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 The generation of sufficient training data that is accurately labelled for a 

deep neural network involves a significant amount of effort and frequently 

constitutes a bottleneck in the implementation process. For the purpose of 

this research, we are training a neural network model to perform instance 

segmentation and classification of crop seeds for various rice cultivars. 

Synthetically constructed dataset is used here. The concept of domain 

randomization, which offers a productive alternative to the laborious process 

of data annotation, serves as the basis for our methodology. We make use of 

the domain randomization technique in order to produce synthetic data, and 

the mask region-based convolutional neural network (Mask R-CNN) 

architecture is utilized in order to train our neural network models. A 

cultivar name is used to designate the seeds, and they are differentiated from 

one another using colors that are comparable to those used in the actual 

dataset of paddy cultivars. Our mission focuses on the identification and 

categorization of rice paddy varieties within automatically generated 

photographs. Farmers are able to accurately sort crop seeds from a variety of 

rice cultivars with the use of this approach, which is particularly useful for 

phenotyping and optimizing yields in laboratory settings.  
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1. INTRODUCTION 

Deep learning has gained popularity in both the scientific and industrial spheres. Deep-learning 

methods, such as convolutional neural networks (CNNs) [1], are extensively employed in computer vision for 

tasks like image classification, object detection, and semantic as well as instance segmentation [2]–[4]. Using 

these methods has also affected agriculture. According to Kamilaris and Boldú [5], image-based phenotyping 

detects weeds, agricultural diseases, and fruits. Deep learning complements the sector's [6] abundant  

high-context data. However, deep learning requires considerable labelled data preparation. As of 2012, 

ImageNet has 1.2 million training images and 150,000 validation/test images with hand categorization [7]. 

328,000 pictures with 2.5 million tagged objects from 91 categories were used for the 2014 common objects 

in context (COCO) object detection task [8]. This annotating the dataset order may be challenging for a 

researcher. Agriculture research reveals that a grain head detection network may be trained with 52 photos 

https://creativecommons.org/licenses/by-sa/4.0/
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averaging 400 objects per image [9] and a crop stem detection network with 822 images [10]. These case 

studies demonstrate that ImageNet classification and COCO detection require more data than specialized 

work. While domain adaptation and active learning are used in plant/bio science applications to cut labor 

costs, researchers find annotating unpleasant because it's like running a marathon without a target [11]–[13]. 

The sim2real transfer, or learning from synthetic images, reduces manual annotations. Training data 

for plant image analysis was prepared similarly. Using synthetic plant models, Isokane et al. [14] predicted 

branching pattern, while several researchers [15], [16] generated realistic images from generated datasets 

using generative adversarial network (GAN). GAN-generated images were used to train a neural network for 

Arabidopsis leaf counting by Giuffrida et al. [17]. Similar to Arsenovic et al. [18] StyleGAN28 created plant 

disease classification training pictures. However, sim2real generates nearly limitless training data. To bridge 

the sim2real gap, domain randomization trains deep networks with enormous variants of synthetic images 

with randomly selected physical attributes. Domain randomization is related to data augmentation (e.g., 

randomly flipping and rotating photographs), but the synthetic environment can reflect variety under 

numerous scenarios, unlike genuine images. The conventional approach, as shown in Figure 1, involves 

manually labeling photos to create the training dataset. In contrast, our suggested method eliminates this step 

by utilizing a synthetic dataset for the crop seed instance segmentation model.  

 

 

 
 

Figure 1. Overview of the suggested training procedure for seed instance segmentation 

 

 

This approach involves training deep neural network models to perform the intricate task of instance 

segmentation, wherein individual seeds are classified and precisely localized within images. By leveraging 

synthetically generated datasets and randomization techniques, we can create a robust and versatile training 

environment for these models. The benefits of paddy seed classification using deep learning are manifolds. It 

not only significantly reduces the labor and time required for seed sorting but also ensures consistency and 

precision in the classification process. Moreover, it has the potential to improve crop management practices, 

as accurate cultivar-level seed data can inform decisions related to planting, fertilization, and pest control. 

Many studies have found that using seed width as a primary parameter increases rice output. The focus on 

morphological seed traits shows promise for improving agricultural productivity and promoting biological 

research. It is important to remember, nevertheless, that many earlier researches evaluated seed form using 

qualitative measures, Vernier callipers, or manually annotating images using image-processing tools. This 

phenotyping procedure may lead to quantification mistakes that differ amongst annotators and is often  

labor-intensive. 

 

 

2. RELATED WORKS 

Widiastuti et al. [19] suggests that rice seed quality is traditionally determined by human visual 

assessment. This method is highly subjective when comparing rice varieties with similar physical features. 

The research recommends flatbed scanning and digital image processing to assess rice seed purity to 

overcome this barrier. A field-based grow out test (GOT) validates rice seed shape analysis in this method. 

An analysis of the 14 morphological qualities found relationships in only six area, feret, minimum feret, 

aspect ratio, roundness, and solidity. Growing methods, harvesting, shipping, and post-harvest processing can 

affect seed purity. In addition to quality, seed certificate labels must clearly display seed purity values. The 
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proposed method [20] improves rice seed purity testing due to its speed and cost, grow-out test dependability. 

It can be difficult to distinguish between seeds with the same morphology during purity testing. Molecular 

approaches are being studied to differentiate such seeds as a treatment. The method in Adjemout et al. [21], 

employs machine learning and image processing algorithms to categories whole and broken rice by how well 

they meet national rice quality standards. The objects are classified using CNN technology. The image 

database used in this study contains self-collected photos of Loc Troi 20 breed rice forms. The photos were 

taken with a Sony Z1 smartphone's 20.7 MP camera. The experiments reveal that convolutional neural 

networks have 99.16% precision. Son et al. [22] introduced deep-rice, a new rice evaluation method. It 

extracts distinguishing attributes from rice photo perspectives using a multi-view CNN architecture. 

Additionally, it uses a redesigned SoftMax loss function to optimize CNN parameters. This created a new 

rice-rating algorithm under deep-rice, this solves rice grading problems using deep residual networks and 

deep learning. Wijerathna and Ranathunga [23] describes a computer vision and image processing system for 

rice seed production that automatically classifies rice types. Since rice seeds from different varieties might 

look identical in color, shape, and texture, categorizing them correctly is difficult. The study evaluated 

feature extraction methods to portray rice seeds [24]. They also tested powerful classifiers' performance with 

these extracted attributes to select the most trustworthy classifier. The research showed that their random 

forest (RF) categorization technique had an average accuracy rate of 90.54 [25], [26]. The availability of 

diverse cultivars in different places makes data collecting for this study difficult. 

 

 

3. METHOD 

Four steps are suggested in the model flow contributing to the development of a dependable 

mechanism for classifying seeds as shown in Figure 2. The initial paddy seed dataset comprises Gidda, Jaya, 

Jyothi, and M4 paddy seeds. The diverse range of data in this dataset enables our programme to accurately 

distinguish between different types of seeds. 

 

 

 
 

Figure 2. Proposed architecture of paddy seed classification 

 

 

Creating a comprehensive database of seed images is crucial for doing further data collecting. This pool 

serves as the framework for synthetic images, which are an essential tool for research purposes. We employ 

domain randomization to generate a set of 2,000 synthetic images, with 1,400 images designated for training 

purposes and 600 images reserved for testing. Subsequently, the artificial dataset is employed to train the model 

using the mask region-based convolutional neural network (Mask R-CNN) methodology. This stage enables our 

model to recognize and classify seeds, providing predictions that include the seed name, as well as the bounding 

box and overlay color. Ultimately, the model undergoes rigorous testing to assess its efficacy and suitability in 

real-world scenarios. The performance of the system can be evaluated in many contexts using assessment 

techniques that consider both synthetic and real-world datasets. The architecture of the Mask R-CNN model is 

illustrated in Figure 3. 

Region of interest align (RoIAlign) aims to extract a small, fixed-size feature map (like H×W) from 

each region of interest with sub-pixel accuracy, improving upon the older RoI pooling method by avoiding 
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quantization errors. In (1) is the representation of interpolated feature value at a specific location (𝑥, 𝑦) within 

the output feature map of the RoI.  

𝑓(𝑥, 𝑦) = ∑ 𝑔(𝑖, 𝑗). 𝑚𝑎𝑥(0, 1 −  |𝑥 − 𝑖|).𝑖,𝑗  𝑚𝑎𝑥(0, 1 − |𝑦 − 𝑖|)  (1) 

 

Where ∑  𝑖,𝑗 is a summation over the neighborhood of the point (𝑥, 𝑦) in the input feature map. And we consider 

the values of neighboring points (𝑖, 𝑗) in the original feature map. 𝑔(𝑖, 𝑗) is the feature value located at (𝑖, 𝑗) in 

the input feature map from which we are trying to extract the RoI. max(0, 1 − |𝑥 − 𝑖|) and 

max(0, 1 − |𝑦 − 𝑖|) calculate the bilinear interpolation weights. To determines the class as mentioned in (2), we 

use the SoftMax activation function with weight W and bias b. Here, ∆𝐵𝑜𝑥 is the predicted offsets in (3). 

 

𝐶𝑙𝑎𝑠𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊. 𝑥 + 𝑏) (2) 

 

∆𝐵𝑜𝑥 =  𝑊 ′. 𝑥 + 𝑏′ (3) 

 

Here, in (4) outlines a common pattern in deep learning, especially in tasks related to computer vision and 

pattern recognition, where x would be a multi-dimensional array (a tensor) representing the image data and M is 

the convoluted output through a series of CNN layers with a sigmoid activation function.  

 

𝑀 = 𝜎(𝐶𝑁𝑁(𝑥)) (4) 

 

 

 
 

Figure 3. Mask R-CNN model structure 

 

 

3.1.  Collecting paddy seeds for dataset 

We carefully collected a dataset of four paddy seed classes to segment crops. These classes 

represent Karnataka paddy seed varieties Gidda, Jaya, Jyothi, and M4. Our segmentation model will be 

trained on this carefully curated dataset to reliably identify and categories paddy seed classes in agricultural 

photography. 

 

3.2.  Synthetic image generation, preprocessing and training 

We applied cutting-edge domain randomization to optimize our Mask R-CNN model for paddy seed 

classification via synthetic picture synthesis. This method uses four rice seed types, a varied seed pool, and 

resizing the photographs to 1024×1024 pixels. Starting with this seed pool, we created a huge dataset of 

2,000 meticulously created synthetic photos for training and testing our model. Domain randomization is 

used to train a neural network classifier that equals the performance of current models trained just on actual 

datasets, demonstrating its versatility and efficacy. Our area of randomization experiment showed that 

subject variety is more relevant than secondary criteria like illumination and texturing in determining model 

correctness. Mask R-CNN with Keras or TensorFlow was employed for seed classification. The repository 
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setup network designs and loss functions were employed. Features were extracted using ResNet101, a 

residual network initialized using MS COCO dataset weights [27]. Next, we fine-tuned our counterfeit seed 

picture dataset using 10 training epochs with 100 steps per epoch and 0.001 learning rate. 1,400 images were 

used for training and among the 400 images from the 600 in the synthetic dataset, were used for validation 

and 200 for testing purposes. It is noteworthy that we avoided using picture enhancement when training. The 

artificial training data maintained a 1024×1024 picture size constantly. 

 

3.3.  Realtime dataset for model evaluation 

We put the Mask R-CNN model in inference mode and validated it using our validation dataset to 

appropriately assess its performance. A comprehensive validation approach lets us assess the model's 

accuracy and durability in real-world situations. We selected a unique dataset of 10 images of seeds from 4 

paddy rice kinds for real-world testing. Real-world pictures are always 1024×1204 pixels and follow standard 

proportions. Our real-world dataset has 20 images with 10 seeds each. Our system accurately predicts and 

labels each seed with its cultivar name and color-codes each seed variety in the photo. Our model's final test 

is this real-time dataset, which proves its efficacy and reliability in real-world situations. 

 

 

4. RESULTS AND DISCUSSIONS 

Understanding the features needed to successfully replicate real-world datasets is essential to 

understand synthetic data's value in deep learning. Our major foundation was that the neural network must 

learn to detect and separate randomly inserted or overlapping seeds into objects during seed instance 

segmentation. While designing our synthetic picture collection, we prioritized seed orientations over seed 

textures. The number of images in the training dataset and the resolution and variance of the seed images 

used to produce synthetic images were expected to significantly affect model performance. Providing exact 

bounding boxes and masks for each seed item allowed our model to correctly detect instances in the supplied 

photographs and segment each seed. To train machine learning models for computer vision applications like 

image categorization, object recognition, and picture synthesis, many synthetic images are needed. Synthetic 

images generated as in Figure 4 are created by a model or other means rather than using real-world data. 

 

 

 
 

Figure 4. Synthetic image generation using seed image pool 

 

 

Mask R-CNN segments paddy seeds precisely. The masks clearly identified photo seed regions. 

This shows how the model accurately displays all 4 types of seeds. Accuracy around 99%, for all seed 

varietals as shown in Figure 5. Form and size of seeds (grains) affect crop quality and production. Our 

workflow allows us to phenotype many seeds without considering orientation during image acquisition. 

 

 

 
 

Figure 5. Realtime samples and the visualized raw output showing the accuracy 
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A comprehensive analysis of training and validation losses was performed in the paddy 

classification study for Jaya, Gidda, Jyothi, and M4, using 1,176, 1,159, 1,157, and 1,152 samples distributed 

across an 80:20% train-test split. Train/box_loss, train/seg_loss, train/dfl_loss, train/cls_loss, and 

val/box_loss, val/seg_loss, val/dfl_loss, and val/cls_loss was evaluated. The results provided intriguing 

model performance insights. Our experimental investigation used Mask R-CNN as the fundamental method 

for picture segmentation, benchmarking it against a variety of segmentation models in Table 1. To evaluate 

each model's ability to segment complicated images, the structural similarity index measure (SSIM), 

accuracy, precision, recall, and F1-score were assessed. Mask R-CNN achieved an SSIM score of 0.90, 

demonstrating its ability to maintain structural similarity between segmented pictures and ground truth. Mask 

R-CNN surpassed its competitors with 0.95 accuracy, 0.94 precision, 0.94 recall, and 0.94 F1-score, 

demonstrating its resilience in detecting and outlining objects in images. 

 

 

Table 1. Comparative analysis of image segmentation models based on SSIM and other performance metrics 

presenting an overview of the performance of various segmentation models across multiple metrics such as 

SSIM, accuracy, precision, recall, and F1-score 
Model SSIM Accuracy Precision Recall F1-Score Remarks 

U-Net [28] 0.85 0.92 0.90 0.89 0.89 High precision in biomedical image segmentation. 

FCN [29]  0.83 0.90 0.88 0.87 0.87 Good for general purposes, versatile. 

DeepLab (v3+) [30] 0.88 0.93 0.91 0.92 0.91 Captures multiscale information effectively. 

PSPNet [31]  0.86 0.91 0.89 0.90 0.89 Effective global context information. 

SegNet [32] 0.82 0.89 0.87 0.86 0.86 Efficient, suitable for real-time applications. 
RefineNet [33]  0.87 0.92 0.90 0.91 0.90 High-resolution imagery, fine-grained segmentation. 

Enet [34]  0.80 0.88 0.85 0.84 0.84 Optimized for speed, real-time processing. 

HRNet [35]  0.89 0.94 0.92 0.93 0.92 Maintains high-resolution representations 

Mask R-CNN [36] 0.90 0.95 0.94 0.94 0.94 Superior for instance segmentation with high detail. 

 

 

Here, the Table 2 shows class correctness and Figure 6 illustrates confusion matrix. These results 

demonstrate Mask R-CNN's remarkable instance segmentation capabilities, especially in high-precision and 

detail settings. Our findings demonstrate Mask R-CNN's crucial role in image segmentation technologies, 

giving new insights for researchers and practitioners using deep learning for complicated image processing 

applications.  

 

 

Table 2. Accuracy prediction for the separate 4 classes Gidda, Jaya, Jyothi, and M4 
Ground truth Mask Color Predicted Name Accuracy 

Jaya Yellow Jaya 0.983 

Jyothi Pink Jyothi 0.998 

Gidda Cyan Gidda 1.00 

Jaya Violet Jaya 0.992 
Gidda Blue Gidda 0.997 

M4 Yellow M4 0.999 

Jaya Orange Jaya 0.985 

 

 

 
 

Figure 6. Visualizing the accuracy of classifying Jaya, Gidda, Jyothi, and M4 using confusion matrix 
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Across the training phase, the model demonstrated a consistent decrease in both segmentation 

(seg_loss) and classification (cls_loss) losses. This downward trend in losses indicates that the model 

effectively learned to differentiate between the classes and segment the paddy images accurately. Notably, 

the box loss (box_loss) also exhibited a similar decreasing trend, highlighting the model's proficiency in 

localizing and precisely delineating the paddy areas within the images. During validation, the observed trends 

in losses were relatively stable, albeit with minor fluctuations. The validation losses closely mirrored the 

training losses, affirming the model's generalization ability and robustness in recognizing and classifying 

paddy classes unseen during training. The marginal fluctuations in validation losses might indicate a slight 

overfitting tendency or the complexity of distinguishing certain classes within the validation set. Overall, the 

model's performance showcases promising capabilities in accurately segmenting and classifying different 

paddy varieties. The consistent reduction in losses during training, coupled with validation losses aligning 

closely with training losses, signifies the model's competency in learning the distinctive features of each 

class. 

 

4.1.  Metrics evaluation 

4.1.1. Binary classification metrics 

Precision (B) and recall (B) metrics were assessed to measure the model's performance in 

differentiating between binary classes. Precision (B) signifies the accuracy of positive class predictions, 

while recall (B) gauges the model's ability to capture all positive instances within the dataset. All the plots are 

shown in the Figure 7. 

 

 

 
 

Figure 7. Plot of loss, precision and recall during training and validation for our dataset 

 

 

4.1.2. Mean average precision metrics 

The evaluation measured the mean average precision (mAP) at 50% intersection over union 

(mAP50) for both binary (B) and multiclass (M) situations. These metrics evaluate the model's precision in 

identifying and categorising objects at different intersection over union thresholds. The achieved mAP50 

scores for both binary and multiclass scenarios demonstrated consistent and high values, indicating the 

model's accuracy in localising and classifying objects at various thresholds. The plot axes of are represented 

on the top each graph obtained. 

 

 

5. CONCLUSION 

The model's robust performance in differentiating paddy types is demonstrated by binary and 

multiclass classification metrics in the proposed work. The model's high precision and recall ratings for 

binary and multiclass classifications show its ability to accurately identify specific classes while balancing 

positive cases across the dataset. To solve this challenge, we created synthetic datasets to train the model and 

test it using a validation dataset using domain randomization. The model can segment these seeds into 

instance segments from the validation dataset, which comprises synthetically created seeds with appropriate 

precision and low error. Additionally, the model's strong mAP metrics at varied intersection over union 

thresholds demonstrate its ability to localise and categorise paddy data across changing object overlap. These 

comprehensive evaluations and high-performance metrics demonstrate the model's paddy classification 
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efficacy, demonstrating its potential for real-world applications in reliably recognising and categorising 

varied rice kinds. Refinement and optimisation could improve the model's performance and usefulness in 

agriculture or automated crop monitoring systems. 
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