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 The baseline reduction method has been widely used to define 

electroencephalogram (EEG) signal patterns. However, because the baseline 

signal in this approach contains artifacts, the baseline reduction approach 

cannot perform optimally. As a result, decreasing artifacts in the baseline 

signal is critical. The mean, Gaussian, and Savitzky-Golay filters will be 

compared in this study to minimize artifacts in the baseline signal. Three 

secondary datasets are utilized to evaluate these approaches' capacity to 

remove artifacts. These three strategies are also tested with the convolution 

neural network classification algorithms. When applied to the dataset for 

emotion analysis using physiological signals (DEAP) and a dataset for 

multimodal research of affect, personality traits, and mood on individuals 

and groups (AMIGOS) datasets, the mean filter can increase baseline 

reduction performance based on twenty-four test scenarios. On the data 

readiness for machine learning research (DREAMER) dataset, however, the 

Gaussian filter is preferable. The relative difference approach was employed 

in this study's baseline reduction process to generate EEG signal patterns 

that are easy to recognize throughout the classification phase, which impacts 

increasing accuracy.  
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1. INTRODUCTION 

Humans' emotional responses to interpersonal communication are critical psychological processes 

[1]. Emotional responses in each quadrant describe human performance and mental health [2]. Numerous 

attempts have been made to improve the accuracy of emotion recognition based on electroencephalogram 

(EEG) signals, such as deep learning, machine learning, and dataset balancing [3]–[6]. However, a wide 

range of other factors, such as each participant's characteristics, level of cognitive ability, and sex, can 

generate the difference in EEG signal patterns. This difference in EEG signal patterns affects emotion 

recognition accuracy [7]. A baseline reduction technique has been researched to solve this problem [8]. By 

using the average value of the baseline signal characteristics, the baseline reduction approach reduces the trial 

signal characteristics [7]–[9].  

However, recording baseline EEG signals free from internal and external disruptions is challenging 

[3], [10], [11]. Electrooculogram (EOG), electrocardiogram (ECG), electromyogram (EMG), as well as 

participants' emotional reactions when they are in a calm condition, can all cause internal disturbances to 

EEG signals [11], [12]. The recording of the baseline EEG signal may also be disturbed by electricity at each 

electrode [3], [10], [11]. These disturbances may prevent the baseline reduction strategy from functioning at 

https://creativecommons.org/licenses/by-sa/4.0/
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its best. Eliminating interference from the baseline EEG readings is crucial for solving these issues. The 

smoothing method can reduce the disturbances/artifacts in the baseline EEG signal by making the amplitude 

smoother [13]. Numerous smoothing approaches, such as the mean, Savitzky-Golay, and Gaussian filters, 

were used to reduce the artifact in the previous study. These three smoothing techniques have lower mean 

squared error (MSE) values and calculation times [13]. In earlier research, the smoothing method was not 

applied to emotion recognition to improve baseline reduction performance.  

Based on studies from previous research, two contributions are proposed in this research:  

i) investigates the effects of applying three smoothing methods to the baseline signal for the baseline 

reduction process. While previous research has explored the impact of applying baseline reduction, it has not 

studied the effect of baseline reduction with a baseline signal that has been smoothed; ii) determines the best 

smoothing method based on the accuracy values for recognizing four and two emotion classes. The smoothed 

baseline EEG signal is expected to maximize the baseline reduction strategy, resulting in high accuracy in 

emotion recognition. 

 

 

2. METHOD 

The effectiveness of the baseline reduction approach was optimized by choosing the best smoothing 

methods. The relative difference method was the foundation for the baseline reduction procedure used in this 

investigation [8]. Furthermore, the classification strategy in this work used the convolutional neural networks 

(CNN) method, while the feature extraction and representation processes used the differential entropy (DE) 

and 3D cube methods [7], [8]. This stage involves segmentation, eliminating artifacts from the baseline EEG 

data, and decomposition. Based on the contributions proposed in this research (orange rectangle), the process 

of an emotion recognition model based on EEG signals can be described as shown in Figure 1.  
 
 

 
 

Figure 1. Emotion recognition based on EEG signal process 

 

 

2.1.  Emotion dataset 

Preparing an EEG signal-based emotion dataset is essential to test the proposed contribution in this 

research. This research uses three public datasets: the dataset for emotion analysis using physiological signals 

(DEAP), data readiness for machine learning research (DREAMER), and a dataset for multimodal research 

of affect, personality traits and mood on individuals and groups (AMIGOS). These three datasets have 

different data characteristics, such as the number of channels used, EEG equipment, participants, and 

recording scenarios. So, by using these three datasets, it is hoped that we will get an appropriate smoothing 

method to improve baseline reduction performance and impact increasing the accuracy of emotion 

recognition.  
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2.2.  Segmentation 

The EEG signal is divided into two pieces throughout the segmentation process: a baseline and a trial 

signal. The baseline signal was an EEG reading representing the subjects' neutral state [14], [15]. The baseline 

signal was captured when individuals were calm and free of internal and external artifacts. The EEG signal 

used in the trial signal indicated the subjects' emotional responses. The baseline signals in the DEAP dataset 

were present for the first three seconds, while the trial signals were present for four through sixty-three 

seconds. In DREAMER and AMIGOS, the baseline signal lasts for the first five seconds, while the trial signal 

lasts for the following six seconds [16]–[18]. On DEAP, DREAMER, and AMIGOS, the EEG signal data was 

sampled at 128 Hz every second. There were 32 channels in the DEAP dataset. There are 14 channels in the 

DREAMER and AMIGOS datasets [16]–[18]. The DEAP dataset's Fp1 channel's three-second baseline signal 

data is shown in Table 1. The three seconds of baseline signals are displayed in Table 1. The DEAP data 

collection trial signal segment runs from four to sixty-three seconds (385 Hz to 8064 Hz).  
 
 

Table 1. The DEAP dataset's baseline signal segments data takes three seconds 
Sampling rate (Hz) Baseline signal (𝑥𝑖) 

1 𝑥1 

………… ………… 

384 𝑥384 

 

 

2.3.  Process of smoothing the baseline signal 

This procedure is the study's critical contribution. This study will examine three smoothing methods 

to eliminate interference in the baseline signal: the mean filter, the Savitzky-Golay filter, and the Gaussian 

filter [19]. The best of the three approaches was chosen based on the resulting emotion recognition accuracy 

value. The smoothing procedure for the mean filter method begins from the first sampling rate in the baseline 

signal data (1 Hz). In 1 second, the EEG signal will produce 128 sampling values. The smoothing process for 

the Fp1 channel in the DEAP dataset is illustrated in Table 2.  
 

 

Table 2. Illustration of the smoothing process for the DEAP dataset using the mean filter method on the 

baseline signal 
Sampling rate (Hz) Baseline signal (xi) Mean filter (zi) 

1 𝑥1 𝑧1 =
0 + 𝑥1 + 𝑥2 

2 ∗ 1 + 1
 

……… ……… ………………………… 

384 𝑥384 𝑧384 =
𝑥383 + 𝑥384 + 0 

2 ∗ 1 + 1
 

 
 

In addition to analyzing the mean filter method for smoothing the baseline signal, this study also 

studies the Savitzky Golay filter approach. The smoothing process for the Fp1 channel in the DEAP dataset is 

illustrated in Table 3. Finally, as indicated in Table 4, this study investigated the Gaussian filter approach for 

smoothing the baseline signal. The smoothing process for the Fp1 channel in the DEAP dataset is illustrated in 

Table 4. According to Tables 2 to 4, the DEAP data set's baseline signal smoothed zj for three seconds has a 

384 sampling rate. The zj values in the DREAMER and AMIGOS datasets are 640 sample rates or 5 seconds.  
 

 

Table 3. Depicts the smoothing procedure for the DEAP dataset using the Savitzky Golay filter technique on 

the baseline signal 
Sampling rate Baseline signal (𝑥𝑖) Savitzky Golay filter (𝑧𝑖) 

1 𝑥1 𝑧1 =
1

35
(−3𝑥𝑗−2 + 12𝑥𝑗−1 +  17𝑥𝑗 + 12𝑥𝑗−1 −  3𝑥𝑗+2) 

… …. …………………………………………………… 

384 𝑥384 𝑧384 =
1

35
(−3𝑥𝑗−2 + 12𝑥𝑗−1 + 17𝑥𝑗 + 12𝑥𝑗−1 −  3𝑥𝑗+2) 

 

 

Table 4. The smoothing procedure for the DEAP dataset is illustrated using the Gaussian filter method on the 

baseline signal 
Sampling rate (Hz) Baseline signal (𝑥𝑖) Gaussian filter (zi) 

1 𝑥1 𝑧1 =
1

√2𝜋𝜎2
𝑒

−(𝑥1−𝜇)2

2𝜎2  

……. …….. …………………… 

384 𝑥384 𝑧384 =
1

√2𝜋𝜎2
𝑒

−(𝑥384−𝜇)2

2𝜎2  
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2.4.  Decomposition 

This process was carried out for all channels for both baseline and trial EEG signals [7]. Table 5 

illustrates the decomposition process of the EEG baseline signal for the Fp1 channel. In the DEAP dataset,  

3 seconds of baseline signals (384 Hz sampling rate) were decomposed into four frequency bands for each 

channel [20]. The trial signal decomposition process was also carried out on the Fp1 channel, as illustrated in 

Table 6. In Table 6, 60 seconds of trial signals (7,680 Hz sampling rate) are decomposed into four frequency 

bands and each channel in one experiment (from 40 experiments in the DEAP dataset). 
 
 

Table 5. Frequency band decomposition process for baseline signals on the DEAP dataset 

Frequency band 
Baseline signal 

𝑧1 ….. 𝑧384 

Theta z1Theta ….. z384Theta 

Alpha z1Alpha ….. z384Alpha 

Beta z1Beta ….. z384Beta 

Gamma z1Gamma ….. z384Gamma 

 
 

Table 6. Decomposition process for 60 seconds of trial signals on the DEAP dataset 

Frequency band 
Trial signal 

𝑥385 ….. 𝑥8064 

Theta x385Theta ….. x8064Theta 

Alpha x385Alpha ….. x8064Alpha 

Beta x385Beta ….. x8064Beta 

Gamma x385Gamma ….. x8064Gamma 

 

 

2.5.  Feature extraction 

The feature extraction process is carried out to obtain relevant EEG signal features. The feature 

extraction process is performed every second (128 Hz sampling rate) in each frequency band for baseline and 

trial signals. The feature extraction process in this research uses the DE method [7], [8]. Based on this 

formula the feature extraction process for the baseline signal on channel Fp1 can be illustrated in Table 7.  
 

 

Table 7. Illustration of the feature extraction process for baseline signals on the DEAP dataset 
Frequency band Sampling rate (Hz) Feature values Second 

Theta z1Theta … z128Theta h1(Theta) 1 

Alpha z1Alpha … z128Alpha h1(Alpha) 1 

Beta z1Beta … z128Beta h1(Beta) 1 

Gamma z1Gamma … z128Gamma h1(Gamma) 1 

Theta z129Theta … z256Theta h2(Theta) 2 

Alpha z129Alpha … z256Alpha h2(Alpha) 2 

Beta z129Beta … z256Beta h2(Beta) 2 

Gamma z129Gamma … z256Gamma h2(Gamma) 2 

Theta z257Theta … z384Theta h3(Theta) 3 

Alpha z257Alpha … z384Alpha h3(Alpha) 3 

Beta z257Beta … z384Beta h3(Beta) 3 

Gamma z257Gamma … z384Gamma h3(Gamma) 3 

 

 

Based on Table 7, the baseline signal will produce three DE features values for each channel and 

frequency band in one experiment. Further, the process of extracting experimental signal features on the Fp1 

channel can be illustrated in Table 8. Based on Table 8, the trial signal will produce 60 DE features for each 

channel and frequency band in one experiment. 
 
 

Table 8. Illustration of the feature extraction process for trial signals on the DEAP dataset 
Frequency band Sampling rate (Hz) Feature values Second 

Theta 𝑥385𝑇ℎ𝑒𝑡𝑎 ….. 𝑥513𝑇ℎ𝑒𝑡𝑎 ℎ4(𝑇ℎ𝑒𝑡𝑎) 4 

Alpha 𝑥385𝐴𝑙𝑝ℎ𝑎 ….. 𝑥513𝐴𝑙𝑝ℎ𝑎 ℎ4(𝐴𝑙𝑝ℎ𝑎) 4 

Beta 𝑥385𝐵𝑒𝑡𝑎 ….. 𝑥513𝐵𝑒𝑡𝑎 ℎ4(𝐵𝑒𝑡𝑎) 4 

Gamma 𝑥385𝐺𝑎𝑚𝑚𝑎 ….. 𝑥513𝐺𝑎𝑚𝑚𝑎 ℎ4(𝐺𝑎𝑚𝑚𝑎) 4 

……. ……. ….. ……. ……. ……. 

Theta 𝑥7936𝑇ℎ𝑒𝑡𝑎 ….. 𝑥8064𝑇ℎ𝑒𝑡𝑎 ℎ63(𝑇ℎ𝑒𝑡𝑎) 63 

Alpha 𝑥7936𝐴𝑙𝑝ℎ𝑎 ….. 𝑥8064𝐴𝑙𝑝ℎ𝑎 ℎ63(𝐴𝑙𝑝ℎ𝑎) 63 

Beta 𝑥7936𝐵𝑒𝑡𝑎 ….. 𝑥8064𝐵𝑒𝑡𝑎 ℎ63(𝐵𝑒𝑡𝑎) 63 

Gamma 𝑥7936𝐺𝑎𝑚𝑚𝑎 ….. 𝑥8064𝐺𝑎𝑚𝑚𝑎 ℎ63(𝐺𝑎𝑚𝑚𝑎) 63 
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2.6.  Baseline reduction 

The baseline reduction process continues after the baseline and trial signal feature values are 

obtained. This process aims to produce feature values from trial signals that can characterize participants' 

emotional reactions so emotions can be classified more accurately [7], [21]. This research will examine the 

relative difference method for the baseline reduction process. This method is most appropriate for 

characterizing different EEG signal patterns from each participant. The formula for the relative difference 

method can be presented in (1) [7]–[9]: 

 

𝐹𝑖𝑛𝑎𝑙𝑗(𝑋) =
(𝐸𝑥𝑝𝑒𝑟𝑗(𝑋)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛(𝑋)
 (1) 

 

The average value of the DE (BaseMean) feature on the baseline signal is calculated as an initial stage. The 

following is an illustration of the calculation process for the average DE feature value for each frequency 

band in one EEG channel on DEAP: 

 

𝑚𝑒𝑎𝑛_ℎ(𝑇ℎ𝑒𝑡𝑎) =
(ℎ1(𝑇ℎ𝑒𝑡𝑎)+ℎ2(𝑇ℎ𝑒𝑡𝑎)+ℎ3(𝑇ℎ𝑒𝑡𝑎))

3
  

 

𝑚𝑒𝑎𝑛_ℎ(𝐴𝑙𝑝ℎ𝑎) =
(ℎ1(𝐴𝑙𝑝ℎ𝑎)+ℎ2(𝐴𝑙𝑝ℎ𝑎)+ℎ3(𝐴𝑙𝑝ℎ𝑎))

3
  

 

𝑚𝑒𝑎𝑛_ℎ(𝐵𝑒𝑡𝑎) =
(ℎ1(𝐵𝑒𝑡𝑎)+ℎ2(𝐵𝑒𝑡𝑎)+ℎ3(𝐵𝑒𝑡𝑎))

3
  

 

𝑚𝑒𝑎𝑛_ℎ(𝐺𝑎𝑚𝑚𝑎) =
(ℎ1(𝐺𝑎𝑚𝑚𝑎)+ℎ2(𝐺𝑎𝑚𝑚𝑎)+ℎ3(𝐺𝑎𝑚𝑚𝑎))

3
  

 

The mean value obtained is then used for the baseline reduction process for the trial signal. Table 9 presents 

the baseline reduction process using the relative difference method for one channel in one experiment on the 

DEAP dataset.  

 

 

Table 9. Illustration of baseline reduction calculations using the relative difference method on the DEAP dataset 
Frequency Illustration of the calculation of the relative difference method 

Theta 
𝐹𝑖𝑛𝑎𝑙_ℎ4(𝑇ℎ𝑒𝑡𝑎) =

ℎ4(𝑇ℎ𝑒𝑡𝑎)

𝑚𝑒𝑎𝑛_ℎ(𝑇ℎ𝑒𝑡𝑎)
 

Theta 
𝐹𝑖𝑛𝑎𝑙_ℎ63(𝑇ℎ𝑒𝑡𝑎) =

ℎ63(𝑇ℎ𝑒𝑡𝑎)

𝑚𝑒𝑎𝑛_ℎ(𝑇ℎ𝑒𝑡𝑎)
 

Alpha 
𝐹𝑖𝑛𝑎𝑙_ℎ4(𝐴𝑙𝑝ℎ𝑎) =

ℎ4(𝐴𝑙𝑝ℎ𝑎)

𝑚𝑒𝑎𝑛_ℎ(𝐴𝑙𝑝ℎ𝑎)
 

Alpha 
𝐹𝑖𝑛𝑎𝑙_ℎ63(𝐴𝑙𝑝ℎ𝑎) =

ℎ63(𝐴𝑙𝑝ℎ𝑎)

𝑚𝑒𝑎𝑛_ℎ(𝐴𝑙𝑝ℎ𝑎)
 

Beta 
𝐹𝑖𝑛𝑎𝑙_ℎ4(𝐵𝑒𝑡𝑎) =

ℎ4(𝐵𝑒𝑡𝑎)

𝑚𝑒𝑎𝑛_ℎ(𝐵𝑒𝑡𝑎)
 

Beta 
𝐹𝑖𝑛𝑎𝑙_ℎ63(𝐵𝑒𝑡𝑎) =

ℎ63(𝐵𝑒𝑡𝑎)

𝑚𝑒𝑎𝑛_ℎ(𝐵𝑒𝑡𝑎)
 

Gamma 
𝐹𝑖𝑛𝑎𝑙_ℎ4(𝐺𝑎𝑚𝑚𝑎) =

ℎ4(𝐺𝑎𝑚𝑚𝑎)

𝑚𝑒𝑎𝑛_ℎ(𝐺𝑎𝑚𝑚𝑎)
 

Gamma 
𝐹𝑖𝑛𝑎𝑙_ℎ63(𝐺𝑎𝑚𝑚𝑎) =

ℎ63(𝐺𝑎𝑚𝑚𝑎)

𝑚𝑒𝑎𝑛_ℎ(𝐺𝑎𝑚𝑚𝑎)
 

 

 

2.7.  Feature’s representation 

The feature values of the trial signal reduced in the baseline reduction process are represented using 

the 3D cube method. Feature representation using the 3D cube is based on the international system 10-20 

standard for channel placement on the scalp. The international 10-20 system maps the spatial information 

between channels representing EEG signal features to a 9×9 matrix. The 9×9 matrix describes the position of 

channel placement in the head. Figure 2 represents DE features mapped into a 9×9 matrix [3], [7]. The values 

of 𝐹𝑖𝑛𝑎𝑙_ℎ4(𝑇ℎ𝑒𝑡𝑎), 𝐹𝑖𝑛𝑎𝑙_ℎ4(𝐴𝑙𝑝ℎ𝑎), 𝐹𝑖𝑛𝑎𝑙_ℎ4(𝐵𝑒𝑡𝑎), and 𝐹𝑖𝑛𝑎𝑙_ℎ4(𝐺𝑎𝑚𝑎) or channels Fp1 to O2 are 

presented in four 9×9 matrix. The 9×9 matrix represents theta, alpha, beta, and gamma frequencies. Then, 

these four matrices are combined into one cube called the 3D cube. The first 3D cube represents 1 second of 

EEG signal feature data for all channels and four frequency bands, as shown in Figure 2. 
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Figure 1. Illustration of feature representation on channels Fp1 to O2 for each frequency band using 3D cube 

 

 

Gamma, beta, alpha, and theta frequencies are represented through a 9×9 matrix with red, yellow, 

green, and blue colors. The DEAP and DREAMER datasets produce 2,400 and 3,728 3D cubes for each 

participant. Furthermore, one participant generated 6,192 3D Cubes for long experiments on the AMIGOS 

dataset and 1,394 3D cubes for short experiments.  

 

2.8.  Classification 

These three smoothing approaches are applied in the CNN method, to assess the success of the 

baseline reduction approach [7], [8], [22]. Figure 3 presents the architecture of the CNN method used to 

recognize four classes of emotions, namely high arousal positive valence (HAPV), high arousal negative 

valence (HANV), low arousal positive valence (LAPV), and low arousal negative valence (LANV). The 

CNN architecture in Figure 3 uses input data from data represented in a 3D cube. This data is then convolved 

four times to produce four feature maps. The first feature map measures 9×9×64, the second feature map 

measures 9×9×128, the third feature map measures 9×9×256, and the fourth feature map measures 9×9×64. 

The values in the fourth feature map are reshaped via the flattening process, resulting in a scalar value of 

5,184 (9×9×64). This scalar value is used as input data at the input layer node. Next, this value is fully 

connected to the hidden layer with 1,024 nodes. Finally, the hidden node is fully connected to the output 

layer. In Figure 3, the output layer is four nodes. These four nodes represent the four recognized classes of 

emotions. Apart from the four emotion classes, this research will also recognize two emotion classes, high 

and low, for the emotion’s arousal and valence. The adam optimizer method updates the weight values, and 

L2 regularization calculates the error values. In addition, the learning rate, batch, and epoch parameter values 

are set at 0.0001, 128, and 50, respectively.  

 

2.9.  Assessment model and parameters 

In this research, model evaluation uses k-fold cross-validation, where the k value is set at 10. 

Through k-fold cross-validation, the parameter evaluation process can be carried out. Some evaluation 

parameters are accuracy, error, precision, recall, and F1. Based on the precision and recall values resulting 

from the two emotion classes and the four emotion classes, the F1 value can be calculated.  
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Figure 2. CNN architecture 

 

 

3. RESULTS AND DISCUSSION 

This study will employ three datasets, DEAP, DREAMER, and AMIGOS, to assess the 

dependability of the baseline reduction procedure on various data features. Table 10 shows the accuracy 

value of emotion recognition in the three DEAP, DREAMER, and AMIGOS datasets. According to the 

results of the tests, the Gaussian approach delivers good accuracy only in the DREAMER dataset for the two 

and four emotion classes. On the other hand, the mean filter approach can generate excellent accuracy for 

categorizing two and four emotion classes in the DEAP and AMIGOS datasets. The signal amplitudes of the 

three datasets will be compared to determine the source of this difference.  

 

 

Table 10. The outcomes of three smoothing methods tests on three datasets 
No Smoothing Emotion class DEAP DREAMER AMIGOS 

1 Default Four class 79.83 81.01 94.06 

2 Gaussian Four class 72.77 92.88 93.72 

3 Mean Four class 95.48 79.79 97.61 

4 Savitzky Golay Four class 79.22 81.82 94.48 
5 Default Arousal 92.70 92.53 94.06 

6 Gaussian Arousal 91.69 96.94 92.84 

7 Mean Arousal 98.58 92.06 94.53 

8 Savitzky Golay Arousal 93.14 92.60 94.05 

9 Default Valence 91.73 89.96 96.70 
10 Gaussian Valence 90.48 96.05 96.10 

11 Mean Valence 98.07 88.90 97.30 

12 Savitzky Golay Valence 92.83 90.23 96.40 

 

 

Figure 4 depicts the baseline signal pattern for the eighth participant in the eighth experiment before 

and after the smoothing operation. Figure 5 depicts the baseline signal pattern for the first participant in the 

first experiment before and after the smoothing technique. Figure 6 depicts the 1-second raw baseline signal 

from the DREAMER dataset for the tenth individual in the tenth experiment. The amplitude of the EEG 

signal should ideally be in the 100 µV range [23], [24]. Nonetheless, when capturing the baseline signal, 

different artifacts can intervene to raise the signal amplitude. Based on a comparison of the baseline signal 

patterns in the three datasets (Figures 4 to 6), it was discovered that the amplitude of the baseline signal in the 

DREAMER dataset is greater than the amplitude of the baseline signal in the DEAP and AMIGOS datasets. 

As a result, using the Gaussian filter method can reduce the amplitude of the EEG signal to an ideal value 

while producing more accuracy than using the mean filter approach. The Gaussian filter approach, on the 

other hand, alters the EEG signal pattern.  
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Figure 3. AMIGOS channel AF3 raw EEG signal data 
 

 

 
 

Figure 4. DEAP channel Fp1 raw EEG signal data 
 

 

 
 

Figure 5. DREAMER's raw EEG signal data for channel AF3 

 

 

The baseline reduction strategy has been used in many studies. However, the baseline signal 

employed in this study still contains artifacts. This phenomenon prevents the baseline reduction from 

performing optimally. Some researchers attempt to improve accuracy by applying a deep learning approach 

to the classification process, such as CNN [7], capsule network [22] combination CNN + long short term 

memory (LSTM) [25], and deep forest [3], but this classification method is not yet capable of recognizing the 

EEG signal pattern that is formed. The baseline signal smoothing procedure can improve the baseline 

reduction approach. The improved baseline reduction methodology can provide EEG signal patterns easily 

recognized by classification systems. Although this study and researchers [8] used DE, relative difference, 

3D cube, and CNN methods for each process, the baseline signal that had been smoothed using the mean 

filter method was proven to be able to improve the performance of the baseline reduction process. These 
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results are proven by increased recognition accuracy values for two and four emotion classes in the DEAP 

and AMIGOS datasets. The mean filter method proposed in this study can reduce baseline signals 

contaminated with artifacts compared to the other two smoothing methods. Although the mean filter 

approach can reduce the amplitude of the baseline signal and improve accuracy, it can only be used on EEG 

signals with an amplitude of 200 µV. Meanwhile, EEG signals can only be used in a Gaussian filter approach 

for signal amplitudes greater than 4,000 µV. These results are proven by increased recognition accuracy 

values for the DREAMER dataset's two and four emotion classes. This proposed method can reduce artifacts 

in the baseline signal without changing the existing EEG signal pattern. This research comprehensively 

reduced artifacts in the baseline signal using the mean filter and Gaussian methods. However, in-depth 

studies may be needed to determine the best method for reducing artifacts in the three datasets. In addition, 

further studies are essential to improve the classification process by determining appropriate classification 

methods. Using the CNN method in this research can result in the loss of spatial information from the EEG 

signal [21], [22], [26].  

 

 

4. CONCLUSION 

Our findings provide conclusive evidence that the smoothing procedure using the mean filter and 

Gaussian filter approaches are proven to eliminate artifacts in the baseline signal. These two approaches can 

increase baseline reduction performance by smoothing the baseline signal. The relative difference approach 

was employed in this study's baseline reduction process to generate EEG signal patterns that are easy to 

recognize throughout the classification phase, which impacts increasing accuracy. The CNN method for 

classification achieves the best accuracy value by introducing two classes and four classes of emotions. 

However, in-depth studies may be needed to determine the best method for reducing artifacts in the three 

datasets. In addition, further studies are essential to improve the classification process by determining 

appropriate classification methods. Using the CNN method in this research can result in the loss of spatial 

information from the EEG signal. 
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