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 Backdoor attack techniques have evolved toward compromising the integrity 

of deep learning (DL) models. To defend against backdoor attacks, neural 

cleanse (NC) has been proposed as a promising backdoor attack detection 

method. NC detects the existence of a backdoor trigger by inserting 

perturbation into a benign image and then capturing the abnormality of 

inserted perturbation. However, NC has a significant limitation such that it 

fails to detect a backdoor trigger when its size exceeds a certain threshold that 

can be measured in anomaly index (AI). To overcome such limitation, in this 

paper, we propose a reliable backdoor attack detection method that 

successfully detects backdoor attacks regardless of the backdoor trigger size. 

Specifically, our proposed method inserts perturbation to backdoor images to 

induce them to be classified into different labels and measures the abnormality 

of perturbation. Thus, we assume that the amount of perturbation required to 

reclassify the label of backdoor images to the ground-truth label will be 

abnormally small compared to them for other labels. By implementing and 

conducting comparative experiments, we confirmed that our idea is valid, and 

our proposed method outperforms an existing backdoor detection method 

(NC) by 30%p on average in terms of backdoor detection accuracy (BDA).  
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1. INTRODUCTION  

As deep learning (DL) technology is gradually applied to various research fields such as image 

recognition and natural language processing, there has been a great increase in research on adversarial attacks 

[1]–[4]. This is because adversarial attacks strategically exploit vulnerabilities of DL models and thus, they 

can significantly break and degrade the integrity and reliability of DL models. Thus, the inherent nature of 

adversarial attacks undermines the robustness of DL models by introducing intentional distortions to induce 

misclassification. Therefore, to protect and defend DL models in the presence of adversarial attacks, it is 

necessary to conduct comprehensive research on adversarial attacks [5], [6].  

In particular, backdoor attacks have rapidly evolved, significantly contributing to the escalating trend 

of malicious exploitation targeted at artificial intelligence models [7]–[10]. Backdoor attacks within the domain 

of DL are categorized under poisoning attacks, a subset of adversarial attacks [7], [11]. In these attacks, a 

backdoor trigger is intentionally incorporated into a DL model during its training phase. The manipulated DL 

model is specifically crafted to execute predetermined misclassifications at the time designated by the attacker. 

Therefore, backdoor attacks exemplify a sophisticated form of adversarial attack within the realm of DL. 

Particularly, it is noteworthy that backdoor attacks achieve a high attack success rate despite of a low poisoning 
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rate to a DL model [10], [12]. This poses a considerable challenge in identifying whether a DL model is 

poisoned by a backdoor attack [11]‒[13].  

In academia, the increasing risk of backdoor attacks has led to active research on both the execution 

and defense against such attacks [14]–[18]. One of notable detection techniques is neural cleanse (NC) that 

craftily inserts perturbations into benign images to identify abnormalities and thus detects backdoor attacks 

[18]. However, NC has the following significant limitation such that it fails to detect backdoor triggers above 

a certain threshold, that is when the size of the backdoor triggers exceeds 8×8 pixels. To address this limitation, 

this study aims to detect backdoor attacks regardless of the backdoor trigger sizes. Specifically, we propose a 

novel technique that identifies abnormal perturbations when perturbations are inserted to reclassify backdoor 

images by a DL model into their ground-truth labels. 

The main contributions of this study can be summarized as follows. First, we proposed a novel idea 

to detect various sizes of backdoor triggers hidden in backdoor images. Specifically, our proposed method 

inserts perturbation to backdoor images to induce them to be classified into different labels and then measures 

the abnormality of perturbation. Thus, we assume that the amount of perturbation required to reclassify the 

label of backdoor images to the ground-truth label will be abnormally small compared to them for other labels. 

Second, we implemented our proposed method and conducted comparative experiments. According to our 

experimental results, we showed that our idea is valid and the proposed method outperforms an existing 

backdoor detection method (NC) by 30%p on average in terms of backdoor detection accuracy (BDA). 

The rest of this paper is organized as follows. In section 2, we overview the background knowledge 

and existing studies. In section 3, we design our proposed method based on the analysis of general poisoning 

attacks. In section 4, we conduct extensive experiments and analyze the results. Finally, we conclude with 

future research directions in section 5. 

 

 

2. BACKGROUND AND RELATED WORKS 

2.1.  Backdoor attacks and defenses 

We will provide concise explanations of prevalent technical terms employed in backdoor learning. 

The identical definitions for these terms will be maintained throughout the rest of the paper. Backdoor refers 

to refers to malicious code that arises when a DL model is trained on contaminated data during its training 

phase [18]–[21]. Backdoor trigger signifies the pattern intended to activate the malicious backdoor. Target 

label refers to the label that the attacker induces through a backdoor attack to manipulate the model's 

classification. Ground-truth label refers to the actual label of a backdoor attack image. Anomaly index (AI) 

refers to an indicator measuring how far data points deviate from the distribution (calculating the absolute 

deviation between each data point and the median) [22]. AI is based on median absolute deviation (MAD), and 

higher AI values indicate anomalies [11], [13], [18]. AI can be calculated as in (1). 

 

𝐴𝐼 =  
|𝑋−𝑀𝑒𝑑𝑖𝑎𝑛(𝑋)|

𝑀𝐴𝐷
 (1) 

 

Where 𝑋 is a data point to measure AI, 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) refers to the median value when the standard data is sorted 

in ascending order, and 𝑀𝐴𝐷 is a metric that indicates the median of the absolute deviations between data 

points and the median.  

The typical process of a backdoor attack follows these three stages: backdoor trigger design: In this 

stage, a pattern is crafted to be used as a trigger, considering both confidentiality and attack effectiveness. 

Dataset contamination and model training: The designed trigger is inserted into some training data to train the 

model. Trigger exploitation: When the model receives input containing the backdoor trigger, it outputs the 

target label with a high probability [8], [23]. Figure 1 depicts an example of a backdoor attack performed on a 

DL model designed to classify dogs and cats. In this scenario, the attacker manipulates the model during its 

training phase by inserting a red X pattern, serving as the backdoor trigger, into cat images while altering their 

labels to the target label, which is "dog." Subsequently, during the inference phase, when the attacker inserts 

the backdoor trigger into an image they intend to attack, the model misclassifies it as the target label, which in 

this case is "dog." 

On the other hand, backdoor defense can be categorized into three types: Backdoor-trigger mismatch: 

This method nullifies the backdoor's functionality by altering the backdoor trigger or rendering it ineffective. 

This method incorporate a preprocessing module that alters the trigger patterns within targeted samples before 

feeding them into DL model. Consequently, the adjusted triggers no longer align with the concealed backdoor, 

thus thwarting the activation of the backdoor [13], [24]. Backdoor removal: This involves adding new data or 

modifying model parameters to eliminate the learned backdoor from the model. This method approaches focus 

on eliminating concealed backdoors within the compromised model by directly modifying suspicious models. 

Consequently, even if the trigger is present in attacked samples, the reconstructed model will make accurate 
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predictions as the hidden backdoors have been effectively eliminated [13], [24]–[26]. Trigger removal: These 

defense mechanisms filter out malicious samples during the inference phase rather than during the training 

process. Only benign testing or purified attacked samples are predicted by the deployed model. These defenses 

effectively prevent backdoor activation by eliminating trigger patterns [27], [28].  
 

 

 
 

Figure 1. Backdoor attack process on a DL model classifying dogs and cats 
 

 

2.2.  Overview of neural cleanse 

Wang et al. [18] pioneered a technique for detecting backdoor attacks by introducing perturbation, 

contributing significantly to the foundational research that shapes the location and patterns of backdoor 

triggers. NC employs anomaly detection methods to identify backdoor attacks. Typically, inducing a benign 

image to be classified into a different label than its actual category requires a substantial amount of perturbation. 

However, when a model is compromised with a backdoor attack, and the model has learned a small-sized 

backdoor trigger directing the image to the attack target label, even a slight abnormal perturbation can prompt 

the model to categorize the benign image as the target label. 

NC detects this anomalously inserted perturbation and addresses the backdoor through a meticulous 

process. Figure 2 illustrates the functioning mechanism of NC. In this depiction, a DL model infected with a 

backdoor attack misclassifies images of '9' containing the backdoor trigger as the target label '0' during the 

inference process. NC strategically inserts perturbation into a benign image '9' and tests to classify it under 

different labels. While attempting to classify it from '1' to '8', a substantial amount of perturbation is required. 

However, an anomalously small perturbation is adequate for classifying it as the target label '0'. NC identifies 

this as abnormal perturbation, resembling the form of the backdoor trigger used in the attack. 
 
 

 
 

Figure 2. Backdoor detection process of NC for backdoor-infected Modified National Institute of Standards 

and Technology (MNIST) models 
 
 

To effectively remove backdoors, NC targets neurons activated during the training of abnormal 

perturbations for backdoor defense. By eliminating these neurons that resemble the backdoor trigger, NC 

successfully eradicates the backdoor. This process demonstrates that NC is able to both identify and eliminate 

backdoor triggers hidden in compromised models. In addition, NC enhances the security and reliability of DL 

models by providing a robust defense against sophisticated backdoor attacks by careful analysis and precise 

neuron selection to ensure complete removal of backdoor triggers.  
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2.3.  The critical limitation of neural cleanse 

In the existing research [18], the backdoored model learned a small-sized backdoor trigger, exploiting 

the amount of perturbation introduced to induce a benign image towards the target label, resulting in 

abnormally small features. However, contrary to the assumption in prior research, if an attacker inserts a 

significantly larger-sized backdoor trigger, the amount of perturbation used to induce the target label may 

become similar to the perturbation used to induce other labels. This makes it undetectable as abnormal 

perturbation. As illustrated in Figures 3 and 4, when a backdoor trigger size of 4×4 px is used, it is noticeable 

that the required amount of perturbation is significantly smaller compared to the average. Therefore, the AI of 

the abnormal perturbation is higher than the threshold of 2, allowing proper detection. However, as the 

backdoor trigger size increases, the AI decreases rendering the abnormal perturbation undetectable. Therefore, 

our method aims to achieve this goal regardless of the backdoor trigger's size while maintaining a high 

backdoor detection rate. This approach addresses limitations identified in previous research, contributing to 

the strengthening of the robustness of backdoor detection mechanisms. 
 
 

  
 

Figure 3. L1 norm depending on various backdoor 

trigger sizes 

 

Figure 4. AI depending on various backdoor trigger 

sizes 

 
 

3. PROPOSED METHOD 

In this study, we assume the followings. The attacker can access and use a target DL model to launch 

poisoning attacks on it (white box attack). Thus, the attacker can insert backdoor triggers into a part of training 

dataset and then manipulate their labels to induce misclassifications in the model. In addition, the defender 

uses our proposed technique to detect the existence of backdoor triggers in the target DL model [18], [19].  

To address the critical limitation of NC described in section 2.3, we leverage the inherent characteristics 

of the original label within the backdoor images. Specifically, we assume that backdoor images still possess the 

characteristics of the original label (i.e., ground-truth label) as well as the features of the target label. Thus, we 

expect the amount of perturbation inducing a backdoor attack to the ground-truth label to be abnormally small 

and thus we can use the abnormality to determine the existence of backdoor triggers in images. Based on this 

speculation, we intentionally add some perturbation to backdoor images such that a target DL model 

misclassifies them into different labels, unlike the attacker’s target labels; in this case, our target label is the 

ground-truth label. By this approach, we believe that our proposed method overcomes the limitation of NC since 

the perturbation inducing backdoor images to be classified into their ground-truth labels is consistently 

abnormally small, regardless of the backdoor trigger's size; we show the validity of our idea in section 5. 

Our proposed method is different from existing methods in the following two aspects: 

− Misclassification of the target model: Instead of adding perturbation to benign images to make them 

backdoor images, our method adds perturbation to misclassified images which are suspicious to be 

backdoor images with backdoor triggers to induce them to be classified into different labels to see if they 

are under backdoor attacks.  

− Utilization of ground-truth label: Instead of detecting abnormality in perturbation added to benign images 

for the target label, we examine the amount of perturbation added to misclassified images for each class 

label based on our assumption that the induced perturbation targeting the ground-truth label will be 

relatively very small compared with perturbation required to generating other labels.  

Figure 5 illustrates how our proposed method works to detect the existence of a backdoor trigger in a 

misclassified image by using an example. In the upper part, the backdoored model misclassifies an image with 

a backdoor trigger into the target label 0 although its original ground truth label is 9. In the bottom part, our 

proposed method add perturbation to a misclassified suspicious image such that the DL model reclassifies it to 

different labels ranging from Label 1 to Lable 9 except Label 0 (backdoor attacker’s target label); a process of 

adding perturbation continues until the image is reclassified successfully into a designated each label. As we 
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can see in the figure, the amount of perturbation added to reclassify it to the ground truth label will be very 

small compared to them for generating other labels.  
 
 

 
 

Figure 5. The proposed method that detects the abnormality in L1 norm occurred when classifying a 

backdoor attack image with a ground-truth label (Label: 9) as its original target label (Label: 0) 
 
 

4. EXPERIMENT 

4.1.  Experimental purpose and setup 

The main experimental purpose is to validate our idea to detect large size of backdoor triggers NC 

cannot detect and show the detection performance of our proposed method in our experimental setup. For our 

experiments, we implmented experiment programs in the Anaconda software's virtual environment based on 

Python 3.9 and Tensorflow 2.10 framework and run them on AMD Ryzen 5 5600G CPU and a GeForce RTX 

3060 12 GB RAM GPU [29], [30]. The details on our experimental setup are described as follows. 

− Target DL model and dataset: To construct the target DL model, we used a convolutional neural network 

(CNN) model trained on the MNIST dataset which is commonly used in previous studies on poisoning 

attack and defense [8], [10]. The MNIST dataset consists of 28×28-pixel grayscale images that are 

classified into 10 classes; 10 classes represent digits from 0 to 9. It consists of 50,000 training images and 

10,000 test images. The CNN model is a standard architecture for image classification tasks and has been 

widely used for MNIST dataset classification [13]. The parameters of each layer are shown in Table 1. 

The baseline CNN shows 99.5% of detection accuracy for MNIST digit recognition. To align with an 

existing method and experimental setup, we use CNN model with 0.28 million parameters [17], [18].  

− Backdoor attack methods: To taint the target DL model, we used BadNets attacks [9], [10], [12]. 

Specifically, by using the backdoor attack methods, we created a tainted MNIST dataset 𝐷𝑡  that includes 

a poisoned dataset 𝐷𝑝. At this point, the original ground-truth label of 𝐷𝑝 is '9' and the attacker’s target 

label is set to '0'. Therefore, we manipulated the labels of 𝐷𝑝 and then trained constructed a backdoored 

model by training a CNN model with 𝐷𝑡  generated at poisoning ratio = 3%. In addition, we used a white 

square backdoor trigger pattern added to the bottom right corner of images, and thus various sizes of 

backdoor trigger (1×1, 2×2, 3×3, 4×4, 8×8, and 16×16 px) was created [10], [14].  

− Backdoor detection methods: To compare the performance of our proposed method and an existing method 

NC for various backdoor trigger sizes, we tested 50 times for each backdoor trigger size and averaged their 

detection results. NC measures the perturbation required when inducing a benign image to be classified into 

a different label and assesses if it is anomalously small when induced towards the target label. On the other 

hand, our method measures the perturbation needed when inducing a backdoor image to be classified into a 

different label and evaluates if it is anomalously small when induced towards the ground-truth label [18]. 

− Evaluation metrics: To measure the performance of our proposed method, we used the following two 

evaluation metrics. The first metric is AI that measures the degree of abnormality in a backdoored model 

[22]. To quantify the degree of abnormality, the amount of perturbation inserted to classify the image into 

a different label is calculated using L1 norm. The backdoor attack detection threshold is set to be the same 

as NC, with AI > 2. The second metric is BDA that measures the probability of backdoor detection on 

backdoored model. BDA can be measured as in (2). 
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𝐵𝐷𝐴(%)  =  
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒𝑠
 × 100 (2) 

 

 

Table 1. Architecture of target DL model 
Layer Input Filter Stride Output Activation 

conv 1 1×28×28 16×1×5×5 1 16×24×24 ReLU 
pool 1 16×24×24 2×2 2 16×12×12 / 

conv 2 16×12×12 32×16×5×5 1 32×8×8 ReLU 

pool 2 32×8×8 2×2 2 32×4×4 / 
fc1 32×4×4 / / 512 ReLU 

fc2 512 / / 10 Softmax 

 
 

4.2.  Experimental results and analysis 

First, our proposed method successfully detected backdoor images with 8×8 or 16×16 backdoor 

triggers whose AI > 2 while an existing state-of-the-art backdoor detection method (NC) could not detect them. 

Figure 6(a) shows the perturbation value in terms of L1 norm required when NC classifies a test image  

(Label 9) into a different label (from Label 0 to Label 8 except Lable 9). For example, in the case of using a 

4×4 px backdoor trigger size, the amount of perturbation needed to classify a test image into the target label '0' 

is significantly lower compared to the amount of perturbation needed for other labels (Label 1-Label 8). 

However, as the backdoor trigger size grows, the perturbation value becomes closer to those for other labels. 

On the other hand, Figure 6(b) show the perturbation values measured when our proposed method was used. 

As we can see in the figures, our method needs relatively very small perturbation when classifying backdoor 

images (Label 0) into the ground-truth label (Label 9) regardless of backdoor trigger sizes. Similarly,  

Figure 7(a) represents the calculated AI values for perturbation using NC technique. When the backdoor trigger 

sizes are equal to or greater than 8×8 px, the AI values were lower than the backdoor detection threshold of 2. 

In other words, it is not possible to detect the backdoor attack when the backdoor trigger size is 8×8 or larger 

[9]. On the other hand, Figure 7(b) show the AI values measured when our proposed method was used. 

Consequently, the AI values also exceeded the backdoor detection threshold of 2 and thus our proposed method 

successfully detected backdoor images with various size of backdoor triggers. 
 

 

  
(a) (b) 

 

Figure 6. Comparison of L1 norm when test images are classified into different labels using (a) NC and  

(b) our method 
 

 

  
(a) (b) 

 

Figure 7. Comparison of AI when test images are classified into different labels using (a) NC and (b) our method 
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Second, our proposed method showed a high, stable detection performance for all sizes of backdoor 

triggers. Specifically, as indicated in Table 2, the average BDA of our proposed method is 96.3% while the NC 

showed around 64.3% of BDA on average. This means that our proposed method outperforms the existing 

state-of-the-art detection method NC by around 32%p in terms of backdoor attack detection accuracy. In 

particular, BDA of our proposed method for 8×8 or 16×16 backdoor trigger sizes are 98% and 94%, 

respectively, while the NC could not detect them at all (BDA = 0%). This result confirms that our proposed 

method can resolve the critical vulnerability of NC and thus shows stable, reliable detection performance for 

various backdoor trigger sizes. 

 

 

Table 2. Comparison of BDA for various backdoor trigger sizes 

Trigger Size 
BDA (%) (# of detected backdoor samples / # of test backdoor samples) 

Neural cleanse Our proposed method 

1×1 96 (48 / 50) 96 (48 / 50) 
2×2 98 (49 / 50) 98 (49 / 50) 

3×3 98 (49 / 50) 96 (48 / 50) 

4×4 94 (47 / 50) 96 (48 / 50) 
8×8 0 (0 / 50) 98 (49 / 50) 

16×16 0 (0 / 50) 94 (47 / 50) 

Average 64.3 96.3 

 

 

5. CONCLUSION 

In this study, we introduced a novel approach to detect backdoor attacks in DL models by utilizing 

perturbation insertion to identify abnormal perturbation within the data. The primary objective of this method 

was to enhance the capabilities of backdoor attack detection. By implementing this technique, our goal was to 

overcome the limitations observed in prior research and provide a robust method capable of effectively 

identifying backdoor attacks, regardless of the size of the inserted backdoor trigger. The validation of this 

approach was conducted through a series of preliminary experiments, confirming its efficacy and potential for 

practical application. Our future research directions are as follows. First, we aim to delve deeper into refining 

and optimizing the proposed technique, striving to improve its precision, scalability, and applicability across 

various models and datasets. Second, we plan to explore additional defensive strategies against backdoor 

attacks, including investigating methods to effectively remove detected backdoor triggers or disrupt the 

connection between triggers and backdoors. These strategic measures are designed to fortify the resilience of 

DL models against potential backdoor threats in real-world scenarios. 
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