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 Convolutional neural networks (CNN) are applied to a variety of computer 

vision problems, such as object recognition, image classification, semantic 

segmentation, and many others. One of the most important and difficult 

issues in computer vision, object detection, has attracted a lot of attention 

lately. Object detection validating the occurrence of the object in the picture 

or video and then properly locating it for recognition. However, under 

certain circumstances, such as when an item has issues like occlusion, 

distortion, or small size, there may still be subpar detection performance. 

This work aims to propose an efficient deep learning model with CNN and 

encoder decoder for efficient object detection. The proposed model is 

experimented on Microsoft Common Objects in Context (MS-COCO) 

dataset and achieved mean average precision (mAP) of about 54.1% and 

accuracy of 99%. The investigational outcomes amply showed that the 

suggested mechanism could achieve a high detection efficiency compared 

with the existing techniques and needed little computational resources.  
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1. INTRODUCTION 

More than 90% of human understanding is visual, and various imaging equipment are frequently 

used in fields that are directly related to human activity and living [1]. The processing of photos and other 

information has been successfully adopted in various industries to the ongoing growth of machine learning 

algorithms. The primary research challenge in computer vision, object detection, has drawn increasing 

attention from academics. The object discovery typically contains two stages: first, looking for the item in the 

image; second, employing bounding boxes to find the object. Convolutional neural networks (CNN) has 

become highly effective at object detection in recent years [2]–[5], region based convolutional neural 

network (R-CNN) [6], YOLO [7], the spatial pyramid pooling network (SPP) [8], and Fast R-CNN [9] object 

detection techniques that are used in this field of study. Due to computational hardware and data availability, 

traditional object detection algorithms have significant drawbacks [10]. Conversely, with the development of 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

Convolutional neural network based encoder-decoder for efficient real-time … (Mothiram Rajasekaran) 

1961 

artificial intelligence (AI) and processing power in recent years, the entire process can now be automated 

with little to no human involvement. The primary distinction is that traditional object detection techniques 

rely on human experience standards and expert judgement to extract features, whereas AI uses a sophisticated 

neural network that can be trained to routinely identify powerful and judicial features. 

In particular, encoder-decoder models based on fully convolutional networks (FCNs) have 

significantly enhanced performance, such as semantic segmentation [11], [12], edge recognition [13] object 

exposure [14], and crowd counting [15]. Essentially, the trend of popular object identification techniques are 

operate within the encoder-decoder framework. For the detection task, some researchers created structures 

based on the encoder-decoder paradigm and attained cutting-edge performance [16]. With regard to 

benchmark datasets, CNN-based encoder-decoder models are particularly crucial for continuously improving 

detection performance [17]. Convolution is done by the encoder, whereas deconvolution, un-pooling, and  

up-sampling are done by the decoder to forecast pixel-wise class labels. The up-sampling decode that 

corresponds the low-resolution encoder feature maps, is the important feature. This architecture employs the 

encoder's pooling indicators to up-sample to map pixel-wise categorization while also significantly reducing 

the number of trainable parameters. This paper is structured as follows. 

The goal of object detection, which is typically done with photos or videos, is to find borders as well 

as to show the object's range and location. The next step is to classify the object's category and to provide the 

categorization likelihood. This task is more difficult than simple picture classification because the positions 

of many items must be determined from the image or video. CNNs have been used for the detection and 

classification of objects with success [18]. Current models include ways to categorise either a full input 

window for each scene for a bounding box of several objects. Semantic segmentation has had a breakthrough 

thanks to FCN. It has provided a potent method for boosting the effectiveness of CNNs by providing inputs 

of any size [19]. The encoder-decoder-based concept that presented by [20]. It suggested for feature learning 

that is unsupervised; then, neural networks backed by encoder-decoders have emerged as a potential 

replacement for further aids. An intriguing pedestrian collision alert system for advanced driver assistance 

systems was suggested in [21]. However, it is only capable of detecting and warning pedestrians. Facial 

feature localization [22] extracted information from input strings that could only be one dimension using the 

Viterbi decoding technique. Support vector machine (SVM)-based predictive modeling [23] utilised the 

similar concept to expand SVM outcomes using two-dimensional maps. 

As an attention generating module that learns to specifically attend to significant locations for every 

pixel by employing bidirectional long short-term memory (Bi-LSTM) module within the feature maps, 

paediatric intensive care audit network (PiCANet) was proposed in [24]. For C-elegans tissues with FCN 

inference, coarse multi-class segmentation CNN with FCN architecture. In order to forecast pixel-level labels 

and to improve the label map using conditional random field (CRF), network achieves denser score maps 

using FCN architecture. One of the current major trends in CNN architecture design is the incorporation of 

encoder and decoder to improve performance. Apart from these object detection models; several detection 

algorithms are implemented on hardware platforms to improve the detection performance. 

Pyramid scene analysis network (PSPNet) is yet another effective CNN architecture that was just 

released. It is intended for prediction jobs at the pixel level. The global pyramid pooling structure that 

combined global and local hints that produce the results builds the pixel-level features for effective 

segmentation. Due to the PSPNet architecture's extreme complexity, training and testing processes need for a 

sizable amount of processing power and graphics processing units (GPU) capabilities. The concept of 

panoptic segmentation (PS) was recently introduced in a study about pixel-wise segmentation. To complete a 

broad segmentation task, PS combines segmenting instances and segmentation based on semantics. 

Comparatively speaking, it performs well when compared to previous visual geometry group (VGG) based 

networks, although size is the design's main flaw. 

The prophet algorithm, K-means clustering, and seasonal autoregressive integrated moving-average 

methods act a task in enhancing the cloud infrastructures. Also, it grouping servers into clusters with similar 

utilization patterns. K-means clustering enhances the resource allocation efficiency [25]. Internet of things 

(IoT)-driven image recognition system utilizing CNNs to notice and quantify microplastics [26]. The data 

collected by sensors is forward to a centralized monitoring system that decides whether or not an alarm 

activated in the event if the situation diverge from their ideal state [27]. K-nearest neighbor (KNN) and SVM 

algorithm forms a precise arrangement model to utilize the important data expectation exactness [28].  

SVM with recurrent neural networks are powerful classification that makes it feasible to classify patients’ 

risks and predict how they will react to therapy [29]. Cloud computing grants the seizure prediction system to 

improve accessible and scalable [30] and it examines the feature selection developed in for improving 

accuracy [31]. Hybrid machine learning techniques like SVM with CNN algorithm to anticipates Alzheimer’s 

sickness [32]. 
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2. PROPOSED DEEP LEARNING MODEL 

The proposed architecture is a pixel-wise model that built on two decoupled FCNs for encoding as 

well as decoding as explained in Figure 1. The previously described encoder is built using the first 16 

convolutional layers of VGG-19 network, then a batch normalised (BN) layer, function of activation, pooling 

layer, as well as dropout units. The decoder network is composed of layers for upsampling, deconvolution, 

activation, batch normalisation, dropout, and a multi-class classification. Every decoder is matched to a 

pooling unit of an encoder in the system's overall encoder-decoder interface. Consequently, the decoder CNN 

has 16 de-convolution layers. To probabilities of output class meant to each individual pixel individually, the 

decoder sends its computations to softmax classifier. 

 

 

 
 

Figure 1. Proposed architecture for real-time object detection 

 

 

The key benefits of our suggested decoupled architecture are its simple training with various 

environmental factors and ease of customization. For pixel-wise classification, the encoder creates  

low-resolution feature maps, which the decoder up-samples through convolutioning the trainable filters to 

yield intense feature maps [33]. The fundamental component of the suggested method is the decoding 

procedure, which provides several useful advantages in terms of improving boundary delineation and 

reduction. Also much improved is the ability to provide training by lowering the amount of trainable 

attributes. It offers a simple training, which trains both the encoder as well as decoder at the same time.  

With an input image, the network begins training and acts during the network to the top layers. 

Adopting convolution with a prearranged set of filter banks to fabricate feature maps, the batch normalisation 

process is fulfilled by the encoder. Afterwards, activations are accomplished by rectified linear units 

(ReLUs). The max-pooling function is then fulfilled with a window size of 2x2 and a tread of 1. This 

outcomes in a two-fold subsampling of the last image. Multiple pooling layers able to increase translation 

invariance for effective categorization jobs, but the feature maps' spatial resolution is unnecessarily reduced. 

Therefore, prior to the sub-sampling function, the boundary information needs to be recorded and 

stored in the encoder feature maps. However, it is not practical to save the entire encoder feature maps 

because to memory limitations. The best option is keep the max-pooling indicators in storage. For each 2x2 

pooling window, two bits are used to memorise the positions of each max-pooling feature-map. Having a lot 

of feature maps on hand is a really effective solution. With this approach, the encoder can store data much 

more efficiently and fully connected layers can be dropped. 

 

 

3. RESULTS AND DISCUSSION 

The MS-COCO dataset that consist of 91 item with 2.5 million labelled examples in 328k images, is 

used to train the proposed object detection algorithm. On a single 12 GB NVIDIA Tesla K40c GPU, the 

suggested network was trained. The network is trained until the accuracy as well as loss do not significantly 

grow or decrease and the loss has converged. The whole network is established and trained utilizing the Caffe 

Berkeley Vision Library. Caffe provides a flexibility while it relates creating network layers as well as 

training the network to meet the suggested specifications. Thus, once converges, it is trained, and no 

considerable reduce in training loss is seen. The entire results are then evaluated, examined, and subsequently 
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contrasted with the specified benchmark results.The dataset is divide by training and testing. Here, 90% is 

allotted for training and 10% is allotted for testing. 

Many weights are 0 because training models frequently use the ReLU activation function. In this 

work, it was found that after creating the sparsity model, the gradient vanished during training with ReLU6. 

This is as a result of the mask excluding 50% of the weights from the gradient update. As indicated in Table 1, 

the public dataset MS-COCO evaluated and contrasted with the earlier techniques. In this work, there are 5 k 

and 118 k photos are utilised for testing and training the model, respectively. To ensure that the suggested 

method works, the outcomes of each trial were examined. For all classes, average precision (AP) is typically 

determined, and its middling is known as the mean average precision (mAP). Additionally, for AP75 

candidate images, regions with above 75% accuracy are counted, and the AP50 designates the 50% area 

properly. Figure 2 shows the multi-object detection results received via training model on MS-COCO dataset.  
 

 

 
 

Figure 2. Screenshot formulti-object detection of complex scenes using proposed model trained on  

MS-COCO dataset 
 

 

For complex scenes, the proposed CNN based encoder decoder model achieved better detection 

performance. The detection results include various objects such as horse, potted plant and person as shown in 

Figure 3. For this detection, floating point operations per second (FLOPs) is about 128.46 with model size is 

134.22 MB. Figure 3 illustrates the detection of multiple objects on MS-COCO dataset using proposed 

model. There are various objects are detected from sample complex images in MS-COCO dataset.  
 

 

 
 

Figure 3. Results for object detection of complex scenes using proposed model trained on MS-COCO dataset 
 

 

The proposed model achieved mAP of 54.1% at 327 FPS as shown in Table 1. With the help of this 

investigation, the model's performance in real-time was guaranteed. MS-COCO dataset contains the FPS 

value is 327, the percentage of mAP value is 54.1%, AP50 value is 77.2% and AP75 value is 69.3%. Table 2 

demonstrates the comparative results of proposed model with existing approaches. Figure 4 explains the 

execution analysis of single-shot detector (SSD), YOLOv3, EfficientDet, YOLOv4 tiny, RetinaNet, and 

proposed CNN-based encoder decoder model for object detection. Compare to all other models, the proposed 

model has provided better results.  
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Table 1. Results for proposed object detection model 
Dataset FPS mAP (%) AP50 (%) AP75 (%) 

MS-COCO 327 54.1 77.2 69.3 

 

 

Table 2. Comparison of proposed CNN-based object detection model with existing algorithms 
Model Architecture AP75 (%) AP50 (%) mAP (%) FPS 

SSD  VGG 30.3 48.5 28.8 36 

YOLOv3  Darknet-53 34.3 58 33 66 

EfficientDet  EfficientNet 35.8 52.2 33.8 16 
YOLOv4 tiny  CSPNet-15 20 40 22 330 

RetinaNet  ResNet101 36.8 53.1 34.4 11 

Proposed VGG-19 69.3 77.2 54.1 327 

 

 

 
 

Figure 4. Performance analysis of existing approaches with proposed detection model 

 

 

The outcomes of every experimentation are examined to confirm the efficiency of the proposed 

method. For assessment, AP is utilized, that concerns to the region under the precision-recall curve. Usually, 

AP is computed for all classes, and its average is determined as the mAP. In addition, the AP50 denotes to 

the 50% region correctly detected in comparison to the ground truth, and for AP75 candidate images over 

75% parts are considered. This study assured the operation of the model for real-time applications with a 

good recognition accurateness. 

 

 

4. CONCLUSION  

We have noticed that recent efforts on object detection using CNN-based encoder-decoder models 

have addressed salient object detection (SOD) as a classification task at the pixel level. The proposed method 

was demonstrated through experimental findings on the open-source MS-COCO 2017 dataset to be capable 

of good detection accuracy and quick execution. The objective of this work going forward is to significantly 

enhance multiple object detection for high quality images without sacrificing prediction speed. It employs the 

unique technique of pooling indices as well, which uses fewer processing parameters and speeds up 

inference.With a mAP of 54.1 and 327 FPS, the suggested network model is highly suited for multiple object 

identification. To sum up, the model's ease of training and the proposed method's low computational resource 

requirements are its key features. As a result, the suggested approach is practical for many real-time 

applications and offers a more economical alternative. Overall, the suggested method results in a system for 

cutting-edge auto driving systems that is more affordable and more effective. 
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