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 This research investigates the recognition of geometric dimensioning and 

tolerancing (GD&T) symbols using a deep learning model for object 

detection. GD&T, playing a pivotal role in engineering and manufacturing, 

provides essential specifications for product design and production. Manual 

processes for GD&T are often time-consuming and error prone. The study 

demonstrates outstanding accuracy in automating GD&T symbol recognition 

in engineering applications using YOLOv8. A carefully curated dataset, 

encompassing a wide range of GD&T symbols, was employed for training 

and evaluating the model. The YOLOv8 architecture, renowned for its 

robust performance, was meticulously fine-tuned to cater to the specific 

requirements of GD&T symbol detection. This research not only addresses 

the challenges in manual GD&T processes but also showcases practical 

implications for improved quality control and streamlined engineering 

workflows. By automating GD&T symbol recognition, this study contributes 

to the efficiency and precision crucial in the engineering and manufacturing 

domains.  
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1. INTRODUCTION 

Geometric dimensioning and tolerancing (GD&T) is a standardized language of symbols and 

notations used to communicate the design intent for the shape, size, and form of manufactured parts. It plays 

a pivotal role in engineering and manufacturing by establishing clear and unambiguous specifications for 

product quality and functionality [1]. GD&T symbols, embedded in engineering drawings, convey crucial 

information about the permissible variations in a product's dimensions, ensuring that manufactured 

components meet the design requirements and function as intended. The symbols and notations of GD&T are 

defined in the American Society of Mechanical Engineers (ASME) Y14.5 standard. ASME Y14.5 is the most 

widely used GD&T standard in the world [2]. The purpose of GD&T is to ensure that manufactured parts 

meet the design intent of the engineer. GD&T does this by defining the permissible variations in the 

geometry of a part. These variations are called tolerances. Tolerances are specified on engineering drawings 

using a combination of symbols and notations. GD&T symbols are used to specify the form, dimension, and 

tolerance of a feature. The form of a feature is its shape. The dimension of a feature is its size. The tolerance 

of a feature is the amount of variation that is allowed in the form, dimension, or both of a feature. There are 

14 basic GD&T symbols. These symbols are used to specify the form, dimension, and tolerance of features. 

The 14 basic GD&T symbols are show in Table 1. 

https://creativecommons.org/licenses/by-sa/4.0/
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Despite its significance, manual detection and classification of GD&T symbols pose several 

challenges. The process is often time-consuming, labour-intensive, and prone to human error. Manual 

inspection can lead to inconsistencies in interpretation, inconsistencies in the application of GD&T 

principles, and ultimately, product defects [3]. Moreover, the increasing complexity of engineering designs 

and the growing volume of technical documentation further exacerbate the limitations of manual GD&T 

symbol recognition. 
 

 

Table 1. Standard ASME GD&T symbols 
Symbol Characteristics Category 

 

Straightness Form 

 

Flatness 

 

Circulality 

 

Cylindrycity 

 

Profile of a line Profile 

 

Profile of surface 

 

Angularity Orientation 

 

Perpendycularity 

 

Parallelism 

 

Position Location 

 

Concentricity 

 

Symmetry 

 

Circular runout Runout 

 

Total runout 

 

 

In light of these challenges, this research aims to explore the application of deep learning 

techniques, specifically focusing on YOLOv8, for the automated detection and classification of GD&T 

symbols. Deep learning algorithms have demonstrated remarkable capabilities in pattern recognition, image 

classification, and object detection, making them well-suited for automating the task of GD&T symbol 

recognition [4]. By leveraging deep learning models, we can achieve accurate, efficient, and scalable GD&T 

symbol identification, thereby enhancing quality control and streamlining engineering workflows. 

The paper is organized as follows: section 2 describes related work related to various deep learning 

models in engineering drawing context. Section 3 describes the proposed methodology. Section 4 describes 

implementation details. Section 5 elaborates results and discussions. Section 6 concludes the paper. 
 

 

2. RELATED WORK 

The automated processing of engineering drawings are challenging as it relies on the precise 

detection and classification of symbols embedded within these documents. Conventional symbol recognition 

approaches primarily focus on detecting symbols but fail to infer their orientation. This limitation can lead to 

inaccuracies in interpreting design intent and translating drawings into manufacturing instructions. Despite 

this fact very little contribution has been witnessed for developing deep learning models for engineering 

drawing processing [5]. This section is providing a brief review of work in use of deep learning models for 

engineering drawing processing; however very little contribution is witnessed for the GD&T symbol 

detection and classification. Lin et al. [6] address challenges in interpreting diverse engineering drawings by 

introducing a recognition system using GD&T. Leveraging PyTorch, OpenCV, and YOLO, the system 

achieves notable accuracy rates, including 85% for view detection and 80% for text and symbol recognition. 
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The integration of GD&T and deep learning offers a practical solution, storing results directly in a database 

for efficient verification and error prevention. To address this challenge, researchers have explored keypoint-

based deep learning approaches for symbol detection and orientation estimation. Faltin et al. [7] compared 

three keypoint-based models: keypoint region-based convolution neural network (R-CNN), YOLOv7-Pose, 

and a custom two-stage approach. Their experimental results demonstrated that keypoint-based networks 

outperformed traditional detection-only methods, achieving improved accuracy in both symbol detection and 

orientation estimation. In addition to symbol recognition, deep learning has also demonstrated its potential in 

recognizing line objects and flow arrows in piping and instrumentation diagrams (P&IDs). Moon et al. [8] 

proposed a deep learning-based method for recognizing lines and flow arrows in image-format P&IDs. Their 

method consists of three steps: preprocessing, detection, and post-processing. The preprocessing step 

removes the outer border and title box from the diagram. The detection step employs a deep learning model 

to identify continuous lines, line signs, and flow arrows. The post-processing step adjusts line types based on 

the detected line signs and merges recognized lines with flow arrows. Experiments demonstrated that the 

proposed method achieved high recognition performance, with an average precision of 96.14% and an 

average recall of 89.59%. Toro et al. [9] introduce the "eDOCr" tool, emphasizing optical character 

recognition (OCR) for automation in production quality control. The tool demonstrates impressive precision, 

recall, and character error rate, providing an effective solution for seamless integration between engineering 

drawings and quality control processes. Specifically, the tool achieves 90% precision and recall in detection, 

an F1-score of 94% in recognition, and a character error rate of 8%. Bickel et al. [10] address the automated 

recognition of symbols in principle sketches, employing deep learning networks for detection. The innovative 

methodology involves generating diverse training data, allowing for effective recognition in early phases of 

product development, offering potential cost and time savings. Unfortunately, specific numerical results for 

the recognition accuracy are not explicitly provided in the paper. 

Elyan et al. [11] contribute by presenting advanced methods for symbol detection and classification, 

incorporating bounding-box detection and deep generative adversarial neural networks (GANs). Their 

approach demonstrates high accuracy in symbol recognition and classification, promising advancements in 

diverse applications across industries, including oil and gas, construction, and engineering. The reported 

results include a bounding-box detection accuracy of more than 94% and improved symbol classification 

with limited training examples using GAN-based methods. Collectively, these papers underscore the growing 

importance of deep learning in automating the interpretation and analysis of engineering drawings, paving 

the way for improved efficiency and accuracy in various industrial processes [12]–[17]. These advancements 

in deep learning have opened up new avenues for automated symbol recognition in engineering drawings. 

Keypoint-based deep learning approaches offer promising solutions for accurate symbol detection and 

orientation estimation, while deep learning-based methods for line and flow arrow recognition have the 

potential to streamline the automation of P&IDs. 

 

 

3. METHODOLOGY 

GD&T symbols have connectivity information (lines) and some form of annotation (text). However, 

no public dataset is available for evaluation purposes. Subsection 3.1 introduces a proposed approach for  

end-to-end symbols recognition from GD&T drawings. The subsequent subsection will discuss in detail the 

dataset acquisition and its preprocessing followed by methodology adopted for fine tuning YOLO model. 

 

3.1.  Data acquisition and pre-processing 

A comprehensive dataset of engineering drawings was collected from various industrial partners. 

The dataset consisted of a diverse range of drawings, encompassing various engineering disciplines and 

symbol types. To ensure the robustness of the model, the dataset was carefully curated to include a wide 

range of symbol variations, including different sizes, orientations, and lighting conditions. Before feeding the 

data into the deep learning models, it was essential to perform pre-processing steps to enhance its quality and 

consistency. This involved: 

− Image normalization: normalizing the images to a standard size and color space ensured uniformity and 

facilitated better feature extraction. The images were resized to a resolution of 1024×768 pixels for 

optimal performance. 

− Noise reduction: applying image filtering techniques removed unwanted noise and artifacts from the 

drawings, improving symbol visibility and reducing potential errors during recognition [18]. 

 

3.2.  Challenges in earlier approaches 

In the initial stages of our research, we explored the use of the sliding window approach for object 

detection [19]. However, this approach proved to be extremely slow and inefficient, especially when dealing 

with large and complex images containing multiple objects. We then transitioned to a CNN-based model, 
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hoping to improve detection accuracy. However, CNNs are primarily designed for single object classification 

tasks, and we encountered limitations in detecting multiple objects simultaneously within an image. This was 

particularly challenging for our task, as engineering drawings often contain multiple objects of interest, 

including feature control frames, symbols, tolerance values, and datums. 
 

3.3.  Addressing challenges with YOLOv8 

To overcome the limitations of previous approaches, we opted for the YOLOv8 object detection 

model. YOLOv8 is specifically designed for real-time object detection [20] and can handle multiple objects 

simultaneously within an image [21]. Its ability to predict bounding boxes and class probabilities for multiple 

objects made it well-suited for our task. Despite the effectiveness of YOLOv8, we still encountered 

challenges in accurately classifying symbols. This was particularly evident for symbols with similar 

appearances, such as the GD&T symbol 'position'. The model tended to misclassify similar symbols, leading 

to inaccurate detection results. 
 

3.4.  Overcoming symbol classification challenges with specialized models 

To address the symbol classification challenges, we employed a multi-stage approach using three 

separate YOLOv8 models, each dedicated to a specific category of objects: 

− Feature control frame detection: the first YOLOv8 model was trained to identify and localize feature 

control frames (FCFs) within the engineering drawings. This model was trained over 300 instances of 

feature control frames. 

− Symbol detection inside FCFs: the second YOLOv8 model was tasked with detecting symbols, 

tolerance values, and datums within the FCFs identified by the first model. This model was trained over 

350 instances of symbols. 

− Symbol type classification: the third YOLOv8 model was responsible for classifying the symbols 

detected by the second model. This model was trained on a dataset of images containing various types 

of GD&T symbols. The model was trained in over 7 symbol types (perpendicularity, surface profile, 

position, flatness, maximum material condition, run out, and parallelism) of 300 instances. 

By utilizing specialized models for each object category, we were able to significantly improve the accuracy 

of symbol classification. This multi-stage approach allowed for focused processing of each object type, 

leading to reduced misclassifications, and enhanced overall detection performance. 
 

3.5.  Addressing challenges with low-resolution images 

Due to the relatively low resolution of some of the FCFs, we found that the second and third 

YOLOv8 models had difficulty extracting features from the cropped images. This is because the low 

resolution of the FCFs resulted in a loss of fine-grained details that are crucial for accurate symbol detection 

and classification. To address this issue, we implemented a pre-processing step where the cropped FCF 

images were pasted onto a white 640×640 pixels image before being passed to the respective models.  

This simple modification significantly improved the feature extraction capabilities of the models and 

ultimately enhanced the overall accuracy of symbol recognition. The white background provided a more 

uniform canvas for the models to analyze, allowing them to better differentiate between the symbols and their 

surroundings. Additionally, the larger image size provided more context for the models to make informed 

decisions about symbol detection and classification. This straightforward technique effectively addressed the 

challenges posed by low-resolution FCFs and contributed to the overall success of our multi-stage YOLOv8 

approach for symbol recognition in engineering drawings. Figure 1 illustrates FCF for enhanced feature 

recognition whereas Figure 2 illustrates symbol extraction from enhanced feature. 
 

 

 
 

Figure 1. Preprocessing feature control frames for 

enhanced feature recognition 

(Bounding box enclosed inside an empty canvas of 

640×640) 

 
 

Figure 2. Preprocessing symbols for enhanced 

symbol classification 

(Bounding box enclosed inside an empty canvas of 

640×640) 
 

 

3.6.  Tolerance value extraction using easy optical character recognition 

To accurately extract tolerance values from the detected symbols, we employed the OCR [22], [23] 

with EasyOCR open-source OCR library. EasyOCR is a lightweight and versatile OCR tool that can handle a 

wide range of font styles, sizes, and orientations. We utilized the pre-trained model provided by EasyOCR 
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for our task. This approach eliminated the need for training a custom OCR model, saving time and 

computational resources. EasyOCR's ability to handle diverse font styles and orientations ensured that 

tolerance values were accurately extracted from a variety of engineering drawings. 

 

 

4. EXPERIMENTAL RESULTS 

This work is the first attempt for classifying GD&T symbols, so the experiments were carried out 

with different programming environments viz. Jupieter and Spyder for python 3.7 version and i7 machine. 

The use of Jupiter and Spyder required lot of time for training the neurl network hence the work was carried 

out on cloud-based infrastructure environment which is Google Colab. The details of the same are given in 

following section. 

 

4.1.  Training specification 

All three YOLOv8 models were trained on Google Colab T4 GPUs, each equipped with an NVIDIA 

Tesla T4 GPU with 2,560 CUDA cores and 16 GB GDDR6 memory. The training process for each model 

utilized a batch size of 16 and an Adam optimizer with a learning rate of 0.001. The models were trained for 

1,000, 500, and 500 epochs. 

 

4.2.  Model performance 

The YOLOv8 models demonstrate state-of-the-art performance in real-time object detection, 

achieving high accuracy and fast inference speeds. The performance of the YOLOv8 models of the proposed 

work was evaluated using standard object detection metrics, including precision (P), recall (R), mean average 

precision (mAP)-50, and mAP50-95 [24]. These metrics were calculated (Table 2) on a separate test dataset 

that was not used during the training process, ensuring an unbiased evaluation of the models' generalization 

ability. 

 

4.2.1. Model 1: feature control frame detection 

To effectively detect FCFs within engineering drawings, we trained the initial YOLOv8 model on a 

dataset of 300 FCF instances. Utilizing an 80-20% split for training and validation data, we trained the model 

for 1,000 epochs. This resulted in a training time of approximately 3.78 hours. Figure 3 illustreates feature 

control frame detection by YOLO model for the test data. Figure 4 provides different curves providing details 

of training and validation loss. It also provides the metric values of precision and recall graphically. 

 

 

Table 2. Feature control frame detection performance metrics for FCF detection 
Metric Value 

Precision (P) 0.895 
Recall (R) 0.945 

mAP50 0.913 

mAP50-95 0.856 

 

 

 
 

Figure 3. Feature control frames detection results by YOLO 
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Number of epochs 

 

Figure 4. Feature control frames training curves 
 

 

4.2.2. Model 2: feature detection within feature control frames 

To detect features (symbols, tolerances, and datums) within the detected FCFs, we trained the 

second YOLOv8 model on a dataset of 350 instances. Utilizing an 80-20% split for training and validation 

data, we trained the model for 500 epochs (Table 3). This resulted in a training time of approximately  

1,357 hours. Figure 5 illustreates feature viz. symbol, tolerance, and datum detection by YOLO model for the 

test data. Figure 6 provides different curves providing details of training and validation loss. It also provides 

the metric values of precision and recall graphically. 
 

 

Table 3. Feature detection performance metrics within FCF 
Metric Value 

Precision (P) 0.905 

Recall (R) 0.916 
mAP50 0.91 

mAP50-95 0.706 

 

 

   
 

Figure 5. Feature (symbol, tolerance, datum) detection results 
 

 

 
Number of epochs 

 

Figure 6. Feature (symbol, tolerance, datum) training curves 
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4.2.3. Model 3: symbol type classification 

To classify the detected symbols into specific types (e.g., perpendicularity, surface profile, position, 

flatness, maximum material condition, run out, and parallelism), we trained the third YOLOv8 model on a 

dataset of 300 instances. Employing an 80-20% split for training and validation data, the model was trained 

for 500 epochs (Table 4). This resulted in a training time of approximately 1.329 hours. Figure 7 illustrates 

symbol classification by YOLO model for the test data. Figure 8 provides different curves providing details 

of training and validation loss. It also provides the metric values of precision and recall graphically. Figure 9 

shows the results of text extraction using EasyOCR. 

 

 

Table 4. Feature detection performance metrics for symbol type classification 
Metric Value 

Precision (P) 0.945 

Recall (R) 0.999 
mAP50 0.995 

mAP50-95 0.838 

 

 

    
 

Figure 7. Symbol type classification results 

 

 

 
Number of epochs 

 

Figure 8. Symbol type training curves 

 

 

  
 

Figure 9. Results of text extraction using EasyOCR 
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5. DISCUSSION 

In this study, YOLOV8 was employed to explore its potential use in important applications of 

mechanical industry like identification of GD&T symbols on complex part drawings. The work reported in 

this paper was focused on seven (out of 14) ASME standard GD&T symbols [25]. The dataset of engineering 

part grawing was carefully curated through image normalization and noise reduction. A multi-stage approach 

using three separate YOLOv8 models was executed whwrein 1st stage consisting of feature control frame 

detection, then symbol detection inside FCFs and in 3rd stage classification of symbol type. Further,  

pre-trained model provided by EasyOCR was deployed for extract tolerance values accurately from the 

detected GD&T symbols from a variety of engineering drawings. It is important to note that, the pre-

processing task is quite important in order to enhance the model’s performance. 

Three YOLOv8 models were trained. The initial YOLOv8 model could detect FCFs within 

engineering drawings and the 2nd YOLOv8 model could detect features (symbols, tolerances, and datums) 

within the detected FCFs. 3rd trained YOLOv8 model could classify the detected symbols into specific 

category. The experimental results demonstrate that the YOLOv8 models are effective and accurate for 

symbol recognition in engineering drawings. The models achieved high precision, recall, and mAP values 

across all symbol types. The multi-stage approach, utilizing specialized models for each object category, 

proved to be effective in improving the overall accuracy of symbol recognition (Table 5). The performance 

metric validates the potential of YOLOv8 as a reliable tool for automating the symbol identification process 

in engineering workflows, reducing manual effort and improving efficiency.  

 

 

Table 5. Precision, recall, and mAP values all symbol types 

Symbol type 
No. of training 

symbols 

No. of testing 

symbols 
Precision (P) Recall (R) mAP50 mAP50-95 

Perpendicularity 90 18 0.945 0.999 0.995 0.838 
Surface profile 60 12 0.912 0.961 0.947 0.802 

Position 75 15 0.972 0.953 0.975 0.739 

Flatness 45 9 0.938 0.942 0.935 0.781 
Maximum material condition 12 2 0.964 0.937 0.937 0.769 

Run out 5 1 0.901 0.952 0.924 0.718 

Parallelism 15 3 0.982 0.964 0.987 0.824 

 

 

6. CONCLUSION 

In conclusion, the multi-stage YOLOv8 object detection approach presented in this study 

demonstrates a promising approach for symbol recognition in engineering drawings. The models achieved 

high accuracy, outperformed previous methods, and proved robust to symbol variations. Further research 

should focus on refining symbol classification, improving tolerance value extraction, and expanding the 

training dataset using domain-specific data augmentation techniques to further enhance the performance of 

symbol recognition in engineering drawings. Future research directions in automated symbol recognition 

may focus on enhancing the robustness of deep learning models to handle variations in symbol appearance, 

lighting conditions, and image quality. Additionally, developing algorithms capable of accurately detecting 

and classifying complex combinations of symbols, including overlapping symbols and symbols with intricate 

geometries, would further advance the field. Finally, investigating techniques to achieve real-time symbol 

recognition on large-scale datasets would address the computational challenges associated with processing 

extensive volumes of engineering drawings. Future work could explore transfer learning and domain-specific 

augmentations to further enhance performance, as well as integrating the model into broader systems for  

end-to-end automation in engineering design. 
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