

output in this case it is the generated encrypted image because of the trained loss functions [16]. In short, its 

goal is to have the discriminator produce more false positives. Discriminator loss during the training process, 

the discriminator distinguishes between the authentic data generated by the generator and the fake data. Deep 

learning algorithms often necessitate the use of a loss function for training the model. Here (1) shows, the 

overall loss is the aggregate of the losses incurred by the encryption neural network G. 

 

𝐿 = 𝐿𝐺𝑒𝑛 + 𝐿𝐷𝑖𝑠 + 𝐿𝑅𝐶𝑜𝑛  (1) 

 

Where 𝐿𝐺𝑒𝑛, the discriminator network D, 𝐿𝐷𝑖𝑠, and the reconstruction loss of the decryption network F, 𝐿𝑅𝐶𝑜𝑛. 

GAN discriminator is the output image of the encryption network is assessed for domain compatibility using 

the suggested discriminator network, D. To lower the image's resolution [17] and further encode the local 

features for image discrimination, D uses double convolutional blocks following first convolutional layers. The 
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final output is expected to be developed using a 3×3 convolutional block and a feature generating block. Leaky 

rectified linear unit (ReLU) with a value of 0.2 is implicit in every convolutional layer, and the batch 

normalisation (BN) layer follows [18]. The purpose of training network D is to identify images as either 

belonging to the network G (cipher text domain) or not. This is where the G-network yields: in (2), G represents 

the encrypted network, while D represents another encrypted network. 

 

𝐿𝐷 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝑙𝑜𝑔𝐷(𝑥) + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)log⁡(1-𝐷(𝐺(𝑥))) (2) 

 

 

3. METHODOLOGY 

The stages of the proposed methodology are portrayed in Figure 2. In the first stage, input data is 

encrypted using a secure key and an algorithm is used to prepare them for converting into the targeted encrypted 

domain. In the second stage, the generative network checks if the output image from the encryption network 

complies with the desired domain using the loss function mentioned in the next section. The final step is to use 

decryption, which is quite similar to the encryption process, to regenerate the original image, a process similar 

to that used for encryption. 

 

 

 
 

Figure 2. The key generation process for the generative network 

 

 

Due to the GAN's robust nonlinearity and randomly initialised parameters, the parameters of the 

learning network can exhibit substantial variation at different phases of training. In simple terms, the instability 

of a GAN network in computer vision applications is a drawback. Not withstanding its inherent 

unpredictability, cryptography offers specific advantages. The proposed encryption approach, which utilises 

deep learning techniques, can be likened to a one-time pad (OTP) method due to its exploitation of this inherent 

instability. Specifically, upon training the provided network at distinct time intervals, in summary, the proposed 

architecture would offer enhanced security as a result of deep and intricate nature of the encrypt-train network. 

 

3.1.  Encryption process and the CryptoGAN architecture 

Typically, a picture will undergo a process of traditional encryption, such as AES for photos, before 

being transformed to the target domain. A multi-layer modified GAN supports the encryption process, as seen 

in Figure 3, by training the GAN's generator with the loss function of the encrypted images. During training, 

the discriminator is trained using the encrypted picture and a notable loss function, which will be called the 

original loss function henceforth [19]. In order to compare the loss functions acquired during discriminator 

training with the encrypted data, this original loss function is utilized. 

Not only that, but it also shows the generator how much it needs to improved its performance through 

training. We use the discrepancies in the losses as a starting point for measuring additional loss functions. As 

demonstrated in Figure 4, the secured encrypted image is further strengthened in security by feeding it into the 

generator. This generator can be the same that was trained with the original loss function or a different one that 

uses a new loss function acquired while training with the encrypted image. The conventional algorithm is then 

used to implement this enhancement. In the intentions to improve the security efficiency, the discriminator 

strives to outperform the generator by producing better encrypted and secured data. This accomplishes the task 

of translating the input visual data from the target domain into the desired format. The G sets up the first 

convolutional stage to encode and compress the images [20]. Several characteristics and losses are produced 

during this stage, which will be used in the forthcoming transformation. The different qualities and content are 

provided by combining 9 leftover blocks with identical layouts. 
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Figure 3. Training the discriminator with the original encrypted images 
 

 

 
 

Figure 4. Training the discriminator with the losses 
 

 

Reconstructing the output image requires a number of components, including two up-convolution blocks 

and the stride accurately applied. The final step is to export all predictions using a 7×7 convolutional kernel. 

Making the change from source to target domain images Y, accomplishes this task as per the loss functions 

mentioned in (3) and (4) [10]. The two mappings, G: X→ Y and F: Y→ X, are included in the proposed model. In 

order to fool the discriminator, mapping function G must first determine this process [21]. 
 

𝐿𝐺 = 𝑀𝐼𝑁𝐺(𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝑙𝑜𝑔⁡(1-D (G(x))) (3) 

 

𝐿𝑅𝐶 ⁡=𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) ⁡⁡⃦⁡𝑌 − 𝑋⁡⁡⁡⃦1 (4) 

 

 

4. EXPERIMENTAL SIMULATION AND MODEL PERFORMANCE ANALYSIS 

4.1.  Discriminator and generator loss plot 

The loss curves for the discriminator and generator are appearing to be steep at the beginning of the 

learning process for the GAN in Figure 5. But as training continues, the generator's loss goes down, which 

means it gets better at producing images and tricks the discriminator. Because of this, the discriminator's loss 

remains constant up until it reaches a minimum. We see a reversal in the generator's loss around the 150th epoch 

[22]. It may also indicate that the training has reached its limit [23], and hence saturated in learning. 
 

4.2.  Information entropy 

For many images processing tasks, information entropy is the go-to metric for measuring how 

unpredictable a noise map is. The entropy value, H(m), can be determined [24] using (5). This approach 

outperforms the algorithms in [25]–[27] in terms of entropy, and the encrypted image's pixel distribution. 
 

𝐻(𝑚) = −∑ 𝑝(𝑚𝑖)
2𝑁−1
𝑖=0 𝑙𝑜𝑔2⁡𝑝(𝑚𝑖) (5) 

 

N represents the grey level, and 𝑝(𝑚𝑖)⁡denotes the likelihood of 𝑚𝑖. The optimal entropy [16] for a 256-

grayscale cipher-image is 8, implying the data is unknown. As a result, an information entropy close to 8 is 

typical for highly secure encrypted images. The entropy of the generated encryption image is in Table 1. 
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Figure 5. The loss curves of the generator and discriminator after training 
 

 

Table 1. Entropy information of encryption 
 Image_1 Image_2 Image_3 [25] [26] [27] 

Entropy 7.9954 7.9978 7.9958 7.9912 7.9972 7.9973 

 

 

4.3.  Robustness against cropping and noise 

With the intentions of assessing the resilience of the cipher-images against cropping attacks, portions 

measuring 128×128 and 64×64 are removed. The original image, the encrypted image, 128×128 cut in the 

encrypted image, and the decrypted image of image_1 and the original image, the encrypted image, 64×64 cut 

in the encrypted image, and the decrypted image of image_2 is shown in Figure 6, respectively. Because of 

this, our approach is resistant to attacks of this nature. Tables 2 and 3, include findings for histogram, 

neighbouring pixel correlation, peak signal-to-noise ratio (PSNR), all of which confirm this claim. 
 
 

 
 

Figure 6. The original image_1, encrypted image_1, 128×128 cut in the encrypted image_1, and decrypted 

result, respectively. Original image_2, encrypted image_2, 64×64 cut in the encrypted image_2, and 

decrypted result, respectively 

 

 

Table 2. Correlation coefficient of encrypted images 
 Image_1 Image_2 Image_3 [28] [29] [30] 

Horizontal 7.9977 7.9905 7.9929 7.9972 7.9933 7.9912 
Vertical 0.0016 -0.0099 0.00288 -0.00209 0.0093 0.00964 

Vertical -0.0168 0.0059 0.01963 -0.1618 0.0159 0.01963 

Diagonal -0.0010 -0.0002 0.0225 0.0178 0.0097 0.01963 
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Table 3. Mean square error (MSE) and PSNR of encrypted images 
 Image_1 Image_2 Image_3 [31] [27] [32] 

MSE 8802.5 8485.5 7005.5 - - 6885.83 
SNR 8.8755 8.5962 9.5674 28.8 8.548 0.18 

 

 

4.4.  Histogram analysis 

The histogram of an image encryption technique is a crucial indicator of its effectiveness. It may 

demonstrate the distribution pattern of image pixels by depicting the number of pixels that correspond to each 

grey level and the frequency at which each grey level appears. The consistent pattern observed in the pixels of 

the plain shots is not present in the cipher images. Figures 7(a) to 7(c) show the histogram analysis of the 

original image_1, encrypted image_1, and decrypted image_1, respectively. Figures 7(d) to 7(f) show the 

histogram analysis of the original image_2, encrypted image_2, and decrypted image_2, respectively.  

Figures 7(g) to 7(i) show the histogram analysis of the original image_3, encrypted image_3, and decrypted 

image_3, respectively. This suggests that the attacker is incapable of using any statistically significant data 

acquired from the cipher-image to specifically target the method. 
 

 

  
 

(a) 

 

(b) (c) 

   
(d) 

 

(e) (f) 

  
 

(g) (h) (i) 

 

Figure 7. Histogram analysis: (a) original image_1, (b) encrypted image_1, (c) decrypted image_1, 

 (d) original image_2, (e) encrypted image_2, (f) decrypted image_2, (g) original image_3,  

(h) encrypted image_3 and (i) decrypted image_3 
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4.5.  Adjacent pixels correlation 

Table 2 shows how dependent or similar neighbouring pixels in the encrypted picture are on one 

another. Diffusion effects are more pronounced and regularity is diminished when correlation coefficients are 

lower. For this investigation, geographic statistics or correlation coefficients has be utilised. The horizontal 

correlation plot of the original images_1, encrypted image_1, and decrypted image_1 are shown in  

Figures 8(a) to 8(c), respectively, the vertical correlation plot of the original images_2, encrypted image_2, and 

decrypted image_2 are shown in Figures 8(d) to 8(f), respectively and the diagnol correlation plot of the original 

images_3, encrypted image_3, and decrypted image_3 are shown in Figures 8(g) to 8(i), respectively. 
 

 

   
(a) 

 

(b) (c) 

   
(d) 

 

(e) (f) 

   
(g) (h) (i) 

 

Figure 8. Horizontal correlation of: (a) original image_1, (b) encrypted image_1, (c) decrypted image_1. 

Vertical correlation: (d) original image_2, (e) encrypted image_2, (f) decrypted image_2. Diagonal 

correlation: (g) original image_3, (h) encrypted image_3, and (i) decrypted image_3 [31]–[34] 
 

 

4.6. Peak signal-to-noise ratio 

By contrasting the encrypted image with the original plain image, we can determine the PSNR. More 

disparities and higher randomness are indicated by a lower PSNR. The MSE between the plain and cipher 

pictures is frequently used to calculate PSNR. MSE in (6), is a metric used to compare plain-image and  

cipher-image differences. 
 

𝑀𝑆𝐸 = ⁡
∑ ∑ (𝑃(𝑖,𝑗)−𝐶(𝑖,𝑗))2𝑗𝑖

𝑇
⁡× 100% (6) 

 

The number of pixels in an encrypted picture is represented by 𝑇, here. A greater number for MSE 

indicates that the image's encryption effect is powerful, as the disparity between the encrypted and original 

image is bigger. A PSNR is the ratio of the plain picture to the cipher image. One way to think about PSNR is 

in (7). The maximum pixel value of the plain-image is represented by max. The lower the PSNR, more random 
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the encrypted image should be, and hence the objective of an effective encryption method [28]. For comparison, 

we look at [29]–[31] and see the cipher-image MSE and PSNR values in Table 3. 
 

𝑃𝑆𝑁𝑅 = 10⁡𝑙𝑜𝑔10(⁡
𝐼𝑚𝑎𝑥

2

𝑀𝑆𝐸
⁡) (7) 

 

4.7.  Differential attack 

The resistance to differential attacks can be determined by analysing how the cipher image changes 

in response to small changes to the plain image. We make use of metrics like number of pixels change rate 

(NPCR) [26] and unified average changing intensity (UACI) [15]. The attack aims to deduce the link between 

the plain image and its cipher image by comparing the two encrypted images. The NPCR and the UACI are 

two measures that are used to assess differential attacks. Here are the ideal values for the cipher-image's UACI 

and NPCR: 33.4653% and 99.6093%, respectively [32]–[35]. Both the calculations are presented in Table 4. 
 

 

Table 4. UACI and NPCR performances 
 Image_1 Image_2 Image_3 [33] [34] [35] 

NPCR 99.450 99.666 99.652 99.62 99.72 99.62 
UACI 32.855 33.523 33.268 33.53 33.45 33.42 

 

 

5. CONCLUSION 

This work creatively presents CryptoGAN, a modified GAN for image encryption. The encryption 

samples are achieved by utilising the GAN model's strong learning capability. The encrypted image generation 

system suggested in this paper is shown to be capable of providing solid assurances for image security for a large 

number of images through efficiency test, entropy, and histogram analysis. This goes a long way towards 

expanding the new frontier of image security research, as this is a less commonly accepted approach. GAN 

architecture is changed and revamped to increase the robustness of encrypted images. The scheme has an average 

entropy of 7.9972, according to the experimental data. Differential, cut, and noise attacks constitute the additional 

methods used to validate the scheme's defence against attacks. We intend to enhance the current model and 

address its weaknesses in the future, with the goal of achieving greater accuracy in both encryption and decryption. 
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