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 Predicting commodity prices, particularly food prices, is a significant 

concern for various stakeholders, especially in regions that are highly 

sensitive to commodity price volatility. Historically, many machine learning 

models like autoregressive integrated moving average (ARIMA) and support 

vector machine (SVM) have been suggested to overcome the forecasting 

task. These models struggle to capture the multifaceted and dynamic factors 

influencing these prices. Recently, deep learning approaches have 

demonstrated considerable promise in handling complex forecasting tasks. 

This paper presents a novel long short-term memory (LSTM) network-based 

model for commodity price forecasting. The model uses five essential 

commodities namely bread, meat, milk, oil, and petrol. The proposed model 

focuses on advanced feature engineering which involves moving averages, 

price volatility, and past prices. The results reveal that our model 

outperforms traditional methods as it achieves 0.14, 3.04%, and 98.2% for 

root mean square error (RMSE), mean absolute percentage error (MAPE), 

and R-squared (R2), respectively. In addition to the simplicity of the model, 

which consists of an LSTM single-cell architecture that reduced the training 

time to a few minutes instead of hours. This paper contributes to the 

economic literature on price prediction using advanced deep learning 

techniques as well as provides practical implications for managing 

commodity price instability globally. 
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1. INTRODUCTION 

Commodity price forecasting is an essential task for stakeholders such as governments, 

policymakers, retailers, and customers. Accurate commodity price forecasting has a huge impact on 

managing inflation, securing commodity supplies, and avoiding socio-economy disruptions [1], [2]. 

Particularly in a world marked by interconnected economies and complex trade relationships [3], precise 

commodity price forecasts can aid in avoiding crises and promoting stability in the global commodity supply 

chain [4]. In recent years, commodity price fluctuation has been a significant concern for stakeholders around 

the world. Several factors have contributed to these fluctuations, leading to challenges in managing 

commodity supplies, inflation, and socio-economic stability [5]-[8]. Particularly, food price fluctuations can 

have far-reaching consequences, especially for vulnerable populations in low-income countries, where a 

significant portion of income is spent on food. High and unpredictable food prices can lead to food 

insecurity, malnutrition, and social unrest [9], [10]. Governments, policymakers, and international 
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organizations continue to work on measures to mitigate the impact of these fluctuations. Accurate food price 

forecasting remains a crucial tool in managing these challenges and promoting global food security [11]-[13]. 

Many traditional statistics and machine learning (ML) models have been utilized to accomplish 

commodity price prediction [14]-[18], specifically food price forecasting [19]-[22]. These models are easy to 

implement and don’t require huge computing power. However, these models failed to capture complex 

patterns and trends in the time-series data since they have prior assumptions about the data [23], [24]. With 

the rise of deep learning (DL) power, neural network (NN) models gain attraction for being used in many 

downstream forecasting tasks [25], [26]. Historically, different methods have been applied in commodity 

price prediction. These include statistical approaches like autoregressive integrated moving average 

(ARIMA) [27] and seasonal autoregressive integrated moving average (SARIMA) [28], machine learning 

techniques such as support vector machine (SVM) [29], and deep learning models like long short-term 

memory (LSTM) [30], [31]. LSTM models are often preferred over other models for time series forecasting 

due to their ability to capture long-term dependencies and handle sequential data effectively [32]. LSTM's 

non-parametric characteristic, combined with its ability to handle non-linear patterns and its independence 

from the need for a stationary process, make it a favorable option for implementation in time-series 

applications [33]. 

Various researchers have extended LSTM models to improve forecasting performance. For instance, 

Ly et al. [34] introduced a hybrid model that combines the strengths of LSTM and ARIMA to forecast the 

prices of cotton and oil, their approach depends on training two separated models, namely LSTM and 

ARIMA, then averaging the forecasting result from both trained models to achieve better result compared to 

each individual model. In contrast, Krishnan et al. [35] utilized a diverse set of complex LSTM models, 

namely basic LSTM, bidirectional LSTM (Bi-LSTM), stacked LSTM, convolutional neural network LSTM 

(CNN-LSTM), and convolutional LSTM (Conv-LSTM), in their five-commodity forecasting study. Each of 

these models offered unique architectural variations to explore and analyze their predictive capabilities. The 

authors argued that their complex models are capable of capturing complex patterns and dependencies within 

the commodity market data, allowing for more accurate and robust predictions. On the other hand, the use of 

deep learning models in combination with natural language processing such as transformer-based models 

[36] and bidirectional encoder representations from transformers (BERT) [37] has been gaining traction in 

recent years due to their ability for capturing market sentiment tracking and context-aware analysis. For 

instance, Sonkiya et al. [38] proposed a generative adversarial network (GAN) combined with BERT model 

for predicting the price of stock predictions, in their study, BERT is utilized to analyze news and headlines, 

extracting valuable insights. These insights are then incorporated into the GAN model as external factors, 

which lead to enhancing their model's predictive capabilities. 

Despite the advancements in machine learning and deep learning models, there remains a need for 

models that are not only accurate but also interpretable and computationally efficient. The black-box nature 

of many deep learning models often leads to a need for more interpretability, which can slow down their 

adoption in certain sectors [39]. On the other hand, the computational requirements of these models can be a 

limiting factor, especially in low-resource settings [40]. This calls for the development of models that balance 

accuracy, interpretability, and efficiency, which is the focus of this paper. This paper aims to address these 

limitations by introducing a straightforward effective LSTM model for predicting the prices of various 

commodities. The developed model demonstrates comparable performance compared to other deep learning 

models. The paper approach places significant emphasis on the feature engineering aspect of the task. It was 

found that implementing diverse feature transformations, such as moving averages and volatility changes, 

greatly enhances the performance of the suggested model. The model's simplicity and efficacy, combined 

with less demand for computational resources, suggests its potential for broader application in commodity 

price forecasting. Future work could involve the inclusion of external factors such as social media sentiment 

and news headlines into the model to further improve its predictive performance. 

 

 

2. METHODOLOGY  

A comprehensive methodology is used in this paper to address the research objectives effectively. 

Figure 1 illustrates the chronological flow chart of the adapted methodology. The first step involved data 

acquisition. Subsequently, a data cleaning process was performed where some missing prices were imputed 

by the average of the lag and lead prices. Next, an exploratory data analysis (EDA) phase was conducted to 

gain deeper insights into the dataset, identify patterns, and establish descriptive statistics that aid in 

understanding the underlying characteristics of the data. Following the EDA, feature engineering techniques 

were employed to transform the raw data into meaningful and informative features that can enhance the 

performance of the models. After feature engineering, data transformation techniques were applied to 

normalize the data, ensuring that all variables are on a comparable scale. This step helps in improving the 

model's convergence and performance. Subsequently, the modeling phase involved a training loop, wherein 
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various hyperparameters were tested to optimize the model's performance and achieve the best possible 

results. Finally, the performance of the trained models was evaluated using appropriate evaluation metrics to 

assess their effectiveness in solving the research problem. This methodology ensures a systematic and 

rigorous approach to conducting the study, enabling reliable and insightful conclusions to be drawn from the 

analysis. Through this research, we will illustrate the process of choosing appropriate features, transforming 

them suitably, and training an LSTM model for forecasting commodity prices. The outcome is expected to 

provide valuable insights for stakeholders in the commodity industry, enhancing their decision-making 

capabilities and promoting more efficient practices. 

 

 

 
 

 

2.1.  Dataset 

The foundation of the proposed model relies on an extensive dataset that encloses a detailed history 

of various commodity prices within the State of Palestine. The origin of this dataset is the World Food 

Program Price Database [41], an extensive global source of commodity price information that spans 98 

countries and approximately 3,000 distinct markets. The database audits prices for many commodities, 

including but not limited to bread, meat, milk, oil, and petrol. Although the database is refreshed weekly, the 

availability of monthly data is more frequent. Specifically, the dataset under consideration for current 

research referred to as 'Palestine Food Price Dataset', boasts a rich history of commodity prices in Palestine 

dating back to 2007, and spans approximately 28,000 entries. The volume of data provided in this dataset 

introduces an opportunity to derive significant insights into food security studies within this region. The 

Palestine food price dataset consists of 14 attributes, which include date (on a monthly frequency), district 

(West Bank & Gaza), city, geographical locations (latitude and longitude), commodity category, commodity 

item, unit, and price, among others. Samples of prices were collected from twelve distinct cities in the  

West Bank and Gaza. The dataset comprises commodities that are categorized into eight groups, with a total 

of 39 categories within the commodity type. The dataset was cleaned and preprocessed prior to analysis. This 

process involved dealing with missing data, transforming attribute types, and normalizing certain variables.  

 

2.2.  Feature engineering  

Time series datasets distinguish themselves from other types of datasets mainly due to their 

inclusion of a temporal component (time), which introduces an extra dimension to the analysis [42]. Unlike 

typical datasets where data points might be independent, time series data is sequential, and each point often 

has a relationship with its preceding and sometimes succeeding points. The temporal nature of such datasets 

makes them particularly challenging to analyze and model, especially when the goal is to forecast future 

values. Additionally, due to the inherent characteristics of time series data like autocorrelation, the risk of 

misleading interpretations increases if the analysis isn't handled properly. To address these challenges and 

effectively capture underlying patterns, it's essential to apply certain transformations. These transformations 

not only assist in identifying trends and seasonality but also in reducing the impact of noise and outliers. By 

enhancing each data point with rich information from prior periods, models can be trained to make more 

accurate and informed predictions, ultimately leading to more insightful and actionable results [43]. 
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2.2.1. Moving average 

A moving average, also known as a rolling or running average, is a technique often used in time-

series data analysis to smooth out short-term fluctuations and highlight long-term trends or cycles [44]. The 

idea is to calculate the average of a particular subset of numbers, and as new data comes in, recalculate that 

average by moving the subset window forward as described in (1). 

 

Simple moving average (SMA) = 
∑ 𝑃𝑖
𝑁
𝑖=1

𝑁
 (1) 

 

Where Pi is the rice of the ith period, N is the total number of time periods. 

On the other hand, the exponential moving average (EMA) is a type of moving average that places 

more weight and importance on the most recent data points while still considering the historical data [45]. 

This makes the EMA more responsive to recent price changes compared to the simple moving average 

(SMA), which gives equal weight to all data points as shown in (2). 

 

Exponential moving average, (EMA) = (𝐶  −  𝑃)  ×
2

𝑁+1
  +  𝑃 (2) 

 

Where: C is the current data point price, P is the exponential moving average of the previous period, and N is 

the total number of time periods. * Simple moving average applied for the first period. 

In this study, we found that the simple moving average worked better when we used it on four 

different time periods: 6 months, 12 months, 18 months, and 24 months as illustrated in Figure 2. The 

superior performance of the simple moving average over the four distinct time periods can be attributed to 

several reasons. Firstly, commodity prices often follow cyclical patterns and trends, and the simple moving 

average, being a trend-following method, can effectively smooth out short-term fluctuations, capturing the 

underlying price movement. Secondly, using multiple time periods allows capturing varying dynamics of the 

market, from short-term to more extended cycles, providing a more comprehensive insight. 

 

 

 
 

Figure 2. Simple moving average of five window sizes 

 

 

Results in Figure 2 display four simple moving averages (SMAs) corresponding to window sizes of 

6, 12, 18 and 24 months duration respectively. Each SMA line shows the average price of the asset over its 

respective time frame, providing insights into short, medium, and long-term trends. The 6-month SMA reacts 

quickly to recent price changes, while the 24-month SMA offers a smoother, long-term perspective, 

identifying overall trends and potential turning points. Incorporating these different SMAs as features can 

enhance the proposed LSTM model's ability to capture various time horizons in the data. It allows the LSTM 

to consider both short-term patterns and long-term trends, improving the accuracy and robustness of the 

predictions. 

2.2.2. Volatility 
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Price volatility refers to the rate at which the price of an asset, such as a stock or commodity, 

increases or decreases. It is a statistical measure of the range of the change for a given market index. High 

volatility indicates that the commodity's price can change significantly in a short time frame in any direction, 

whereas low volatility implies that the price remains steady [46]. 

Volatility is often calculated using the standard deviation or variance between returns from the same 

market index. The most used method is the standard deviation which is typically calculated as illustrated in 

(3), where n is the number of price returns used in the calculation, x represents each individual price return, μ 

is the average (mean) of the price returns, Σ denotes the sum of the squared differences. 

 

Volatility = √
∑ (𝑥 − 𝜇)2𝑛
𝑖=1

𝑛
 (3) 

 

The price volatilities for each data point were calculated over five different time frames, including 

three months (quarterly), six months (semi-annually), one year, two years, and five years. This analysis aids 

the model in predicting future trends. When there is significant volatility during a certain period, the model is 

more likely to forecast a greater probability of significant price fluctuations as illustrated in Figure 3. 

 

 

 
 

Figure 3. Price volatility over a 3-month window size 

 

 

Results in Figure 3 show the volatility of a price over a 3-month window size. It shows a line graph 

with the x-axis representing time and the y-axis representing the calculated volatility of the asset's price at 

each data point. Volatility measures the level of price fluctuation; higher volatility indicates greater price 

variability. The chart's line illustrates how the volatility changes over time, highlighting periods of higher and 

lower price instability. In the task of price forecasting using LSTM models, these volatility lines play a 

crucial role. LSTM models can incorporate volatility as a feature, helping to capture market dynamics and 

improve forecasting accuracy. High volatility periods can indicate potential market disruptions or significant 

price movements, which LSTM models can leverage to generate more accurate predictions. 

 

2.3.  Long short-term memory (LSTM): An overview 

Long short-term memory (LSTM) is a variation of recurrent neural network (RNN) architecture, 

designed to model temporal sequences and their long-range dependencies more accurately than vanilla 

RNNs. It was proposed by Hochreiter and Schmidhuber [32] in 1997. The key to LSTM is the cell state. This 

is a kind of "conveyor belt" that carries information across time steps with only minimal changes, which 

helps to mitigate the vanishing gradient problem faced by traditional RNNs [47]. In LSTMs, the information 

flows through a mechanism that is controlled by various gates as illustrated in Figure 4. These gates decide 

what information should be kept or discarded at each time step. 

− Forget gate: This gate decides which piece of info should be kept or thrown away. Input is passed through 

this gate, which processes it using a sigmoid function. 

− Input gate: The input gate produces a new cell’s state via utilizing a sigmoid function that decides which 

part to be updated and a tanh which creates a new candidate vector. 

− Output gate: This gate produces the next hidden state to the cell that embedded info about the previous 

input. This hidden state is crucial for prediction. 
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Figure 4. Single-layer LSTM network used for sequence modeling [34] 

 

 

2.4.  Model architecture and training loop 

The primary aim of this study is to utilize sophisticated feature engineering methods to build a 

straightforward yet efficient deep learning model. The LSTM model architecture constructed 77 input layers, 

and 4 hidden layers, succeeded by a fully connected neural network to combine the spatial data from the 

surrounding station's layer, which takes 4 inputs from the final hidden layer. Lastly, the rectified linear unit 

(ReLU) function is applied to prevent the model from predicting negative values. This structure excels due to 

the advanced transformations applied to the data prior to the training. The training was carried out on a local 

MAC laptop equipped with 16GB memory and an 8-Core Intel processor. Remarkably, the training time for 

the model on the specified dataset was a few minutes, which is a significant time reduction compared to the 

computational resources of other researchers which usually take hours as other researchers reported in [33]-

[34]. The LSTM model was implemented using the pytorch deep learning library. Three categorical variables 

(city, category, commodity) were encoded using one hot encoding. The numerical variables were normalized 

using MinMaxScaler to ensure they were in the same range. Lastly, the dataset was divided into three 

subsets: training, evaluation, and testing, with ratios of 70%, 15%, and 15% respectively as illustrated in 

Figure 5. 

 

 

 
 

Figure 5. The dataset splits into three subsets: training, evaluation, and testing 

 

 

Model hyperparameters play a vital role in determining the quality of results obtained from the 

training process. In this particular scenario, the model was trained using a learning rate of 1e-3, striking a 

balance between precision and efficiency. To measure the model convergence, the mean squared error (MSE) 

was employed as the loss function as shown in (4). 
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Mean square error (MSE) = 
1

𝑛
∑ (𝑌𝑖 − 𝐹𝑖)

2𝑛
𝑖=1  (4) 

 

Where n is the number of data points, Yi is the observed price, and Fi is the forecasted price. 

To optimize the training process, the widely used Adam optimizer [48] was utilized, leveraging its 

adaptive learning rate capabilities. The training loop was executed for a substantial number of iterations, 

precisely 1000 epochs, ensuring that the model had the opportunity to learn from the data. To prevent 

overfitting, two effective early-stopping techniques were employed [49]. These techniques acted as 

gatekeepers during the training process, monitoring the model's performance closely. Training would halt if 

either there was minimal improvement in the training loss; precisely 1/1000 of the learning rate or if the 

validation loss increased for two successive epochs. By incorporating these strategies, as described in  

Table 1, the training process became more robust and resilient to overfitting, ultimately leading to a more 

accurate model. 

 

 

Table 1. Model hyperparameters 
Parameter Value 

Epoch 1000 

Learning rate 1E-3 

Loss function MSE 

Optimizer Adam 

Regularization Early stop 

 

 

2.5.  Model evaluation 

The performance of the proposed model was assessed using three evaluation metrics described in (5) 

to (7) and those are: root mean squared error (RMSE), Mean absolute percentage error (MAPE), and the 

coefficient of determination (R2). RMSE measures the square root of the average of the squared differences 

between predicted and actual values, providing a measure of the model's accuracy. MAPE calculates the 

average percentage difference between predicted and actual values, offering insights into the model's relative 

performance. Lastly, the coefficient of determination (R2) indicates the proportion of the variance in the 

dependent variable that is predictable from the independent variable, indicating the model's ability to explain 

the data's variability. In equation (5)-(7), Ai and Fi are the actual and forecasted prices, respectively, µy is the 

mean price of all data points, and n is the number of data points. 

 

RMSE = √
∑ (𝐴𝑖−𝐹𝑖)

2𝑛
𝑖=1

𝑛
 (5) 

 

MAPE = 
1

𝑛
∑ (

|𝐴𝑖−𝐹𝑖|

𝐴𝑖
)𝑛

𝑖=1   × 100% (6) 

 

R2 = 1  −  
∑ (𝐴𝑖−𝐹𝑖)

2𝑛
𝑖=1

∑ (𝐴𝑖−𝜇𝑦)
2𝑛

𝑖=1

 (7) 

 

 

3. RESULTS AND DISCUSSION 

The utilized dataset consists of eight categories containing thirty-nine distinct commodities. For 

training the model, five commodities were selected, resulting in varied but closely related outcomes. The 

differences in these outcomes can be attributed to the availability of pricing data for each commodity. Among 

the predictions, the estimation of Bread price showed exceptional performance as shown in Figure 6, with a 

RMSE of merely 0.14, this suggests that the average difference between the forecasted and actual prices was 

exceptionally low, indicating the model's precision in capturing the price fluctuations. Additionally, the 

MAPE of 3.04% indicates that, on average, the model's predictions were within a very small percentage of 

the actual prices, further substantiating its reliability. Moreover, the high R-squared value of 98.2% denotes 

an impressive fit of the model to the observed data, indicating that a significant proportion of the variability 

in Bread prices was accurately accounted by the LSTM model. For other commodities i.e. (meat, milk, oil, 

and petrol). Table 2 summarizes the evaluations conducted on all of them. 
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Figure 6. The actual and predicted price of Bread 

 

 

Table 2. Model evaluation on five commodities 
Commodity RMSE MAPE R2 

Bread 0.14 3.04% 98.2% 

Meat 0.85 4.15% 80% 

Milk 1.2 1.09% 93% 
Oil (olive) 0.87 2.26% 90% 

Petrol 0.22 2.18% 87.4% 

 

 

The findings in this paper show a notable advancement of the proposed model over earlier published 

models. Several previously published models have been compared to our model to offer a thorough 

assessment of the efficiency and accuracy of the proposed model in this paper. The advantages of the 

proposed model become clear when considering its superior scores across all evaluation metrics. 

Furthermore, while many models in the past have shown strength in one or two metrics but weakness in 

others, our model maintains consistency in its high performance across RMSE, MAPE, and R2. This 

consistency is indicative of the robustness of our approach, setting a new standard in the field. Table 3 

presents a comparison of different predictive models in the literature, evaluating their performance based on 

RMSE, MAPE, and R2 metrics. 

 

 

Table 3. Comparison between results in the literature and the proposed model 
Model RMSE* MAPE* R2* Reference 

Hybrid (ARIMA + LSTM)  0.15 4.3% - [34] 

Stacked LSTM  0.15 0.079% 96.8% [35] 

GRU 0.7 - - [38] 
S-GAN 0.56 - - [38] 

Hybrid (TDNN + ARIMA) 3.35 - - [49] 

LSTM 0.14 3.04% 98.2% Our model 

* Best result 

 

 

The models presented in Table 3 showcase various methods, including hybrid approaches, recurrent 

neural networks (RNNs), and generative models. The first model, a hybrid of ARIMA and LSTM, achieves 

an RMSE of 0.15 and a MAPE of 4.3%. However, the R2 value is missing, making a comprehensive 

evaluation challenging. The second model, a stacked LSTM, performs similarly in terms of RMSE (0.15) but 

significantly better in MAPE (0.079%) and R2 (96.8%), highlighting its superiority over the hybrid model. 

The third model based on gated recurrent unit (GRU) presents an RMSE of 0.7 without reporting the MAPE 

and R2 values, and this makes the overall performance of the model difficult to be assessed. The fourth model 

uses sentiment analysis with a generative adversarial network (S-GAN) and achieves an RMSE of 0.56, but 

again, the lack of MAPE and R2 values limits its evaluation. The fifth model, a hybrid of time delays neural 

network (TDNN) and ARIMA perform poorly with an RMSE of 3.35, with MAPE and R2 values not 

provided for further assessment. Our LSTM model presented herein delivers outstanding results with an 

RMSE of 0.14, a MAPE of 3.04%, and an impressive R2 value of 98.2%. These findings demonstrate the 

LSTM model's superior predictive accuracy and its ability to capture underlying patterns effectively. In 

conclusion, the comparison of various predictive models highlights the superiority of the stacked LSTM and 

the LSTM model presented in this paper. Both models exhibit remarkable performance with low RMSE, low 
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MAPE, and high R2 values, showcasing the efficacy of LSTM-based architectures for the predictive task. 

Notably, the LSTM model presented in this paper stands out due to its simple design and effective feature 

engineering techniques. Despite its simplicity, our model demonstrates outstanding predictive accuracy, 

surpassing even the stacked LSTM in some metrics. This is due to the emphasis on feature engineering that 

has likely contributed to the model's ability to capture essential patterns in the data, leading to superior 

predictions. Moreover, one of the key advantages of the LSTM model presented in this paper is its ability to 

achieve such high performance with relatively low computation power and training time. This is crucial in 

practical applications where computational resources and time are essential. The model's efficiency in 

training and inference makes it an attractive choice for real-time predictions and large-scale deployments. 

 

 

4. CONCLUSION 

The study presented in this paper focuses on predicting essential commodity prices using an LSTM 

model enhanced by feature engineering. Our results indicate that this approach yields competitive 

performance compared to other models found in the literature. The proposed model demonstrated superior 

performance, particularly 0.14, 3.04, and 98.2% in RMSE, MAPE, and R2 respectively. The simplicity and 

computational efficiency of the proposed model make it a promising approach for commodity price 

forecasting, especially in scenarios where computational resources may be limited. Future work could 

explore several directions. For instance, future models could incorporate external factors into the price 

prediction model. This could be achieved by using natural language processing techniques to analyze news 

headlines and social media sentiment related to the commodities under consideration, or by integrating 

economic indicators and climate data. Further research could also explore the use of other deep learning 

architectures for commodity price prediction. Hybrid models combining the strengths of different 

architectures could be particularly promising. 
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