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 The agriculture sector plays a significant role in Morocco's economy, and 

tomato farming is an essential component of this industry. However, tomato 

plants are prone to various diseases that can adversely affect productivity 

and quality. A novel approach to detect tomato plant diseases is proposed int 

this study, by modeling and developing a transfer learning-based 

convolution neural network (CNN) model that processes real-time images. 

The model is trained and validated with a deep CNN using a private dataset 

of 18,159 annotated tomato leaf images collected from experimental farms 

over five months. The performance of our residual neural network  

(ResNet-50) model is evaluated using stochastic gradient descent (SGD) and 

adaptive moment estimation (Adam) optimizers to demonstrate superior 

efficiency. Farmers can simply send images of their tomato leaves through 

our platform, and the trained model will identify accurately the disease. The 

developed model demonstrates exceptional performance, achieving a 0.96 

F1 score and an 97% accuracy rate when tested on a dataset generated from 

real-world fields. This approach not only improves disease detection but also 

contributes to sustainable farming practices and enhanced productivity. 
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1. INTRODUCTION 

Agriculture plays a vital role in Morocco's economy, providing employment, food security, and 

contributing to the nation's overall growth. Tomato farming is a significant component of the Moroccan 

agricultural sector, with the country being among the top exporters of tomatoes worldwide [1]. Morocco has 

particularly established fresh tomatoes as a prominent export product, with an impressive export volume of 

517 thousand tons [2]. This success positions tomatoes as one of the leading agricultural commodities driving 

the country's export market. The significant quantity of exported fresh tomatoes highlights their importance 

and desirability in international trade. This achievement showcases Morocco's ability to produce high-quality 

tomatoes that meet the demands of global consumers, contributing to the country's economic growth through 

agricultural exports. Ensuring the health and productivity of tomato crops is crucial for both the national 

economy and the livelihoods of Moroccan farmers. 

Plant diseases are a significant challenge for agriculture worldwide, causing substantial losses in 

crop yield and quality. Among various crops, tomato plants are particularly prone to various diseases, which 

can have adverse effects on productivity and the overall quality of the produce [3]. Some common tomato 

plant diseases include blight, bacterial spot, mosaic virus, and other tomato plant diseases, the latter includes 

highly destructive pest that can cause considerable damage to tomato crops [4]. To identify plant diseases, 
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farmers often turn to pathologists or consult their personal resources [5]. In fact, the considered time and 

technical knowledge can be very challenging for farmers. Therefore, the need for real-time and accurate 

recognition solution is crucial. 

Over the past few years, artificial intelligence (AI) has gained recognition as a valuable technology 

for tackling a variety of issues in agriculture, including disease detection and management [6]‒[8]. Deep 

learning algorithms, in particular, have proven highly effective in understanding intricate relationships and 

capturing essential features in real-world applications [9]‒[11]. Among these algorithms, as a powerful 

method for direct decision-making, convolutional neural networks (CNNs) have gained significant traction 

and object detection based on image analysis [12]‒[14]. These AI-driven models can analyze extensive  

data set, including images of plant leaves, to identify and classify diseases with high accuracy and efficiency. 

Several studies using methods of deep learning have been employed to identify diseases in plants.  

Li et al. [15] provides an extensive explanation of diverse deep learning techniques employed for visualizing 

various plant diseases and classifying them. The methods utilized in the study are evaluated using a range of 

performance metrics to assess their effectiveness. Sladojevic et al. [16] developed a deep convolutional 

model to identify 13 distinct types of plant diseases within healthy leaves, while successfully differentiating 

the leaves from their environment, achieving a mean accuracy of 96%. Cheng et al. [17] used deep residual 

learning in complex background to identify agricultural pests. They compared support vector machine and 

traditional back propagation neural networks by using pre-trained models ResNet and AlexNet. The best 

accuracy they achieved is 98.6% for 10 classes of crop pest images. Ozguven and Adem [18] proposed an 

updated architecture of faster region-convolutional neural network (R-CNN) for the automatic recognition of 

sugar beet leaf disease. The imaging-based model used changed CNN parameters to increase the success of 

faster R-CNN architecture. However, the classification was trained with 155 images and found to be 95.4%. 

SoyNet [19] proposed a deep learning-based CNN for soybean plan diseases detection, by subtracting 

complex background and extracts the leaf part. Their proposed model was compared with six pre-trained 

models namely ResNet-50, Dense121, XceptionNet, LeNet, GoogleLeNet and VGG19. They achieved 

identification accuracy of 98.14%. 

Powerful tools have emerged in the form of deep learning models for detecting and classifying 

tomato leaf diseases [20]‒[22], and among these models, residual neural network (ResNet) stands out as a 

prominent architecture. In this research [23], ResNet was compared against other CNN architectures for the 

recognition of nine different diseases and pests. The proposed model achieves an identification accuracy of 

82.53%. For classification performance, Zhang et al. [24] demonstrates that the ResNet architecture 

outperforms the others with performance metrics of 95.83% for AlexNet, 95.66% for GoogleNet, and 

96.51% for ResNet-50. This result is achieved using the stochastic gradient descent (SGD) optimizer.  

On other hand, transfer learning-based CNN improves deep neural networks by eliminating the need for 

extensive data mining and annotation. Thangaraj et al. [25] proposed a fine-tuning model using real-time 

images. The proposed model was fed to ResNet-50 and evaluated using Adam and SGD optimizers. 

Based on the literature review, it is observed that there is limited research in the real-time detection 

and identification of diseases in plant leaves. Most deep learning-based models are optimized for offline 

usage, making them unsuitable for real-time crop disease detection. Moreover, there is a lack of real-world 

datasets for training and testing models, the images datasets used by various authors in existing literature are 

designated for simulation and not for implementation in a real-world scenario. 

In this study, we propose a novel AI-driven method to detect and recognize tomato plant diseases. 

We aim to achieve higher accuracy using ResNet architecture under different optimizers. Our solution 

integrates a deep learning model into our platform, enabling both small and large-scale farmers to make 

informed decisions regarding fertilizer use to confront tomato diseases in their crops. The key contributions 

of this study are summarized below:  

− Develop and implement a transfer learning model for classifying and detecting tomato diseases using our 

private DeepLeafSet dataset which comprises a total of 18,159 images. A total of ten classes were 

distinguished, including a healthy tomato leaf class and nine tomato diseases: bacterial spot, curl virus, 

early blight, late blight, leaf mold, mosaic virus, septoria leaf, spider mites, and target spot. 

− Evaluate the performance of the proposed approach by utilizing both SGD and Adam optimizers for 

ResNet-50 model. We compare their performance and evaluate their respective impacts on convergence 

speed, stability and overall accuracy. 

The rest of this paper is organized as follows: the “Method” section presents the deep learning 

model for tomato plant disease detection, including the dataset utilized for both training and validation, the 

developed model architecture using ResNet-50, the training process, and the tuning parameters. The “Results 

and Discussion” section illustrates the experimental comparison between SGD and Adam optimizers, and 

reports the training and validation parameters. Finally, “Conclusions and Perspectives” section provides a 

summary of the study and offers suggestions for future work. 
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2. METHOD 

2.1.  The dataset 

The DeepLeafSet is the dataset used for training and validation of our deep learning model, 

consisting of 18,159 annotated tomato leaf images. These images were collected over a period of five months 

from various locations, including the experimental farms of DeepLeaf, Mohammed VI Polytechnic 

University (UM6P), and several private farms dedicated to tomato cultivation with greenhouses. In total,13 

greenhouses were involved in the image collection process. The tomato leaf images were captured from 

tomato plants at various stages of growth, ranging from young seedlings to mature plants. This intentional 

variation in the age of the tomatoes, as depicted in Table 1, aimed to diversify the dataset and account for the 

visual differences and disease progression that may occur at different growth stages. 

The disease categories in DeepLeafSet were carefully selected to represent common diseases found 

in tomato plants in Morocco and Africa. A total of ten classes were distinguished in our dataset as shown in 

Table 2, including a healthy tomato leaf class and nine tomato diseases. The primary objective of curating 

this comprehensive dataset was to facilitate the creation of a reliable and precise classification model for 

tomato plant diseases. Tomato plant diseases pose a significant pest problem, leading to substantial crop 

losses estimated at around 30% of production for farmers in Morocco and Africa [26]. By leveraging this 

dataset, our deep learning model seeks to offer an effective solution for early disease detection and 

intervention, thereby aiding farmers in mitigating losses and improving crop yields. 
 

 

Table 1. Age interval and its distribution in the DeepLeafSet dataset 
Age interval Percentage (%) Number of images 

55-60 days 20 3,632 

61-66 days 20 3,632 
67-72 days 20 3,632 

73-78 days 20 3,632 

79-84 days 20 3,631 
Total 100 18,159 

 

 

Table 2. Table of class names and diseases with total images in the DeepLeafSet dataset 
Disease class Class name Total images 

Bacterial tomato Tom__Bac 1,703 

Curl virus tomato Tom__CurlV 4,289 

Early tomato blight Tom__EarlBlig 1,918 
Healthy tomato Tom__Healt 2,273 

Late tomato blight Tom__LatBlig 1,528 

Leaf tomato mold Tom__LeaMol 1,263 
Mosaic tomato virus Tom__MosV 1,300 

Septoria tomato leaf Tom__SepLeaf 1,418 

Spider tomato mite Tom__SpidMite 1,342 
Target tomato spot Tom__TargSp 1,125 

Total  18,159 

 

 

2.1.1. Collection and annotation process 

The image collection process for DeepLeafSet was conducted by a team of five agronomy experts 

who used their smartphones to capture tomato leaf images. To prevent resolution degradation caused by 

image compression on messaging platforms, images were sent as documents through WhatsApp. Each team 

member was tasked with sending images of tomato leaves to our platform along with the corresponding 

disease label (e.g., tomato__early_blight). Automating the storage and labeling process of data collection, as 

shown in Figure 1, allowed us to focus on image acquisition, thereby maximizing the dataset's size and 

diversity. 

 

2.1.2. Dataset preparation 

Before using the dataset for training and validation, it was essential to preprocess and prepare the 

images to guarantee the deep learning model performances and efficiency. The images were subsequently 

adjusted to a consistent size (e.g., 224×224 pixels) to ensure compatibility with the input dimensions of the 

deep learning model. Additionally, data augmentation techniques, such as random rotations, flips, and 

zooming, were implemented to enhance the dataset’s diversity and boost the model’s capability to adapt to 

novel data. The following augmentation steps were performed, along with its respective parameters: 

− Zooming (scale range): Each image was randomly scaled by a factor between 0.8 and 1.2 once.  

− Flipping_H (horizontal flip): Every image was flipped horizontally with a probability of 50%. 

− Flipping_V (vertical flip): Every image was flipped vertically with the probability of 50%. 
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− Random rotations (angle range): Each image was randomly rotated by an angle between -45 degrees and 

+45 degrees once. 
After preprocessing the data set and applying data augmentation techniques, as illustrated in  

Table 3, the dataset was split into training and validation subsets following the standard practice of an 80% 

training and 20% validation split. The data splitting process involved randomly assigning each image to 

either the training set or the validation set. The training set, was used to train the deep learning model, which 

contained 80% of the images. The remaining 20% of the images were allocated for the validation set, which 

was used to evaluate the model's performance and assess its generalization capabilities on unseen data. By 

splitting the dataset into validation and training partitions, the model can be trained on a substantial portion of 

records while having an independent subset to measure its performance and detect any overfitting issues. 

This division allows for an objective evaluation of the model's accuracy, precision, recall, and other 

performance metrics. 
 

 

 
 

Figure 1. Annotated images examples from DeepLeafSet 
 

 

Table 3. Number of images per split 
Dataset split Number of images Percentage (%) 

Training 116,218 80 

Validation 29,054 20 

 

 

2.2.  Model architecture 

The model architecture chosen for the tomato plant disease detection task is the ResNet architecture, 

specifically ResNet-50. ResNet is a popular deep learning architecture recognized for its capacity to train 

very deep neural networks without suffering from the vanishing gradient problem. The primary innovation 

behind ResNet is the introduction of skip connections or shortcut connections, which enable the network to 

learn residual functions in relation to the inputs of the layers. This design enables the efficient training of 

deeper networks while maintaining accuracy. 

ResNet-50 stands out as a variant of the original ResNet architecture, consisting of 50 layers that 

include activation layers, batch normalization layers, convolutional layers, and pooling layers. The  

ResNet-50 architecture revolutionized image recognition tasks by introducing residual connections, which 

allow for the training of deeper networks. These residual connections enable gradients to propagate 

effectively during backpropagation, thereby alleviating the vanishing gradient problem associated with deep 

networks. The ResNet-50 architecture has gained widespread use as a framework in numerous computer 

vision applications, showcasing its effectiveness and impact in the field. 

The diagram provided in Figure 2 illustrates the sequential flow of information within the  

ResNet-50 model in our approach. Beginning with an input image of a leaf, a series of layers is performed in 

order to process the information, including the first input layer, followed by convolutional layers (con2d), 
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and subsequently passes through additional layers (e.g. batch normalization and activation layers).  

This intricate architecture allows the model to capture and comprehend complex representations of plant 

diseases, ultimately leading to more precise and reliable disease classification. By automating the detection 

process, our deep learning model offers a valuable tool for farmers, agronomists, and researchers, enabling 

them to quickly and accurately diagnose plant diseases, take timely preventive measures, and ensure optimal 

crop health. 
 

 

 
 

Figure 2. The ResNet-50 model layers architecture 

 

 

2.2.1. Training process 

The training procedure for the ResNet-50 model involves the following steps: 

− Transfer learning: Instead of training the model from scratch, we use transfer learning to utilize the 

knowledge acquired from pre-training the ResNet-50 model on a large-scale dataset, such as ImageNet 

[27]. This approach helps reduces the training time and improve the performance of the model. 

− Fine-tuning: The tomato leaf dataset is fine-tuned with ResNet-50 pre-trained model. The model's 

weights are updated using backpropagation with a binary cross randomness loss function with the SGD 

optimization algorithm, a batch size of 32 and 0.001 learning rate. we trained our model with 10 epochs. 

− Model evaluation: After training, the validation was performed for model evaluation employing standard 

evaluation metrics such as precision, accuracy, F1 score and recall. 

The ResNet-50 architecture, combined with the transfer learning approach and fine-tuning, enables the 

development of an efficient and accurate deep learning model for detecting tomato plant diseases. This model 

holds the promise of greatly enhancing disease detection and management in the agricultural sector. 

 

2.2.2. Tuning parameters and metrics 

Tuning parameters, also known as hyperparameters, are the adjustable settings of the training 

process that can influence the deep learning model performances. Selecting the appropriate values for these 

parameters is crucial to ensure the model's convergence, generalization, and overall performance. In this part, 

we discuss the key tuning parameters used in training the ResNet-50 model for tomato plant disease detection 

and the metrics employed to evaluate the model's performance. The following are the key tuning parameters 

used in training the ResNet-50 model on the tomato leaf dataset: 

− Batch size: the number of images used in each iteration of the training process. In our training, we used a 

batch size of 32. The choice of batch size can impact both the training speed and the final model's quality. 

− Learning rate: the step size used to update the neural network weights during the training. A 0.001 

learning rate was used. the speed at which the model masters the data is determined by the learning rate 

and must be chosen carefully to balance convergence speed and stability. 

− Number of epochs: the complete dataset is fed into the model a total number of epochs (e.g., times) 

throughout the training process. We trained the model for 10 epochs. The choice of the number of 
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epochs can influence the performance of the model to generalize to new data, an excessive number of 

epochs may cause overfitting, whereas insufficient epochs can lead to underfitting. 

− Optimization algorithm: we aimed to compare the performance of both SGD and Adam optimizers in the 

context of tomato disease detection. We trained our ResNet-50 model using both optimization algorithms 

and then evaluated their respective impacts on convergence speed, stability, and overall accuracy. 

 

2.2.3. Method and environment of training 

To train our ResNet-50 model on the DeepLeafSet dataset, we utilized Azure machine learning, 

which provided a powerful and scalable platform for deep learning tasks. The training process leveraged 

compute instances equipped with Nvidia Tesla GPU clusters with various specifications, as depicted in  

Table 4. These specifications enabled efficient processing and accelerated model training. 

The DeepLeafSet dataset, consisting of a diverse collection of leaf images, was stored in Azure 

storage blob. This cloud-based storage solution offered robust and reliable data management capabilities, 

ensuring easy access and seamless integration with the training pipeline. Furthermore, utilizing Azure’s 

scalable infrastructure allowed for efficient handling of large datasets, facilitating continuous updates and 

improvements to the dataset as new images were collected. 

Considering the capabilities of Azure machine learning studio, we implemented the ResNet-50 

architecture well-recognized for its outstanding effectiveness in tasks related to image classification. 

Throughout the training process, we monitored the performance of the model assessed through evaluation 

metrics including precision, F1-score, accuracy, and recall. This allowed us to assess the model's progress, 

identify potential areas for improvement, and fine-tune the hyperparameters to optimize its performance. 
 

 

Table 4. Specifications of compute instance used to train our ResNet-50 model 
Specification Value 

GPU Model Nvidia Tesla V100 
GPU Memory Up to 32 GB or 16 GB HBM2 

CUDA Cores 5,120 CUDA cores 

Memory Bandwidth Up to 900 GB/s 
Tensor Cores 640 Tensor Cores 

 

 

2.2.4. Evaluation metrics 

To assess the effectiveness of our trained ResNet-50 model using both SGD and Adam optimizers, 

we employed common evaluation metrics commonly used for binary classification tasks. These metrics 

include precision, recall, and F1-score. They are defined as follows: 

− Precision: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  

 

True positives indicate the count of instances accurately identified as positive (i.e., correctly classified as a 

tomato plant disease), while false positives denote the count of instances inaccurately classified as positive 

(i.e., misclassified as a tomato plant disease). Precision measures the proportion of instances classified as 

positive (i.e., tomato plant diseases) that are truly positive (i.e., true positives) out of all instances classified as 

positive. 

− Recall: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

 

True positives refer to the count of instances accurately identified as positive (i.e., correctly classified as a 

Tomato plant disease), while false negatives indicate the count of instances erroneously classified as negative 

(i.e., misclassified as a different class or not classified as one of the tomato plant diseases). Recall, commonly 

known as the true positive rate or sensitivity, assesses the ratio of positive instances (i.e., tomato plant 

diseases) that are correctly classified as positive (i.e., true positives) from all true positive instances. 

− F1-score: 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
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The harmonic mean of precision and recall is presented by the F1 score, which provides an equitable 

assessment of the model’s performance by equally considering both metrics. The F1-score use a range from  

0 to 1, where a better performance is known with higher values. A score of 1 reflects perfect recall and 

precision, while a score of 0 demonstrates that the model has not achieved any correct predictions. 
 

 

3. RESULTS AND DISCUSSION 

In this study, two optimizers based on the ResNet architecture were implemented in our proposed 

transfer learning-based model, utilizing residual blocks with skip connections. These optimizers employ different 

optimization methods that had an impact on their performance and complexity. The SGD optimizer updates the 

model's parameters by computing gradients based on a limited sample of the training data. The indicated 

optimization method is well-known for its simplicity and effectiveness in training deep networks. However, 

Adam optimizer is a variant of SGD that adapts the learning rate for each parameter individually. It is particularly 

favored for its ability to handle sparse gradients and demonstrate strong performance on large-scale datasets. 

While both optimizers contribute to the successful training of ResNet-50, they differ in terms of learning rate 

adaptation and update mechanisms. SGD is a straightforward and widely used optimization method, whereas 

Adam offers adaptability and efficiency in terms of learning rate adjustment. The choice between the two 

optimizers is contingent upon the specific requirements of the task and the characteristics of the dataset. 

To compare the performance of the proposed model trained with both SGD and Adam optimizers, 

several metrics were evaluated. These metrics offer insights into the models' accuracy and loss during the 

training process. Figure 3 presents the training accuracy and loss curves across different epochs. It can be 

observed that the SGD optimizer achieves a higher accuracy compared to the Adam optimizer, indicating its 

effectiveness in improving the model's performance over time. 

The results reveal that the SGD optimizer consistently outperforms the Adam optimizer across 

various metrics and classes in our ResNet-50 model (see Table 5 for the comparison). Specifically, the SGD 

optimizer achieves higher F1-Score, precision, and recall values for most classes, as illustrated in  

Figures 4 and 5 indicating its superior ability to make accurate predictions and capture meaningful patterns in 

the dataset. This comparison highlights the effectiveness of the SGD optimizer in training the ResNet-50 

model and its potential to achieve better performance in our plant disease classification tasks. 
 

 

 
 

Figure 3. The training accuracy and loss per number of epochs comparison between Adam and SGD 
 

 

Table 5. Comparison of evaluation metrics for the proposed model using adam and SGD optimizers 
Class Precision 

(ADAM) 

Precision 

(SGD) 

Recall 

(ADAM) 

Recall 

(SGD) 

F1-Score 

(ADAM) 

F1-Score 

(SGD) 

Support 

(ADAM) 

Support 

(SGD) 

tomato_bacterial 0.86 0.97 0.92 1.00 0.89 0.99 425 425 
tomato_curl_virus 0.93 1.00 0.89 0.99 0.91 0.99 1071 1071 

tomato_eb 0.48 0.64 0.82 0.98 0.61 0.78 200 200 

tomato_healthy 0.92 0.99 0.94 1.00 0.93 1.00 318 318 

tomato_lb 0.82 0.98 0.62 0.73 0.70 0.84 381 381 

tomato_leaf_mold 0.95 1.00 0.89 0.98 0.92 0.99 190 190 

tomato_mosac_virus 0.96 1.00 0.72 0.89 0.82 0.94 74 74 

tomato_septoria_leaf 0.89 0.99 0.91 0.99 0.90 0.99 354 354 

tomato_spider_mite 0.90 0.98 0.92 0.99 0.91 0.98 335 335 
tomato_targ_spot 0.92 0.99 0.90 0.99 0.91 0.99 280 280 
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Figure 4. Precision and F1-score evaluation metric comparison of ResNet-50 model with SGD and  

Adam optimizers 
 

 

 
 

Figure 5. Recall evaluation metric comparison of ResNet-50 model with SGD and Adam optimizers 
 
 

Additionally, the confusion matrix of the model with Figure 6(a) the SGD optimizer and Figure 6(b) 

the Adam optimizer, as depicted in Figure 6 shows the classification results for each class. Each cell in the 

matrix represents the model's prediction accuracy for a given true label and predicted label. Correct 
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classifications are represented by the diagonal elements, whereas the off-diagonal elements indicate 

misclassifications. As a result, the SGD model in Figure 6(a) showed fewer misclassifications compared to 

the Adam model in Figure 6(b). 

In conclusion, we observed that in our comparison, the SGD optimizer consistently generated higher 

recall, precision, and F1-scores across most classes compared to the Adam optimizer. Our experiments 

demonstrate that while both optimizers can achieve high accuracy in tomato plant disease detection,  

ResNet-50 with the SGD optimizer showed superior performance. It achieves high F1 score of 0.96 with an 

accuracy of 97%, representing its effectiveness in detecting tomato plant diseases. The real-time 

classification capability of this model will allow farmers to promptly identify diseased tomato plants and take 

immediate action, thereby mitigating the impact of diseases on crop yields. 
 

 

  
(a) (b) 

 

Figure 6. Confusion matrices of the model with (a) the SGD optimizer and (b) the Adam optimizer 
 

 

4. CONCLUSION 

This study presents a transfer learning-based model designed to detect and manage tomato plant 

diseases, which significantly impact tomato production in Morocco and Africa. We collected a dataset of 

18,159 annotated tomato leaf images and trained a deep learning model using transfer learning with the 

ResNet-50 architecture based on the SGD optimizer. The model achieved high F1 score of 0.96 with an 

accuracy of 97%, demonstrating its effectiveness in disease detection compared to the Adam optimizer. 

Future directions include expanding the model to detect and manage other crop diseases or pests, offering a 

comprehensive solution for agriculture disease management. Integrating additional data sources, such as 

weather data or soil condition information, could further enhance the accuracy and effectiveness of our 

approach. Building on the existing work, future research may also explore the development of a user-friendly 

chatbot interface. Incorporating the deep learning model into a chatbot could simplify access to technology 

for farmers, potentially promoting widespread adoption within the farming community. 
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