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Pedestrian dead reckoning (PDR) technology has be come an important method
for predicting the position of an object or person. Sensor-based positioning

is widely used because of its readily available hardware and acceptable ac-
curacy, especially with PDR algorithms integrated with machine learning and
deep learning. There are two challenges in this context. Conventional state-
estimator methods suffers from dynamics, making the deployment and manage-
ment of nonlinear dynamics become difficult. Training an effective neural net-
work model with a few inertial measurement unit (IMU) samples is also chal-
lenging. This study investigates the integration and comparison of advanced
state estimation algorithms such as the Kalman filter (KF), extended Kalman
filter (EKF), and sigma point Kalman filter (SPKF) with deep neural networks,
including multi-layer perceptron (MLP), convolutional neural network (CNN),
and long short-term memory (LSTM). The aim is to improve the reliability of
forecasting and prediction tasks, particularly when processing IMU data. This
study conducts a comprehensive performance comparison between state esti-
mators integration with deep learning models, evaluating their effectiveness in
addressing the challenges of estimation and prediction. The preliminary results
show that the feature forecasting rate of the proposed method can reach a root
mean square error (RMSE) value of 0.31 (EKF-LSTM) and 1.50 (SPKF-LSTM).
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1. INTRODUCTION

This pedestrian dead reckoning (PDR) technology has recently gained significant attention owing to
its low cost and potential for noninvasive navigation. The development of accurate and efficient navigation
systems is crucial for various applications, including autonomous vehicles, and robotics in indoor and outdoor
environments. In indoor environments where GPS signals may be unavailable or unreliable, accurate position
estimation with PDR allows users to navigate with precision for personal navigation in large buildings, logistics
operations in warehouses, and guiding autonomous robots in indoor spaces.

Several studies have explored the integration of state-estimation algorithms using deep learning
models for localization and navigation. However, there is still scope for improvement in terms of the accuracy
and efficiency. Indoor positioning systems monitor and identify objects for surveillance and activity recog-
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nition using wireless technology, optical sensors, ultrasonic sensors, radio frequency identification (RFID),
and inertial measurement units (IMUs). These sensors and location-based navigation services are commonly
used [1]. A KF-based state estimator predicts and aids intelligent-sensor-based monitoring and navigation.
It precisely locates objects for mining, self-driving cars, and location-based applications by using the least-
squares estimate [2l]. The challenge is to develop a method that combines traditional state estimation methods
with advanced deep learning algorithms to enhance the navigation and localization accuracy in dynamic situa-
tions. This integration enables real-time navigation guidance, collision avoidance, and navigation-related tasks
using forecasting techniques. This study seeks to fill this gap by exploring the integration of state estimation
algorithms with deep learning models to enhance future forecasting, estimation, and prediction in IMU-based
navigation and localization systems. Sensors such as accelerometers, gyroscopes, cameras, light detection and
ranging (LiDAR), radar sensors, and similar devices collect data on the moving object and environment during
sensor-based navigation [3].

The usefulness of a sensor is determined by its application, and data fusion or integration is required
for multisensor navigation applications. This method combines sensor data to improve the accuracy, complete-
ness, and dependability of the navigation system with environmental interpretation [4]—[7]. These systems
were analytically modeled using moving-object dynamics and kinematics [§], [9]. Accurate position estima-
tion and prediction contribute to providing a seamless and immersive user experience for indoor navigation
applications. This considers sensor calibration errors, internal measurement errors, mechanical development
imprecision, friction coefficients, inertia, and other factors [10]. To determine whether a pedestrian is in a
stationary or nonstationary phase, periodic footsteps and strap-down inertial calculations are used to rectify
the zero-velocity update (ZUPT) and adjust location inaccuracies [[L1], [12]. In some applications, low-cost
ultrasonic sensors are employed, resulting in erroneous stride length measurements, which affect tracking
performance and produce errors. State estimators, such as the EKF, are used to minimize positional errors
[L3], [14]]. Sensor-based research occasionally lacks precision, resilience, and response time. These limitations
are caused by the noise, sensor range, and sensor interference. These constraints can be overcome through
sensor redundancy, sensor fusion, enhanced algorithms, and deep-learning techniques [15]—[17].

In navigation, dead reckoning is a process in which particle filtering and map matching accurately
estimate the trajectory of a nonstationary object. The most difficult aspect of inertial dead reckoning is the
estimation of acceleration noise, bias, and orientation direction. The particle filter provides a high-fidelity
estimate of the present state based on sensor data, whereas the map matching method can correct for any drift
or irregularity in the projected trajectory by aligning it with the road network. Inconsistent road network map
data impact the map matching accuracy [18]. Incorrect data associations can lead to localization errors and
affect the overall performance of the navigation systems.

Sensor-based navigation collects data from sophisticated sensors; hence, deep learning models can
quickly handle complex data from such sensors. Artificial neural networks (ANNs) advantages over traditional
neural networks include ease of use, quick learning, strong generalization, few training-related errors, and lower
standard weights. Only a few deep learning prediction methods include deep and recurrent neural networks
(RNN), and most solutions are application specific and involve static data analysis and simple time-series
modeling [19]. Incorporating time-series models in navigation systems helps bridge the gap between static
map-based approaches and dynamic real-world navigation tasks, which are uncertain in nature.

By explicitly modeling the temporal dynamics, uncertainty, and adaptability, time-series modeling
enables navigation systems to achieve high accuracy, reliability, and usability in various applications and en-
vironments. This time-series modeling is critical in sensor-based applications, such as IMU-based navigation,
because it requires the systematic collection and analysis of past observations. Because of the intricate distribu-
tion of extensive time-series data, hybrid navigation systems are essential for enhancing the accuracy and utility
of hybrid forecasting models [20], [21]]. Various strategies have been proposed to address these problems, such
as employing Kalman filters (KF) and time-series forecasting models. However, achieving greater prediction
performance and robustness in real-world scenarios, including dynamic navigation and localization, requires a
more integrated approach to effectively merge these two models. The primary contributions of this study are as
follows:

— The study aims to determine the suitability of traditional state estimators and advanced neural network
architectures in dynamic environments.

— The proposed algorithm enhances the precision of predictions and estimations by applying KF expansion
to the expression of position and velocity estimation variants.
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— This study evaluates and compares the performance of state estimators and neural network models to
determine their effectiveness in blending estimation and forecasting tasks.
— The hypothesis is that the proposed method can improve the accuracy, resilience, and efficiency of
navigation and localization in dynamic situations compared with traditional state estimation methods.
The paper is organized as follows. Section 2 explores the existing research in the domain of time-series
forecasting for diverse navigation environments and the proposed solution. Section 3 discusses the methods
used and section 4 discusses the results of the position and velocity forecasting. Section 5 concludes the study
and discusses the scope of future research.

2. LITERATURE SURVEY

There are numerous domains in which sensors can be implemented for navigation purposes, such
as in autonomous vehicles and robotics. Sensor-based navigation encounters issues, such as sensor noise,
environmental unpredictability, multiple sensor integration, dynamic motion, latency, battery consumption,
and error propagation. Eventually, sensor noise and drift can introduce errors in navigation computations,
which require the use of calibration and filtering techniques. It is crucial to adjust to various environments
and overcome the signal barriers. Error propagation, which can result in accumulated errors and reduced
performance, requires error mitigation strategies. Tackling these challenges typically requires a combination
of hardware enhancements, sensor fusion algorithms, signal processing methods, deep learning, and thorough
testing and validation in real-world scenarios.

Time series forecasting uses statistical models to estimate future values based on historical data. Time
series observations are difficult to interpret because of their order and temporal correlations. Time-series models
were evaluated after substantial preprocessing to eliminate unordered timestamps, missing values, outliers, and
noise. Most machine learning algorithms use hyperparameter optimization, feature selection, preprocessing,
and domain expertise for forecasting [22]]. Sensor time series data is much larger, and manually tweaking
hyperparameters are computationally expensive, so they should be optimized automatically [23]]. Time series
forecasting has long been employed because of its accuracy and interpretability.

Time series forecasting uses statistical approaches and neural network models. Most statistical meth-
ods for forecasting time series employ statistical models to comprehend data. Mathematical models of data
behavior can predict future values. This model offers simple auto-regressive and complex integrated moving
average models for time series data analysis and forecasting. Many statistical models assume stationarity, lin-
earity, and normality; however, they rarely satisfy these assumptions. Another method is to employ the hidden
Markov model (HMM), which shows the probabilistic relationship between observations and hidden states.
HMM dynamically learns system outcomes without statistical training [24].

The primary focus of Bayesian optimization (BO) and hyperband (HB) selection is the hyperparameter
type in a machine learning model, which is crucial for applying optimization methods to deep learning models
[25]. The study of the forecasting process is still in its infancy, owing to patterns including trends, seasonality,
outliers, drifts, and unexpected shifts that should be treated differently. Table [I]lists a summary of the time-
series forecasting issues.

Table 1. Summary of time-series forecasting issues
Challenges in time series forecasting ~ Parameters

Data quality Intermittent data, sparsity, new time series, absent time stamps, and gaps

Data latency The frequency of historical data received by forecasting models can extend the forecasting
horizon and diminish the ability to capture recent effects with autoregressive components

Predict predictors as inputs Modeling predictors for target variables requires inputs for production forecasting.

Retraining monitoring frequency Forecasters should decide whether to retrain models frequently or in reaction to feature

drift or performance decline.

2.1. Deep learning model for time series prediction

Deep learning uses brain-inspired models in machine learning. Deep neural networks improve the
prediction and categorization using the numerous layers of interconnected nodes. Traditional time-series fore-
casting methods generally provide temporal data modeling and prediction. However, complicated data patterns
or abnormalities can pose a challenge to these solutions. Autoregressive (AR), autoregressive moving average
(ARMA), and autoregressive integrated moving average (ARIMA) models are frequently employed for time-
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series forecasting because of their interpretability, computational efficiency, and minimal data requirements
compared to deep learning models [26]-[28]]. Because navigation applications require large amounts of data,
neural networks offer distinct advantages in capturing complex patterns, handling high-dimensional data, and
adapting to diverse forecasting tasks. Deep neural networks contain input and output layers. The input layer
feeds the deep learning model data, whereas the output layer provides the final prediction. As the function
goes backward through the layers, backpropagation adjusts its weights and biases to train the model. Gradient
descent is used to calculate the prediction errors before traveling backward through the layers to change the
weights and biases of the function. Neural networks forecast and repair errors via forward and backpropagation.
The precision of the algorithm increases over time, and further research is required to improve its time-series
analysis accuracy, efficiency, and architecture [29], [30].

3. METHOD

This study aims to address the issue of insufficient integration between state estimation methods and
deep learning models, which restricts dynamic adaptability, real-time accuracy, and localization precision in
sensor-based navigation systems. To overcome this, we propose a novel Kalman filter neural network (KFNN)
model, designed to enhance sensor-based forecasting and trajectory estimation. This model incorporates the
KF for sensor fusion, specifically for integrating accelerometer and gyroscope data to estimate position and ve-
locity. The proposed architecture includes the prediction of position velocity, the measurement association, the
state update and tracking path management performed under the auspices of the KF. The predictions obtained
from these processes are subsequently fed as inputs to a neural network to improve prediction accuracy. In
turn, the neural network acquires knowledge about the relationship between the sensor data and sensor fusion
output derived by the KF. Using the data estimated by the KF to train the model, the proposed approach has
the potential to be applied effectively to sensor inputs that have not been previously observed and accurately
predict motion parameters. The neural network learns to decipher intricate correlations and patterns in the data,
thus enhancing the overall accuracy of the motion estimation system.

Figure 1 depicts the proposed coarse-to-fine hybrid forecast system. It consists of the following major
sections: sensor layout, sensor fusion, state estimators, and forecasting model. State estimators or filters are
mathematical strategies for estimating the internal state of a dynamic system using noisy or incomplete obser-
vations (measurements) of their outputs. The state of a system is often defined as a set of variables that fully
characterize its behavior at a given time, such as position and velocity. The methodology was validated through
rigorous experimentation and comparative analysis, demonstrating promising results in accurately forecasting
motion parameters from accelerometer and gyroscope data. State estimators are important for velocity and
position prediction because they employ sensor data to estimate the internal state of a dynamic system. State
estimators accurately determine the position and velocity, along with factors such as noise and uncertainty,
whereas sensor data estimate motion. KF, EKF, and SPKF are variations of the KF technique used for state
estimation in dynamic systems, and their performance predictions are evaluated. The filter enhances the pre-
dictions by repeatedly updating the state estimations fed into a neural network architecture designed to operate
with a KF output. The KFNN model was trained on the data estimated using the KF. Backpropagation was
used as a training approach, adjusting the model parameters to reduce prediction errors. Gradient descent was
used to iteratively adjust the weights and biases.

The proposed method assesses the performance of the KFNN model using standard metrics, such as
the mean squared error (MSE) and root mean square error (RMSE). The accuracy of the motion parameter pre-
dictions was compared to the ground-truth data. Experiments were conducted in both simulated and real-world
settings using typical hardware configurations for data collection and processing. The study utilized Keras for
the frontend and TensorFlow for the backend, with Sklearn used for the sensor-based models and evaluation
metrics. Adjusting the learning rate during training enhances performance and accelerates challenge-specific
training. Drop-based learning rates are controlled by four factors: the initial learning rate, drop rate, epoch,
and epoch drop. During the training phase, the batch size of the training data with hidden layers was activated
using rectified linear units (ReLU). Sensitivity analysis was conducted by perturbing the input features and
observing the resulting changes in the predictions. A fixed number of features were identified to compare the
overall prediction by employing predictor importance scores for training and validation. A perturbation value of
le-5 was used, including all multi-layer perceptron (MLP), convolutional neural network (CNN), and LSTM
neural network types with all features and selecting a subset of the four features primarily for the available
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IMUs, starting from the neural network identified as yielding the best outcome performance. For the latter,
the analysis began with the data provided by each sensor in isolation, and included data from pairs of sensors:
location (x,y) and velocity (&, ¢). After identifying six indoor and outdoor activities, an exploratory analysis
of the most significant extracted features was conducted. The KF was employed, incorporating stochastic el-
ements to accommodate stochastic processes and uncertainties, aiding feature generation, and was applied to
the standardized neural network owing to its performance and efficiency trade-off.
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Figure 1. Proposed coarse-to-fine hybrid forecast system

3.1. Data collection

Experiments were conducted using a realtime IMU sensor, and data were collected from various in-
door and outdoor environments to evaluate the performance of the proposed approach. The datasets include
diverse scenarios, such as pedestrian navigation and user motion, covering different motion dynamics and
environmental conditions. The experiments were conducted on a group of 12 volunteers aged 21-40 years.
Each participant wore an integrated circuit consisting of an MPU 6050 sensor, which has a built-in 3-axis ac-
celerometer and a 3-axis gyroscope. The prototype module was tied to the participant’s ankle to capture its
activities. They are subjected to activities such as walking and cycling (outdoors), ascending stairs, descending
stairs, sitting, and walking underground (indoors). Table 2] lists the specifications of the sensors used for data
collection.

Table 2. MPU6050 data collection specification
Sensor category Sensitivity Frequency response
Accelerometer Three-axis accelerometer full-scale range +8g  LPF filter response: 5 Hz min, 260 Hz max
Gyroscope Three-axis Gyroscope full-scale range +500 °/s  LPF filter response: 5 Hz min, 256 Hz max

3.2. State estimators

The state estimators KF, EKF, and SPKF plays significant roles in the estimation tasks, which depend
on the specific characteristics of the system dynamics, measurement models, and noise attributes. In the context
of state estimation, the state vector is represented by (1).

1" (1)

T = [%%ja?y

Where,
— & and g are the velocities in the horizontal and vertical dimensions, respectively.
— x and y are the positions in the horizontal and vertical dimensions, respectively.
The state estimator equations for the KF, EKF, and SPKF are listed in Figure 2.
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Figure 2. State estimator equations for the KF, EKF, and SPKF

3.3. Multi-layer perceptron model implementation
Time series forecasting entails scientific forecasts using historical data organized with timestamps.

The process involves creating models based on past studies and using data to make observations and inform
strategic decisions. MLP refers to a hierarchical structure of processing units that consists of two or more
neuron layers that do not overlap. Multilayer sensory neural networks utilize multiple levels of processing
power. MLP training utilizing the least MSE may fail to approximate a function owing to the lack of clarity in
the data distribution. Errors in calculating Euclidean distance can impede the training of neural networks. The
network was trained using an error back-propagation learning method that incorporated additional error mea-
sures. The gradient of the MSE was calculated for every input and output pair in each iteration by propagating
the weighted sums through all layers. The weights of the first hidden layer were subsequently adjusted using
the value of the gradient to propagate backward change. Backpropagation is an iterative learning approach used
by MLP to adjust the weights of the network to minimize the cost function [31]. After the weighted sums were
propagated through all layers in the iteration, the gradient of the MSE was calculated for all input and output
pairs, as well as the gradient of the first hidden layer. The gradient descent was calculated using (2).
dE

—e—— +alAw(t—1) 2)

Aw(t) = dw(t)
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Where Aw(t) = The change in the weight w at time step ¢. € = Learning rate. dfft)

function F with respect to the weight w(t). a = Momentum learning rate, typically a value between 0 and 1.

= Gradient of the error

3.4. Convolutional neural network model implementation

In sensor-based prediction scenarios, such as monitoring and forecasting machinery health or
environmental conditions, advanced deep learning approaches can dramatically improve predictive accuracy
and dependability. CNN are especially well suited for this purpose because of their capacity to interpret raw
time-series data from sensors and find detailed patterns and abnormalities that may indicate underlying diffi-
culties or environmental changes. CNNs use a series of convolution and pooling layers to automatically and
adaptively learn spatial hierarchies of features from input data. These layers collaborate to extract low-to high-
level features, allowing the network to capture key characteristics of sensor data without requiring substantial
manual feature engineering. This feature makes CNNs extremely efficient and effective in handling compli-
cated, multidimensional sensor data. A CNN is a deep learning algorithm that takes input data, assigns weights
and biases that are both learnable and differentiates between various aspects of the data. The CNN design com-
prises three essential layers: a convolution layer, a pooling layer, and a fully connected layer. Applying a filter
or kernel to the input data in the convolution layer generally results in a reduction in the input size. Padding
is used to preserve the original size of the input while enabling the extraction of low-level characteristics. The
pooling layer acts as an intermediary between the convolution and fully connected layers. Pooling techniques
decrease the spatial dimensions of the feature maps produced by the convolution layer. The decrease in di-
mensions to improves computational performance and mitigates over fitting by prioritizing the most significant
characteristics. Ultimately, the results from the pooling layer are passed on to the fully linked layer, where the
combined characteristics are utilized to make the final predictions or classifications. The hierarchical architec-
ture of CNN enables efficient processing and learning from raw time-series data, making them highly favorable
for jobs involving sequence categorization. CNN can learn directly from the raw input data. This allows them
to construct internal representations of time series data and achieve a performance similar to that of models
trained on artificial features [32]], [33]].

3.5. LSTM model implementation

LSTM is a specific form of RNN structure that addresses the shortcomings of regular RNNs in effec-
tively capturing and utilizing long-term relationships in sequential data. LSTM can capture long-term depen-
dencies, handle variable-length sequences, selectively learn and remember relevant features, and adapt to noisy
and irregular data. In the LSTM architecture, memory cells play a pivotal role in retaining information over
extended periods, thereby facilitating the capture of dependencies within sequential data. These cells possess
the unique ability to selectively retain or discard information based on input signals. In addition, LSTM net-
works incorporate gating mechanisms to regulate the flow of information within a model. These gates include
the forget gate, which determines the retention or discarding of information from the previous cell state; the
input gate, which is responsible for incorporating new information into the cell state; and the output gate, which
governs the information output to the subsequent time step. The cell state, which traverses horizontally across
the network, acts as a conduit for transporting information across different time steps, thereby ensuring the
preservation of valuable data over long sequences. Complementing the cell state, hidden state, or LSTM output
serves as a filtered representation of the cell state containing pertinent information for the current prediction
or classification task. Together, these components form the foundation of LSTM networks, enabling them to
model and understand sequential data effectively [34]. The LSTM operations involved in the forget gate, output
gate, hidden gate, and input gate are given by (3)—(6) respectively as:

fo = o(xUp + Hi_1 W) 3)
or = o(x:Up + Hi_1Wh) €]
H; = o; - tanh(c;) ®)
iy = o(x Uy + H1 W) (6)

Where W, = Weight associated with the input, x; = Input at the current time step, H;_1 = Hidden layer at the
previous timestamp, and U; = Weight associated with the hidden state.
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3.6. Comparing neural network architectural design for forecasting

The hardware configuration used for sensor-based activity tracking is illustrated in Figure 3.
Figure 3(a) shows the IMU ankle tracker mounted on the subject’s leg for capturing motion data. Figure 3(b)
presents the custom hardware module comprising various sensors used for data acquisition. Finally, Figure 3(c)
demonstrates the subject wearing the complete hardware setup while performing various physical activities.
The MLP, CNN, and LSTM structures and hyper-parameters were evaluated using the accelerometer, gyroscope
datasets gathered for the six activities in indoor and outdoor environments using sensor data. The parameters
for the three variants of neural networks used in this study are listed in Table[3] All models employed the Adam
variant of stochastic gradient descent and optimized the MSE loss function. The regression models require met-
rics such as mean absolute error (MAE), MSE, RMSE, and coefficient of determination (R2?) to assess accuracy,
as it produce continuous output and require a difference between the expected and ground truth. The residuals,
which represent the discrepancies between the actual values and the predictions made by the KF and neural
network models, were examined. The effectiveness of the KF and the neural network model in estimating the
2D position and velocity was examined by analyzing these metrics and visuals.

(MPUG030)

IMU_Ankle_Tracker

(a) (b)

Figure 3. Hardware setup and subject demonstration: (a) IMU ankle tracker mounted on the human body, (b)
hardware module with sensors for data collection, and (c) subject wearing hardware for data collection for
various activities

Table 3. Forecasting model parameters

Parameter Forecasting model
MLP CNN LSTM

Input 3-axis accelerometer 3-axis accelerometer gyroscope 3-axis accelerometer gyroscope
gyroscope data data data

Activation function ReLU ReLU ReLU

Loss function for training MSE Softmax cross-entropy Softmax cross-entropy with logic

Learning rate 0.001 0.001 0.0025

No. of hidden layers 1 1 1

Neurons in the first layer 128 256 128

Neurons in the second layer 64 128 64

Neurons in the third layer 32 32 32

Neurons in the fourth layer 128 128 128

Training epochs 20 25 50

Batch Size 128 10 1024

3.7. Model performance parameter

Accuracy assessment is the backbone of any deep-learning model. The choice of proper error mea-
sures determines the accuracy of the prediction model. For instance, in the regression analysis, the model’s
efficacy was measured using MSE, MAE, RMSE, and R2. These parameters were used to compare the per-
formance of the three different neural network variants in making the predictions. The MAE is the average
absolute difference between the actual and projected values in a dataset. It measures the mean residuals in the
dataset and calculates them as:

N
! :
MAE = Nglyi ~1 ()
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Where y; = mean value of velocity, position. § = predicted value of velocity, position. The square root of the
MSE is the RMSE. It measures the distance of the residuals from the mean represented in (8):

RMSE = (8)

Where y; = actual value of velocity, position. ¢ = predicted value of velocity, position. N = number of
observations.

The R? represents the fraction of the variance in the dependent variable explained by the linear
regression model. It is a scale-free score, so regardless of whether the numbers are low or high, R? will always
be less than or equal to 1. The R? formula is:

N SN2
Y1 (i —9)
N _
> im1(yi — 9)?
After assessing their performance, simulations show that for neural networks, an input vector is provided,

the resulting feature map is processed through the ReLLU activation function for nonlinearity, and a pooling
operation is conducted to introduce translation invariance [35)]-[37]].

RP=1-

4. RESULTS AND DISCUSSION

A comparative analysis was conducted to evaluate the effectiveness of the state estimation techniques
with and without deep learning models. Metrics such as MSE, RMSE, MAE, and R? were employed to gauge
the accuracy by utilizing ground truth information. The visualization contributed to the analysis of the results,
and the predicted position and velocity for outdoor activities using the neural network models are shown in
Figures 4(a) to 4(c). These predictions were calculated using the most recent data gathered solely by MPU6050.
In this plot, the comparison between the estimated 2D positions and velocities and the actual values indicates a
strong performance of the KF-LSTM predictions that accurately plot the actual values.
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Figure 4. Predicted position and velocity values from: (a) MLP, (b) CNN, and (c) LSTM
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In the context of all three neural network models, a residual plot is often used to assess the alignment
between the model’s forecasts and observed values. Residuals refer to discrepancies between the observed
and estimated values. The residuals correspond to deviations between the anticipated and actual values. The
residuals for both the KF and the neural network models were obtained by subtracting the anticipated positions
and velocities from the actual positions and velocities. The residual plot displays the individual predictions
of the KF and the features generated by the KF provided to the neural network models. The purpose of the
residual plot is to evaluate the quality of the regression analysis fit, as shown in Figure 5(a) to 5(c) shows
the KF predictions and comparison of KF and MLP, CNN and LSTM residuals in time-series forecasting.
This comparative study confirms that LSTM outperforms both MLP and CNN in minimizing positional errors,
making it a more robust choice for real-time localization and tracking applications.

Kalman Filter Residuals LSTM Residuals

()

Figure 5. Residual error plot of Kalman prediction and neural network model prediction for (a) MLP,
(b) CNN, and (c) LSTM for a set of targets

The performance of the navigation system was evaluated based on the IMU data and the estimates
were compared with the ground truth to determine accuracy, reliability, and efficiency, as shown in Table 4]
The table presents a performance comparison of forecasting models that utilize various Kalman filtering
techniques, namely KF, EKF, and SPKF. And the challenges posed by the time series forecasting is mentioned
in the Table[5] The effectiveness of these models was evaluated on the basis of three metrics: MAE, RMSE,
and R2. The MLP model exhibited a modest performance, whereas the CNN model demonstrated larger error
values. The LSTM model outperformed the MLP and CNN models, effectively capturing data patterns.
The EKF model demonstrated a satisfactory level of accuracy, whereas the SPKF model exhibited superior
performance, characterized by a smaller MAE and a higher R2. LSTM models have improved performance
compared to MLP and CNN models in various configurations, particularly when used in conjunction with the
KF and SPKF. This suggests that LSTM models are particularly useful for handling temporal dependencies in
the data. LSTM performed better than MLP and CNN in this category, with a MAE of 5.70, a RMSE of 1.31
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and a positive R? of 0.5. However, the SPKF-MLP and SPKF-LSTM combinations showed the best overall
performance with the lowest errors and the highest R? values, indicating excellent fit and predictive accuracy.
Compared to the initial study [38]], the performance of sensor-based state estimators, such as KF, EKF, and
SPKF, was also evaluated and improved results were demonstrated in terms of velocity, RMSE, and finally
position as shown in Table [6]

Table 4. Comparison of forecasting models: MLP, CNN, and LSTM

Model performance KF with forecasting models EKF with forecasting models SPKF with forecasting models
MLP CNN LSTM MLP CNN LSTM MLP CNN LSTM
MAE 2.8 3.0 1.3 7.24 8.9 5.7 0.3 2.1 0.4
RMSE 5.6 9.9 44 2.12 6.2 1.91 1.2 1.4 1.03
R? 2.7 -1.1 0.7 0.8 -1.91 0.5 0.9 -1.8 0.9

Table 5. Challenges and parameters in time series forecasting
Challenges in time series forecasting ~ Parameters

Data quality Intermittent data, sparsity, new time series, absent time stamps, and gaps

Data latency The frequency of historical data received by forecasting models can extend the forecasting
horizon and diminish the ability to capture recent effects with auto regressive components

Predict predictors as inputs Modeling predictors for target variables requires inputs for production forecasting.

Retraining monitoring frequency Forecasters should decide whether to retrain models frequently or in reaction to feature

drift or performance decline.

Table 6. Comparison of RMSE and RMS from other articles and the proposed method

Article Method RMSE RMS

Jamil et al. [39] KF, ANN 2.5 6.388
Kim et al. [40] MARG, CNN 4.1 -
Ribeiro et al. [38] LSTM 1.9 -

Proposed method EKF-LSTM 1.91 0.3
Proposed method ~ SPKF-LSTM 1.03 1.5

The benchmark model was compared to obtain overall performance indicators. The proposed strategy
produces improved results not only in terms of location accuracy, but also in sensor data forecasting. Using
both extended Kalman filtering and time-series forecasting, collaborative forecasting can optimize the benefits
of both strategies, resulting in a better performance measured by the RMSE, which is the difference between the
predicted and observed values after new measurements are considered. This approach also improves forecast
accuracy, especially in scenarios with noisy or missing measurements. Forecasting models also require
sensitivity analysis to investigate the impact of input features on the output of a model. The objective was
to comprehend the impact of alterations in the input features on the model predictions. This study identifies
features that have a large impact on a model’s output and those that have a smaller impact. Sensitivity plots or
charts display the results of the sensitivity analysis. Input perturbations are employed to calculate the sensitivity,
which involves deliberately altering the input features and analyzing the effect on the model’s output. Visual-
ization of sensitivity involves showing the impact of variations in each feature on the model predictions. The
training and validation of the sensitivity are specified for all neural network algorithms in Figures 6(a) to 6(c).
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Figure 6. Sensitivity analysis of selected features for different models: (a) MLP, (b) CNN, and (c) LSTM
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5. CONCLUSION

This study contributes to the field of time-series forecasting for multi-input data by introducing innova-
tive methodologies that combine state-of-the-art state-estimation techniques with neural-network approaches.
This study evaluates the efficacy of three unique time-series forecasting frameworks (MLP, CNN, and LSTM)
and compares their performance. This study demonstrates that incorporating Kalman-based state estimators
with time-series forecasting models enhances the accuracy and stability of predictions in dynamic navigation
and localization tasks. The presented models exhibit promising results in accurately predicting the location
and speed of various activities using IMU sensor data. These outcomes substantially contribute to the field
of dynamic navigation and activity monitoring. IMU sensors are employed in time-series prediction to assess
trends in historical data, enabling more informed decision making. Effectively utilizing IMU sensors can facil-
itate the collection of relevant sensor data for precise navigation-state predictions. Initially, a feature extractor
was trained using a dataset, and the neural network-based regression produced by the feature extractor was
evaluated using a dataset collected under more realistic conditions. The study found that CNN and MLP-based
approaches could not compete satisfactorily with the best, whereas the LSTM-based approach outperformed
the other approaches. The experiment provided a comprehensive synopsis of the application of LSTM to ex-
amine the impact of critical hyperparameters on the differentiation of target activities within the feature space.
Pretrained neural network models are expected to be used more extensively, similar to deep-learning appli-
cations. Comparative research revealed that the features derived using the KF perform excellently in sensor
identification. Specifically, a single LSTM model achieves a prediction accuracy of 1.91 RSME when using
the EKF filter and 1.03 RSME when using SPKF. The study also suggests that future research should aim
to emphasize a more extensive and varied dataset, incorporating diverse environmental settings, user behav-
iors, and sensor conditions to improve generalizability. Additionally, projecting user activity data coordinates
onto a digital map can serve as a real-time navigation aid, enabling enhanced situational awareness and route
optimization. Future research focus on using more diverse datasets and mapping user activity coordinates to
enhance navigation and spatial awareness
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