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 The study investigates the potential of integrating radon gas concentration 

telemonitoring systems with machine learning techniques to enhance 

earthquake magnitude prediction. Conducted in Pacitan, East Java, Indonesia, 

where the stations are near the active Grindulu fault, the research employs 

random forest (RF), extreme gradient boosting (XGB), neural network (NN), 

AdaBoost (AB), and support vector machine (SVM) methods. The study aims 

to refine earthquake magnitude prediction, utilizing real-time radon gas 

concentration measurements, crucial for disaster preparedness. The evaluation 

involves multiple metrics like mean absolute error (MAE), mean absolute 

percentage error (MAPE), root mean square error (RMSE), mean squared 

error (MSE), symmetric mean absolute percentage error (SMAPE), and 

conformal normalized mean absolute percentage error (cnSMAPE). XGB and 

SVM emerge as top performers, showcasing superior predictive accuracy with 

minimal errors across various metrics. XGB achieved MAE (0.33), MAPE 

(6.03%), RMSE (0.51), MSE (0.26), SMAPE (0.06), and cnMAPE (0.97), 

while SVM recorded MAE (0.34), MAPE (6.20%), RMSE (0.51), MSE 

(0.26), SMAPE (0.06), and cnSMAPE (0.97). The analysis reveals XGB as 

the most effective method, boasting the lowest error values. The study 

underscores the importance of expanding data availability to enhance 

predictive models, ultimately contributing to more precise earthquake 

magnitude predictions and effective mitigation strategies.  
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1. INTRODUCTION 

The prediction of earthquake magnitude is a critical area of research due to its potential impact on 

public safety and infrastructure. Radon gas has been regarded as a possible precursor to earthquakes for a 

considerable time, and creating a comprehensive forecasting system that can accurately predict the date, time, 

magnitude, and exact epicenter of future earthquakes continues to be a challenge [1]–[11]. One approach to 

earthquake magnitude prediction involves using a telemonitoring system based on radon gas concentration 

coupled with machine learning techniques.  

Presently, artificial intelligence (AI) methodologies play a crucial role in earthquake prediction, 

highlighting their capability to enhance readiness and response tactics in vulnerable regions [5], [11]–[17]. This 

approach leverages advanced technologies to analyze and interpret data for accurate predictions. Machine 

learning algorithms, such as support vector machines (SVM), extreme learning machines (ELM), and artificial 

https://creativecommons.org/licenses/by-sa/4.0/
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neural networks (ANNs), have been applied in earthquake magnitude prediction models [14], [18]–[21]. 

Additionally, integrating adaptive neuro-fuzzy inference systems (ANFIS) has shown promise in enhancing the 

accuracy of earthquake magnitude predictions [22]. Furthermore, the use of ensemble learning methods, such as 

AdaBoost, has been explored to improve the robustness of earthquake magnitude prediction models [23]. 

Various machine learning methods have been employed in different studies to predict earthquake 

magnitudes. For instance, the minimum area of the alarm method was utilized to predict earthquakes with 

magnitudes greater than 6.0 and 5.5 in Japan and California [24]. Similarly, machine learning techniques were 

applied for earthquake magnitude prediction in the Hindukush region [25]. Furthermore, a probabilistic neural 

network (NN) was developed for earthquake magnitude prediction, achieving good earthquake results with 

magnitudes ranging from 4.0 to 6.0 [26]. Additionally, it proposed a deep-learning NN for large earthquake 

magnitude prediction in Taiwan, obtaining successful predictions for earthquakes with magnitudes between 

4.0 and 6.0 [27]. These studies demonstrate the effectiveness of machine learning methods in earthquake 

magnitude prediction. 

Earthquake magnitude prediction has been addressed through various machine learning methods, 

including probabilistic NN and deep learning NN. The incorporation of radon gas concentration data into the 

prediction models aligns with the findings of those who investigated the characteristics of geoelectric field 

signals prior to earthquakes [28]. This suggests that diverse geophysical data, including radon gas 

concentration, contributes to a comprehensive understanding of earthquake precursors. Moreover,  

Gómez et al. [29] presented a novel methodology for predicting large-magnitude earthquakes in chile using 

ensemble learning, emphasizing the potential of machine learning in forecasting seismic events with significant 

magnitudes. Additionally, Gitis and Derendyaev [30] discussed machine learning methods for spatial 

forecasting of maximum possible earthquake magnitudes, further highlighting the relevance of machine 

learning in seismic hazard assessments. 

Considering the application of AI in earthquake prediction, Banna et al. [11] analysis underscores its 

success in forecasting earthquakes within certain magnitude thresholds (M3 to M5). However, challenges arise 

in predicting high-magnitude events due to their infrequency and unpredictable occurrence patterns. 

Significantly, notable discrepancies have been noted in predicting the timing and location of earthquakes, with 

deviations of up to 70 miles and considerable variations in prediction timeframes ranging from 20 days to 5 

months [11]. According to Tehseen et al. [31], Table 1 presents the accuracy of the expert system suggested 

for forecasting earthquakes through an independent test dataset. These results highlight the intricacy and 

intrinsic uncertainties linked with earthquake forecasting, prompting continuous exploration and improvement 

of methodologies to boost predictive accuracy and dependability. The research focus has shifted toward 

machine learning and deep learning techniques since 2018, signifying a noteworthy evolution in earthquake 

prediction approaches.  
 

 

Table 1. Accuracy is claimed in an expert system using an independent test set [31] 
References Number of earthquake records Accuracy (%) Magnitude range 

[32] 9,531 69.8 ≥2.0 

[33] 12,690 50.14 ≥3.0 
[34] 337 63 ≥3.0 

[35] 10,567 40 0.1–5.9 

 

 

Integrating radon gas concentration telemonitoring systems with machine learning techniques 

presents a promising approach to earthquake magnitude prediction. By leveraging advanced algorithms and 

diverse geophysical data, researchers aim to improve the accuracy and reliability of earthquake magnitude 

predictions, ultimately contributing to enhanced disaster preparedness and risk mitigation. In Indonesia, there 

is a method for predicting the time of an earthquake 1-4 days after the alarm goes off with a magnitude greater 

than 4.5M based on the radon gas concentration telemonitoring, but it does not specifically predict the 

magnitude of the earthquake [5], [36]. In this study, earthquake magnitude prediction is conducted based on 

real-time telemonitoring of radon gas concentration at stations in Pacitan, East Java, Indonesia near Grindulu 

fault using machine learning methods random forest (RF), extreme gradient boosting (XGB), NN, adaboost 

(AB), SVM. These stations already have an earthquake time prediction algorithm based on Pratama et al. [36] 

with sensitivity and precision of 78.79% and 70.27%, respectively. The development of the earthquake 

magnitude prediction system can help mitigate earthquake natural disasters so that it can provide warnings to 

the public, volunteers, or the government to minimize casualties. 
 
 

2. METHOD 

The real-time monitoring system for radon gas concentration is close to the Grindulu active fault in 

Pacitan, East Java, Indonesia, making it prone to seismic activity. The radon gas transducer is strategically 
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positioned within the chamber room to ensure precise measurement of radon gas emissions, maintaining a 

maximum of 4.142 cm above ground level. Radon gas measurements are taken every 10 minutes to mitigate 

the influence of radiation emissions [37]. The earthquake prediction system's design is illustrated in Figure 1. 

Subsequently, data collected by the radon gas transducer is sent to the microprocessor and forwarded to the 

cloud server for real-time monitoring, contingent upon an active internet connection. Notably, the recorded 

radon gas data is securely stored in a designated data storage server and accessible via a dedicated web server. 

Moreover, earthquake-related data is acquired from Geofon Potsdam and the Indonesian Agency for 

meteorology, climatology, and geophysics, enriching the understanding of seismic events.  

 

 

 
 

Figure 1. Earthquake prediction system block diagram [38] 

 

 

The algorithm for predicting earthquake magnitude is created through supervised machine learning 

methods, utilizing data extracted from radon cloud data and historical Earthquake incidents. The model's 

performance assessment involves various metrics, including accuracy, mean squared error (MSE), root mean 

square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), symmetric mean 

absolute percentage error (SMAPE), conformal normalized mean absolute percentage error (cnSMAPE), and 

accuracy. Following evaluation, the most effective model will be implemented on a cloud server to deliver 

earthquake prediction alerts. 

Table 2 illustrates the composition of the radon dataset [5]. Subsequently, Table 3 presents the 

systematic organization of information regarding radon gas concentrations and earthquake occurrences, 

adhering to Pratama approach [5]. The training dataset consisted of radon gas concentration data corresponding 
to the day of the earthquake prediction. In contrast, the test dataset included earthquakes within 1-4 days after 

the initial earthquake date prediction, with a minimum magnitude threshold of M4.5 between the Eurasia and 

Indo-Australia Plates. The data collection period ranged from 2/2/2022 to 22/1/2024, comprising 117 data 

points. Seventy percent of the dataset was allocated for training purposes, with the remaining portion reserved 

for evaluating and predicting earthquake magnitudes. 

 

 

Table 2. Composition of the dataset [5] 
Variable Description 

d 

Rd 

R(d-1) 
R(d-2) 

. 

. 

R(d-6) 

R(d-7) 
. 

. 

XR(d-3) 

XR(d-7) 

XR(d-14) 

The day on which the algorithm forecast was finalized utilizing the Pratama methodology [5] 

Radon data average day d 

Radon data average day d-1 
Radon data average day d-2 

. 

. 

Radon data average day d-6 

Radon data average day d-7 
. 

. 

Radon data average 3 days before R(d-2) = average R(d-3) to R(d-5) 

Radon data average 7 days before R(d-2) = average R(d-3) to R(d-9) 

Radon data average 14 days before R(d-2) = average R(d-3) to R(d-17) 
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Table 3. An instance of a dataset 
Earthquake 

date 

prediction 

XR 

(d-14) 

XR 

(d-7) 

XR 

(d-3) 

R 

(d-7) 

R 

(d-6) 

R 

(d-5) 

R 

(d-4) 

R 

(d-3) 

R 

(d-2) 

R 

(d-1) 

Earthquake 

date 

Distance 

(km) 

Actual 

Magnitude 

2/2/2022 58.02 58.81 68.17 45.24 64.41 77.03 71.48 56.00 33.43 49.93 2/4/2022 577.73 5.5 

2/9/2022 53.88 48.96 57.33 40.83 46.57 43.88 55.47 72.62 74.74 47.90 2/10/2022 1,010.32 4.6 

2/15/2022 56.54 66.49 70.63 47.90 58.30 63.77 60.03 88.08 78.26 47.48 2/17/2022 468.23 5.1 

 

 

The machine learning process employed in this study follows supervised learning principles, utilizing 

a regression technique as depicted in Figure 2. The objective is for the model to discern underlying patterns or 

relationships within the dataset, enabling accurate predictions of earthquake magnitudes on unseen data based 

on the radon gas concentration from a telemonitoring station near the Grindulu fault. RF, XGB, NN, AB, and 

SVM are machine learning techniques used in deriving earthquake magnitude prediction algorithms [27]–[34]. 

The training dataset is utilized to construct the earthquake magnitude prediction model, which is subsequently 

evaluated using the test dataset to assess its efficacy. 

This research implemented RF, XGB, NN, AB, and SVM methodologies using orange data mining 

version 3.36.2 software. The tuning is done on the features of each machine learning method to obtain the best 

model. By integrating the application of machine learning models with evaluations based on various metrics, 

this study aims to offer a comprehensive insight into the model's performance in predicting or analyzing the 

data under consideration.  
 

 

 
 

Figure 2. Structure of a supervised machine learning model [38] 
 

 

3. RESULTS AND DISCUSSION 

This study's earthquake magnitude prediction is based on radon gas concentration measurements near 

the active Grindulu fault. The radon gas concentration data storage is configured according to the 

predetermined dataset. The dataset for this study consists of 82 training data and 35 test data points. From this 

training data set, modeling is performed using RF, XGB, NN, AB, and SVM methods, each with different 

feature settings, until the best results are achieved. The outcome derived from this machine learning procedure 

yields the forecasted magnitude of forthcoming earthquakes based on the input test data. 

Table 4 illustrates the forecast outcomes derived from the training dataset using a confusion matrix 

and metrics such as MAE, MSE, RMSE, and standard deviation representing the variance between actual and 

predicted magnitude. A true positive scenario emerges when the actual magnitude lies within the predicted 

magnitude range plus or minus the standard deviation error. Conversely, a false positive arises when the actual 

magnitude falls outside the predicted magnitude range plus or minus the standard deviation error. The 

evaluation results of the training data showed that the XGB method has the highest accuracy compared to other 

methods, with a true positive of 68, followed by the AB, NN, SVM, and RF with true positives consecutively 
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58, 53, 51, and 51. The XGB method has the highest accuracy with a value of 82.93% and the lowest standard 

deviation, MAE, MSE, and RMSE values compared to other methods. It indicates better accuracy compared 

to other models. The models vary in ability to correctly identify positive cases (true positives) and minimize 

false positives. 
 

 

Table 4. Machine learning data training test result 
Parameter Learning Methods 

RF XGB NN AB SVM 

Standard Deviation 0.29 0.15 0.5 0.2 0.44 

MAE 0.21 0.05 0.37 0.08 0.34 

MSE 0.08 0.02 0.27 0.04 0.19 
RMSE 0.29 0.15 0.52 0.2 0.43 

True Positive 50 68 53 58 51 

False Positive 32 14 29 24 31 

Accuracy (%) 60.98 82.93 64.63 70.73 62.20 

 

 

Based on the evaluation results obtained for the predictive algorithm models, earthquake magnitude 

predictions were made using test data based on earthquake date predictions from Pratama [5] method, where 

earthquake predictions are valid 1-4 days after the predicted earthquake date. Table 5 illustrates the error 

evaluation of the machine learning-based earthquake magnitude prediction method subsequent to testing the 

training dataset and configuring features to generate optimal predictions. The RF and SVM method has the 

lowest standard deviation (0.38). The standard deviation of absolute error evaluation has a value that does not 

differ much between machine learning methods. The XGB has the lowest value of MAE (0.33), MAPE 

(6.03%), RMSE (0.51), MSE (0.26), SMAPE (0.06) and cnMAPE (0.97). Smaller values of these metrics 
suggest superior performance of the algorithm. SVM also performs consistently well, with competitive values 

across most error indices. RF, NN, and AB show slightly higher error indices than XGB and SVM, indicating 

slightly lower predictive accuracy. SVM has the highest magnitude prediction accuracy with a value of 77.14%, 

followed by AB (71.43%), NN (68.57%), XGB, and RF (65.71%). XGB and SVM appear to be the  

top-performing learning methods based on the provided error indices. According to our analysis, XGB has the 

lowest MAE and RMSE values, indicating good performance in minimizing the absolute error in regression 

tasks. However, SVM achieved the highest accuracy among the classification task algorithms. These results 

suggest that XGB performs better in tasks where absolute error minimization is important, whereas SVM 

performs better in tasks where classification accuracy is paramount. Researchers and practitioners can use these 

insights to select the most appropriate machine learning algorithms based on their specific goals and 

performance criteria. 
 

 

Table 5. Earthquake magnitude prediction error evaluation 
Error index Learning methods 

RF XGB NN AB SVM 

St Dev of Absolute Error 0.38 0.40 0.39 0.40 0.38 
MAE 0.37 0.33 0.38 0.36 0.34 

MAPE (%) 6.91 6.03 6.90 6.55 6.20 

RMSE 0.53 0.51 0.54 0.53 0.51 

MSE 0.28 0.26 0.29 0.29 0.26 

SMAPE 0.07 0.06 0.07 0.07 0.06 
cnSMAPE 0.96 0.97 0.96 0.97 0.97 

Accuracy (%) 65.71 65.71 68.57 71.43 77.14 

 

 

Figure 3 displays the dispersion errors utilizing boxplot representation for each method, elucidating 

their error characteristics. The NN method exhibits the greatest error dispersion, trailed by RF, AB, and XGB, 

with SVM demonstrating the lowest error dispersion based on the dataset. The XGB method has a median 

value closest to 0 compared to the other method. There are 2 outlier data points for all methods from the 

earthquake prediction evaluation based on radon gas concentration data. They represent data points that are 

unusually high compared to the rest of the dataset. 

Figure 4 shows the histogram of errors for XGB in Figure 4(a), RF in Figure 4(b), NN in Figure 4(c), 

AB in Figure 4(d), and SVM in Figure 4(e) are scrutinized meticulously to examine the sign of deviation. All 

machine learning methods used in the study have the highest frequency of values at 0 to -0.25 M error. The 

XGB has the highest error frequency with a quantity of 14 at that frequency, followed by NN and SVM with 

12 and RF and AB methods with 10. They produced a higher quantity of negative errors than negative bias, as 



Int J Artif Intell  ISSN: 2252-8938  

 

Grindulu fault cloud radon data for earthquake magnitude prediction … (Thomas Oka Pratama) 

4577 

can be noticed in the histograms of Figure 4. Negative bias refers to a systematic tendency for estimates to 

consistently underestimate the true value or exhibit a tendency toward lower values. In statistical terms, it 

means that the average of the estimates tends to be lower than the real value of magnitude. 
 

 

 
 

Figure 3. Boxplot generated by machine learning algorithms during the earthquake prediction of the 35 data test set 
 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

 
(e) 

 

Figure 4. Histograms of the errors produced by (a) XGB, (b) RF, (c) NN, (d) AB, and (e) SVM algorithms 

when predicting the 35 data test set 
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In this research, we analyzed errors as depicted in Figure 5(a) for means of absolute error and  

Figure 5(b) for the standard deviation of absolute error. The results reveal that the XGB method exhibits the 

lowest MAE for the M4.8-M5 earthquake, registering at 0.11 and 1.58 for >M6.5. Additionally, the XGB 

method demonstrates a low standard deviation of absolute error across most magnitude ranges, with the lowest 

recorded at 0.07 for the M4.8-M5 magnitude range. The NN method displays the lowest MAE for M4.5-M4.7 

and M5.7-M5.9, recording values of 0.35. Meanwhile, the SVM method showcases the lowest MAE for  

M5.1-M5.3 and M5.4-M5.6, with values of 0.13 and 0.32, respectively. Conversely, the RF method exhibits 

the highest MAE for M4.5-M4.7 and M4.8-M5, whereas the AB method shows the highest MAE for 

magnitudes above 6.5. 
 

 

  
(a) (b) 

 

Figure 5. Analysis of the (a) mean and (b) standard deviation of the absolute error of earthquake magnitude 

prediction error 
 

 

Earthquakes above M5.5 are infrequent occurrences. Increasing the available data will enhance the 

system's learning capabilities, enabling more precise and accurate predictions of earthquake magnitudes. 

Continuous measurement data of radon gas concentration can assist researchers in designing earthquake 

prediction algorithms, thus aiding in earthquake mitigation efforts, particularly in Indonesia. Features studies 

may explore earthquake prediction based on radon gas concentration and total electron content (TEC) 

measurements measured at the exact location so as to design a reliable earthquake prediction system. 

A unique methodology for earthquake magnitude prediction, which uses radon gas concentration 

measurements along the active fault of Grindulu in Pacitan, East Java, has shown better results than earlier 

study approaches in Table 6 (see appendix). MAE, MAPE, RMSE, MSE, and SMAPE were all lower than 

previously reported levels. Other studies have found limits in earthquake magnitude estimates, with numbers 

that are either too wide or too narrow. Long forecast durations provide issues, either resulting in lengthy periods 

of alert or insufficient time for escape. Previous research also lacked information about the expected location 

(such as which plate or fault section). Furthermore, Indonesia had few earthquake magnitude forecasts based 

on radon gas concentrations. This research has a cnSMAPE of 0.97 and an accuracy of 77.14%. The accuracy 

of the prediction approach used herein outperforms prior research, which failed to meet a 75% accuracy bar 

for earthquake magnitude forecasts while keeping precise prediction values and appropriate prediction 

durations. 

 

 

4. CONCLUSION 

The earthquake magnitude prediction was conducted using radon gas concentration measurements at 

the Pacitan station, East Java, Indonesia, situated near the active Grindulu fault utilized for modeling using RF, 

XGB, NN, AB, and SVM methods with various feature settings for 1-4 days earthquake prediction between 

Eurasia and Indo-Australia Plates. Error evaluations of machine learning methods were conducted, including 

Relative error, MAE, MAPE, RMSE, MSE, SMAPE, and cnSMAPE. XGB and SVM emerged as the best-

performing methods, producing the lowest error values across these metrics. Specifically, XGB achieved MAE 

(0.33), MAPE (6.03%), RMSE (0.51), MSE (0.26), SMAPE (0.06), cnMAPE (0.97), and accuracy (65.71%) , 

while SVM recorded MAE (0.34), MAPE (6.20%), RMSE (0.51), MSE (0.26), SMAPE (0.06), cnMAPE 

(0.97), and accuracy (77.14%). A unique method for predicting earthquake magnitude, using measurements of 

radon concentrations along the active Grindulu fault in Pacitan, East Java, performs better than previous 

research methods on radon. Nevertheless, increasing data availability can enhance the learning capabilities of 
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predictive models, contributing to more precise earthquake magnitude predictions and aiding in earthquake 

mitigation efforts. 
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APPENDIX 

Table 6. Other research earthquake prediction results (continued…) 

 

 

 

Ref. Variable (s) Method Limitation Result 

[12] Animal behaviour, 
environmental 

dynamics, and 

chemical changes 

Belief rule-based expert 
system (BRBES) 

Time: 12-hour timeframe 
Location: -  

Magnitude: M>6.5 

AUC 
BRBES: 0.969, FLBES: 0.789,  

ANN: 0.862  

[32] Independent data 

test 

Expert system Time: - 

Location: - 
Magnitude: M0.1 – M5.9 

Accuracy below 70% 

[5] Radon and 

Groundwater level 

Statistic Time: 1-4 days 

Location: Between Eurasia and 

Indo-Australia Plates 

Magnitude: >4.5 

Sensitivity and precision >80% 

(time prediction) 

[13] Seismicity Expert system Time: 12-hour timeframe 

Location: one-quarter of the Earth 

Magnitude: M3.6 - M9.1 

Accuracy 100% 

[14] Meteorological and 
seismic data 

Support vector regression Prediction number of earthquakes 
in a month. The average magnitude 

of an earthquake in a month  

Precision 96% predicting the 
mean magnitude. Accuracy 

78% for the expected earthquake 

count in a month 

[15] Seismic parameters Pattern recognition NN, 

recurrent neural network, 
RF and linear 

programming boost 

ensemble 

Time: one month 

Location: Hindukush 
 agnitude: ≥ .  

Training: Accuracy 79% 

Test: Accuracy 65% 

[16] Cloud-based big 

data infrastructure 

Regression algorithm Time: 7 days 

Location: California 
Magnitude: M3- M7 

MAE: 

0:59 ± 0:66 (M3-4) 
0:25 ± 0:52 (M4-5) 

0:27 ± 0:60 (M5-6) 

0:28 ± 0:75 (M6-7) 
 

MSE: 

0:79 ± 1:53 (M3-4) 
0:34 ± 1:42 (M4-5) 

0:43 ± 2:06 (M5-6) 

0:63 ± 2:73 (M6-7) 

[18] Seismic data Multilayer perceptron NN Time: days 

Location: - 
Magnitude: 4 Classification, M > 4 

Accuracy: 

73.79% 

[19] Seismic Electric 

Signals (SES) 

ANN Time: days 

Location: region of Greece 

Magnitude: M2.1 – M5.2 and 

M>5.2 

Accuracy 84.01% (all),  

 8.02%,   ≥  .2 on the  ichter 

scale). 

[20] Seismic data ANFIS Time: -Location: region of Iran 

Magnitude: M > 5.5 

ANFIS by Grid Partition 

algorithm 

R2 = 0.94, MAE = 0.149, RMSE 

= 0.173 

[26] Seismic data PNN Time: month 
Location: California 

Magnitude: 7 classification, M < 

4.5 – M > 7.5 

RScore: 0.62- 0.78 (M 4.5 – 
M6.0) 

[27] Historical seismic 

events 

NN model Time: 30 days 

Location: specific location or area 
in Taiwan 

 agnitude: ≥  6 

RScore is 0.303 
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Table 6. Other research earthquake prediction results 
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